

WriteNow! and µISP

In-System Programmers

Programmer’s Manual

Rev. 2.00 - February 2022

UM00070000EN

Copyright Information

Copyright © 2010-2022 Algocraft Srl.

No part of this manual may be reproduced in any form or by any means (including electronic storage and

retrieval or translation into a foreign language) without prior agreement and written consent from Algocraft.

Disclaimer

The material contained in this document is provided “as is”, and is subject to being change, without notice, in

future editions. Further, to the maximum extent permitted by applicable law, Algocraft disclaims all warranties,

either express or implied, with regard to this manual and any information contained herein, including but not

limited to the implied warranties of merchantability and fitness for a particular purpose. Algocraft shall not be

liable for errors or for incidental or consequential damages in connection with the furnishing, use, or

performance of this document or of any information contained herein. Should Algocraft and the user have a

separate written agreement with warranty terms covering the material in this document that conflict with these

terms, the warranty terms in the separate agreement shall control.

Whilst every effort has been made to ensure that programming algorithms are correct at the time of their

release, it is always possible that programming problems may be encountered, especially when new devices

and their associated algorithms are initially released. It is Algocraft’s policy to endeavor to rectify any

programming issues as quickly as possible after a validated fault report is received.

It is recommended that high-volume users always validate that a sample of a devices has been programmed

correctly, before programming a large batch. Algocraft can not be held responsible for any third party claims

which arise out of the use of this programmer including ‘consequential loss’ and ‘loss of profits’.

Algocraft Warranty Information

Algocraft warrants that this product will be free from defects in materials and workmanship for a period of one

(1) year from the date of shipment. If any such product proves defective during this warranty period, Algocraft,

at its option, either will repair the defective product without charge for parts and labor, or will provide a

replacement in exchange for the defective product. Parts, modules and replacement products used by

Algocraft for warranty work may be new or reconditioned to like new performance. All replaced parts,

modules and products become the property of Algocraft. In order to obtain service under this warranty,

Customer must notify Algocraft of the defect before the expiration of the warranty period and make suitable

arrangements for the performance of service. Customer shall be responsible for packaging and shipping the

defective product to the service center designated by Algocraft, with shipping charges prepaid. Algocraft shall

pay for the return of the product to Customer if the shipment is to a location within the country in which the

Algocraft service center is located. Customer shall be responsible for paying all shipping charges, duties, taxes,

and any other charges for products returned to any other locations. This warranty shall not apply to any

defect, failure or damage caused by improper use or improper or inadequate maintenance and care.

Algocraft shall not be obligated to furnish service under this warranty a) to repair damage resulting from

attempts by personnel other than Algocraft representatives to install, repair or service the product; b) to repair

damage resulting from improper use or connection to incompatible equipment; c) to repair any damage or

malfunction caused by the use of non-Algocraft supplies; or d) to service a product that has been modified or

integrated with other products when the effect of such modification or integration increases the time or

difficulty of servicing the product.

THIS WARRANTY IS GIVEN BY ALGOCRAFT WITH RESPECT TO THE PRODUCT IN LIEU OF ANY OTHER

WARRANTIES, EXPRESS OR IMPLIED. ALGOCRAFT AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ALGOCRAFT’RESPONSIBILITY TO REPAIR

OR REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND EXLUSIVE REMEDY PROVIDED TO THE CUSTOMER

FOR BREACH OF THIS WARRANTY. ALGOCRAFT AND ITS VENDORS WILL NOT BE LIABLE FOR ANY

INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER ALGOCRAFT

OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Technical Support

Please e-mail any technical support questions about this product to: support@algocraft.com.

