SECTION 12 – NMR SPECTROSCOPY

12-1 -- Nuclear Magnetic Resonance (NMR)
- 1H NMR and 13C NMR

12-1 -- 1H NMR
- α Spin-State and β Spin-State
- Magnetic Field (Ho)
- Spin Flips (α → β)
- Shielding (Hp ≥ Ho)

12-3 -- A Sample NMR Spectrum
- Use of Tetramethyl Silane (TMS)
- ppm Scale
- “Downfield” vs. “Upfield”
- δ-Values and Chemical Shifts

12-4 -- Characteristic Chemical Shifts for Various Functional Groups

12-5 -- 6 Factors That Allow Us to Understand 1H NMR

12-6 -- Relative Areas Under NMR Absorption Peaks
- Electronic Integration
- Integral Step Heighths

12-6 -- Spin-Spin Splitting (Coupling)
- Relative Intensities of NMR Absorption Peaks
- Pascal’s Triangle and Multiplets
- Singlet, Doublet, Triplet, Quartet, etc.
- The Coupling Constant (J)
- Equivalent Protons Do Not Couple
- Cyclohexane: Axial-H’s vs. Equatorial-H’s

12-11 -- Alcohols and NMR
- Alcohol Proton (1H) is a Very Broad Singlet
- D$_2$O Exchange Identifies the Alcohol Proton in 1H NMR

12-12 -- Complex Splitting in NMR
- Vinylic Coupling
- Use of Tree Diagrams
- J(geminal)
- J(trans) vs. J(cis)
- What’s a “Doublet of Doublets”?

12-13 -- The Effect of Cyclohexane Conformation on Coupling
- Coupling Constant (J) Depends on the Dihedral Angle (θ)
- Karplus Curve

12-14 -- "Types” of Coupling
• Vicinal Coupling (3-Bond Couplings)
• Geminal Coupling (2-Bond Couplings)
• Long-Range Coupling (Greater Than 3-Bond Couplings)

12-15 -- 1H NMR and Dynamic Effects
• Deuterated Cyclohexane ($C_6D_{11}H$)
• Ring-Flip at Room Temperature (25°C)
• Cooling to Slow Down the Ring-Flip

12-16 -- 13C NMR
• Typical Absorption Ranges (0ppm – 250ppm)
• 13C Chemical Shifts for Various Functional Groups
• Proton-Decoupled 13C NMR (“Normal Spectrum”)
• Off-Resonance Decoupling (“Spin-Coupled Mode”)
• Singlet, Doublet, Triplet, Quartet
Section 12: NMR Spectroscopy.

-> "Nuclear Magnetic Resonance":
 - a spectroscopic technique that provides information about the carbon-hydrogen framework (structural info) of a molecule.

* we will study two types of NMR spectroscopy:

1. $^1H\text{ NMR} = "\text{proton NMR}"$.
 - begins on this page.

2. $^{13}C\text{ NMR} = "\text{Carbon-13 NMR}"$.
 - begins on page 12-16

* $^1H\text{ NMR} \Rightarrow \text{most important to us in finding structural info of a molecule.}$

- Protons (1H nuclei) and some other nuclei have spin.
 - there are 2 spin states.
 - $+\frac{1}{2}$, or α
 - $-\frac{1}{2}$, or β
 - "spin quantum #’s"

* these 2 spin states have magnetic moments.

* in a magnetic field, these spin states have different energies...
Illustration of how/why these 2 spin states have different energies:

In a magnetic field H_0, we have:

- The electromagnetic radiation of this energy difference (ΔE) gets absorbed and causes a spin flip ($\alpha \rightarrow \beta$).
- Radio frequency electromagnetic radiation is required to do a spin flip.
- The energy difference (ΔE) is proportional to the magnetic field that's actually "felt" by the proton, H_p (as opposed to H_0).

* For a "bare" proton (H^+), $H_p \approx H_0$, but protons in molecules are shielded to various extents by surrounding e^- clouds and thus "feel" slightly less than the full applied field.
different "types" of protons, i.e. protons in different molecular environments, are shielded to different extents.

There are 2 ways to do these experiments:

1. **Hold magnetic field constant and vary the frequency.** Each type of proton has a different ΔE for $\alpha \rightarrow \beta$ spin flip and absorbs at a different frequency.

2. **Hold frequency constant and vary H_0.** Each type of proton requires a different field strength to attain the correct ΔE for absorbance.

 outdated; used with older instruments.