WriteNow! Programmer's Manual

 3

Table of Contents

1. Introduction .. 7

Important Notice to Users ..7

Technical Support ...7

Required Skills ..7

µISP Series .. 8

Programming algorithms .. 8

Programming Drivers and Licenses .. 8

Filename Restrictions .. 8

2. Getting Started ... 9

Install Software .. 9

Recommended Software System Requirements .. 9

Launch the Project Generator ... 10

Connect the programmer to the PC ... 10

Create a Project ... 10

Connect to Target Device ... 11

Program the Target Device .. 11

Where to Go from Here .. 12

3. WriteNow! Project Generator GUI .. 13

Overview .. 13

Main window .. 14

Top Toolbar .. 14

Left Toolbar .. 15

Right Control Box Panel .. 16

Create a New Project ... 17

Project Creation Wizard (Step 1 of 3) ... 17

Project Creation Wizard (Step 2 of 3) .. 18

Project Creation Wizard (Step 3 of 3) ... 20

Advanced Project Settings ... 21

WriteNow! Programmer's Manual

 4

Manual Project Editing ... 22

Model Selection .. 22

Communication settings .. 23

USB .. 23

COM (RS232) .. 23

LAN / Ethernet ... 24

Hardware Settings ... 26

Firmware Upgrade .. 26

Hardware Test .. 26

4. Image file Creation .. 27

Overview ... 27

Adding a Source File (File Formats) .. 28

Intel-Hex formats ... 28

Motorola S-Rec formats .. 29

Binary formats .. 30

JEDEC format .. 30

POF Format .. 31

HEX Dump format .. 31

Infineon Tricore Hex/SRec format ... 31

TI-TXT format .. 31

Espressif Binary format... 32

Atmel XCFG format (ATMXT641T device) .. 32

NXP PMIC CFG format (PF0100A device) ... 33

Elmos E522 CFG format (E522.49 device) .. 33

XDPL AHEX format (XDPL821x devices) ... 33

Micronas HAL format (HAL37xx devices) ... 34

Editing a Source File .. 34

Const Data Pattern .. 34

Exclude Range .. 34

Variable Data ... 35

Conversion Report and Analysis.. 35

Fill Unused Location .. 36

Command Line conversion utility ... 36

5. Commands ... 37

WriteNow! Programmer's Manual

 5

Overview ... 37

Command Syntax .. 37

OK Answer ... 37

ERR Answer ... 37

BUSY Answer .. 38

WriteNow! Terminal .. 38

Command Reference .. 38

Data In/Out Commands .. 39

Execution Command .. 40

File System Commands .. 41

Programming Commands .. 43

Status Commands ... 44

System Commands ... 46

Time Commands ... 48

Volatile Memory Commands ... 49

6. Programming Variable Data and Serial Number ... 51

Define the device address range ... 51

Generate and set the variable memory ... 51

Start the programming process .. 52

Example .. 52

7. WriteNow! File System ... 55

Overview ... 55

File System Structure ... 56

8. Standalone Mode .. 57

Overview ... 57

Project Assignment.. 57

9. Protected Mode and Data Encryption .. 59

Protected Mode ... 59

Data Encryption ... 61

10. WriteNow! API ... 62

Overview ... 62

Including the API in Your Application .. 62

Function Reference (C++ Library) .. 63

WN_CloseCommPort() ... 64

WriteNow! Programmer's Manual

 6

WN_ExeCommand() ... 65

WN_GetFrame() ... 66

WN_GetLastErrorMessage() ... 67

WN_ReceiveFile() ... 68

WN_SendFile() .. 69

WN_SendFrame() .. 70

WN_OpenCommPort() ... 71

Function Reference (C++/CLI Library) .. 71

Function Reference (C# Library) .. 75

11. Troubleshooting .. 77

USB Driver issues (Windows 7 and earlier) ... 77

Get full access to WriteNow! folder on Windows 10 ... 77

Diagnostic Test ... 79

WriteNow! Programmer's Manual

 7

1. Introduction

Important Notice to Users

While every effort has been made to ensure the accuracy of all information in this

document, Algocraft assumes no liability to any party for any loss or damage caused by

errors or omissions or by statements of any kind in this document, its

updates, supplements, or special editions, whether such errors are omissions or

statements resulting from negligence, accidents, or any other cause.

Technical Support

Algocraft is continuously working to improve WriteNow! firmware and to release

programming algorithms for new devices. The latest version of WriteNow! system

software is always available from our website: http://www.algocraft.com.

To get in touch with Algocraft, please email to support@algocraft.com

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective

holders.

Required Skills

In order to beneficially use the WriteNow! programmers, you should be familiar with

certain skills, ranging from hardware design to software design. In particular, it is

assumed a good knowledge of the following:

• Microcontroller systems.

• Programming knowledge (C, C++).

• The target architecture knowledge.

• The software tools used for building your application.

WriteNow! Programmer's Manual

 8

µISP Series

The µISP programmer is based on WriteNow! technology. µISP series and WriteNow!

series are fully software compatible.

Programming algorithms

WriteNow! supports different devices (microcontrollers, serial and parallel memories,

CPLD/FPGA, programmable sensors and ICs, etc). In order to program a specific device,

the following software components are needed:

▪ The programming algorithm driver (.wnd). The programming driver is a library

running on WriteNow! hardware platform, that contains routines needed to

program a specific device family.

▪ The image file (.wni). The image file is a binary WriteNow! proprietary file

format used to store customer firmwares.

▪ The project file (.wnp). The project file is a text file that contains device specific

settings and programming commands.

▪ The license file (.wnl). The license file is a binary file linked to the serial number

of the hardware unit, that contains the list of all the devices the programmer

can use.

Programming Drivers and Licenses

WriteNow! comes with preinstalled programming drivers (algorithms) that support

common microcontrollers and memories. When you purchase a new programming

driver, you are supplied with a new driver file (.wnd) and an updated license file (.wnl).

The license file enables the use of all of your purchased drivers on your specific

WriteNow! unit.

You must copy these files to the unit’s internal memory: the driver file must be copied to

the unit’s \drivers folder, and the license file to the unit’s \sys folder.

Filename Restrictions

Characters not allowed:

* / \ | ? * . , : ; < >

and "space"

Filename (*.wni, and *.wnp) is limited to 39 characters, including extension.

WriteNow! Programmer's Manual

 9

2. Getting Started

The following tutorial will guide you through the steps required to set up your

WriteNow! programmer and create your first programming project.

Install Software

Install the WriteNow! software. Follow the on-screen instructions. The latest version of

WriteNow! system software is always available from our website:

http://www.algocraft.com.

Recommended Software System

Requirements

Microsoft Windows 7, Windows 8, Windows 10 (both 32-bit and 64-bit editions)

Microsoft .NET Framework 4.0 or later.

Note: it is highly recommended to install all the required software first, so that

the WriteNow! USB driver will be automatically found by Windows once the

programmer is connected (earlier versions than Windows 10 only).

Note: to install the WriteNow! software, you must log in as Administrator.

WriteNow! Programmer's Manual

 10

Launch the Project Generator

Launch the Project Generator application, that is located under Programs > Algocraft >

WriteNow! Software > Project Generator.

Connect the programmer to the PC

Connect the programmer to the host PC through the available ports: USB, LAN or

RS232. The “Model and Communication Settings” section describes the procedure to

configure your instrument and the USB, LAN and COM (RS232) communication setup.

Once completed the communication setup procedure, press the icon to verify the

PC can establish a connection with the programmer.

Create a Project

A project must be created prior to starting a programming session. The “Project Setup”

section describes the main steps to follow during the creation of the project.

WriteNow! Programmer's Manual

 11

Connect to Target Device

Connect WriteNow! to your target system through the ISP connector(s). To view the

connections for your selected target device, select Project > Show ISP Connections.

Program the Target Device

Select Project > Run Project. The Project file (.wnp) and Image file (.wni) will be

automatically uploaded to WriteNow! and the project will be executed. Your target

device(s) will be programmed.

WriteNow! Programmer's Manual

 12

In case of programming errors, or to change programming parameters/operations, you

can relaunch the Project Wizard and review the project settings.

Where to Go from Here

In this chapter, you have learnt how to use the Project Generator to create and execute

a typical programming project. Additionally, WriteNow! can be controlled in three other

ways:

1. By manually sending commands and receiving answers, using the Project

Generator Terminal or any other terminal application (for more information, see

Commands);

2. By configuring the instrument so that it can work in standalone, that is without a

connection to a PC (for more information, see Standalone Mode);

3. By building your own PC software that interfaces to the instrument (for more

information, WriteNow! API).

WriteNow! Programmer's Manual

 13

3. WriteNow! Project Generator

GUI

Overview

The WriteNow! Project Generator is a programming software for PC which is able to

communicate with the programmers based on WriteNow! technology. The Project

Generator guides you through the creation and debugging of a programming Project in

few guided steps:

• Instrument settings;

• Device selection;

• Source file creation;

• Board parameter settings;

• Programming flow options;

• Upload and run of the Project;

• Memory view;

• Blank check/erase/program/verify/read operations;

WriteNow! Programmer's Manual

 14

Main window

Launch the Project Generator application, that is located under Programs > Algocraft >

WriteNow! Software > Project Generator. The following dialog box will appear.

Top Toolbar

The top toolbar shows the most frequently used commands to create and debug a

project – it is a subset of the menu bar commands.