A Sample 1H NMR Spectrum.

ex: $\text{Cl-CH}_2\text{-C}^\text{\textbullet}_{\text{Cl}}\text{-CH}_3$

added $(\text{CH}_3)_4\text{Si}$ (tetramethyl silane, or TMS) to define zero point = 0 ppm.

"downfield" — increasing H_0 — "upfield"

ppm scale (or δ scale)
the absorption peak, or "resonance," of the CH₃ protons is said to be 2.2 ppm downfield of TMS, or at δ 2.2.

the CH₂ protons appear 4.0 ppm downfield of TMS, or at δ 4.0.

* δ-values are "chemical shifts" of the protons (independent of spectrometer field strength).

* chemical shifts depend on the environment of the protons.

Characteristic Chemical Shifts:

- Electronegative atoms withdraw e⁻ density, and this will cause nearby protons (H's) to be deshiledled.

→ this deshielding will cause H's to appear at a lower field strength.

→ higher δ-value = higher ppm.

→ "further downfield"
\[\text{ex: } X - \overset{\text{1}}{\text{C}} - \overset{\text{1}}{\text{H}} \quad \delta 2.5-4.0 \]
(usually at \(\delta 3.5 \))
\[X = -\text{Cl}, -\text{Br}, -\text{O} \]

- **Alkyl groups** can have an effect on the chemical shift.

 \[\text{R-CH}_3 \quad \delta 0.9 \]
 \[\text{R}_2\text{CH} \quad \delta 1.2 \]
 \[\text{R}_3\text{CH} \quad \delta 1.5 \]

- **Electronegative atoms in the \(\beta \)-position.**

 If there are H's \(\beta \) to \(-X\) (\(\text{H-}\overset{\text{1}}{\text{C}}-\overset{\text{1}}{\text{C}}-X\)), you will see shifts downfield slightly ("to the left") from their normal \(\delta \)-value (\(\sim 0.1-0.7 \) ppm).

\[\text{ex: } \overset{\text{1}}{\text{CH}}_3 - \overset{\text{1}}{\text{CH}}_2 - \overset{\text{1}}{\text{CH}}_2 - \text{Cl} \]
\[\delta 0.9 \quad \delta 1.3 \quad \delta 3.44 \]

\[\text{ex: } \begin{array}{l}
\overset{\text{1}}{\text{Cl}} - \overset{\text{1}}{\text{CH}}_2 - \overset{\text{1}}{\text{C}} - \overset{\text{1}}{\text{CH}}_3 \\
\end{array} \]
\[\delta 4.0 \quad \delta 2.2 \]

- **6 Factors that Allow us to understand 'H NMR.**

- **addressed on next page...**

 "proton NMR"
Relative Areas Under Peaks are proportional to the numbers of H's that represent the peaks. These areas are determined by "electronic integration."

\[\text{Cl} - \text{CH}_2 - \text{C} - \text{CH}_3 \]

\[\text{integration} \]

\[\text{7.5 mm} \]

\[\Rightarrow \]

You can see we have measured the integral step heights (in mm).

* Ratio of above areas: \(2H : 3H \)

Spin-Spin Splitting (Coupling) tells us how things are connected in the organic compound. Protons (H's) "feel" spins of protons (H's) on adjacent carbons:

\[\text{Cl} - \text{C} - \text{C} - \text{H}_b \]

\[\text{H}_b \]

\[\text{Ha} \]

\[\text{ex: Cl} - \text{C} - \text{C} - \text{H}_b \]

\[\text{H}_b \]

\[\text{H}_a \]

Ratio: \(1H : 2H \)
... in the previous example:

Consider the H_b absorption = why 2 peaks?

- in ≈ 50% of the molecules, H_a has α spin, and in the other ≈ 50%, H_a has β spin.

- the neighboring α-spin adds to the field felt by H_b.

- the neighboring β-spin adds to the field felt by H_b

* therefore H_b appears as a "doublet".

Consider the H_a absorption = why 3 peaks?

- similar to the reasoning above.

- H_a is "next to" 2 equivalent neighboring protons, H_b

- each H_b can have α or β spin possible combinations:

- 25% 25% 25%

- 1H:2H:1H peak ratio (of intensities)

- H_a appears as a "triplet".
SECTION 12 – NMR SPECTROSCOPY

Were the FREE Section 12 Notes Useful?

Want the FULL VERSION of the Section 12 Notes?

Download Them Instantly at:

ChemistryNotes.com