Icon Functions

Create a new project

Open an existing project

Edit a project (wizard)

View the image file segmentations and memory map of the device

WriteNow! Programmer's Manual

 15

View the ISP connections

Check the serial communication between device and programmer

Erase the device memory

Check the blank state of the device

Program the device memory

Verify the device memory

Read the device memory

Execute a complete programming cycle

Left Toolbar

The left toolbar shows the most frequently used commands to configure and set the

programmer unit – it is a subset of the menu bar commands.

Icons Features

Select the hardware model

Open the hardware settings window

Edit miscellaneous settings

WriteNow! Programmer's Manual

 16

Check the communication between PC and

programmer (ping)

Open the terminal window

Open the File Manager window

View the volatile memory

Open the hardware manual

Right Control Box Panel

The right Control Box panel displays the site status errors and statistics.

WriteNow! Programmer's Manual

 17

Create a New Project

Select File > New Project, give a name to your programming project, and then follow

the Project Creation Wizard steps.

Project Creation Wizard (Step 1 of 3)

First Wizard step: specify the target device, by clicking the “Edit” button.

Then, specify the image file to be programmed. To create an image file, click the

“Create/Edit File” button. A dedicated window will open.

In the Output File section, choose the output filename by clicking the “...” button.

Use the “Add” button to compose the data that will be included in the image file. Use

the “...” button to specify the name of the Image file. When done, click “OK” to return to

the Wizard, and proceed to Step 2.

WriteNow! Programmer's Manual

 18

Project Creation Wizard (Step 2 of 3)

In this step, specify target parameters and connection values. The Wizard will

automatically fill all data with typical values for the selected target device.

The number of tabs displayed in this window depends on the selected target device;

however, three tabs (“Target I/O”, “Target Power Supply” and “Communication”) are

always present and will be briefly discussed below.

The first tab is “Target I/O”. The “Device I/O voltage” setting specifies the voltage of

the ISP lines. You should check the target board schematics, or ask the board developer

about this value. The allowed voltage also depends on the selected target device.

The “Clock I/O drive mode” setting allows you to decide how the SxL04 ISP line is

driven (the x index refers to the programming site). This line can be used as an auxiliary

ISP line (to provide a clock to the target device), as a generic I/O line, or as a high-

impedance output (no electrical driving). When used as output line (set to high or low),

it could be used, for example, to disable the external watchdog circuit in the target

WriteNow! Programmer's Manual

 19

board. When used as clock out, you can specify the output frequency in the “Clock I/O

frequency” field. We suggest leaving this line floating (HiZ) when not used, in order to

decrease electrical noise on other ISP lines.

If you decide to power the target board through the WriteNow! power supply line

(SxPPS), specify in the “Target Power Supply” tab the electrical and timing parameters

of the target power supply line. WriteNow! is able to power the target board through a

dedicated programmable power supply output line per site. The voltage of the

programmable power supply line (“Target power supply voltage” setting) can be in the

range 1700mV to 13000mV. Each programmable power supply line features an internal

voltage limiter that cuts the voltage output in case of short circuits or overloads.

The “Power up time” setting specifies the delay between the programmable power

supply line turning on and the first operation on the ISP lines. The purpose of this

parameter is to wait for the power supply to become stable, before starting ISP

programming. This parameter is useful when large capacitors are mounted in the target

board’s power line.

The “Power down time” setting acts in similar way: it sets the delay between the

programmable power supply line turning off and subsequent operations.

WriteNow! Programmer's Manual

 20

The content of the “Communication” tab depends on the selected target device. It

allows you to select the communication protocol that will be used for programming

(some target devices may provide more than one communication protocol) and its

related settings, such as the communication speed and other parameters. Usually, the

higher the communication speed, the shorter/better the ISP cabling must be.

After carefully checking all of the parameter values, proceed to Step 3.

Project Creation Wizard (Step 3 of 3)

Select the programming operation(s) to be performed on the target.

The read FLASH memory will create a dump file, located in the \images folder.

It can be performed one site at once.

WriteNow! Programmer's Manual

 21

Click “Finish” to end the Wizard. At this point, a WriteNow! Programming Project will be

created in the \Projects directory, relative to the Project Generator workspace location.

Advanced Project Settings

In most of our programming algorithm, it is possible to change some of the default

project settings without editing the project manually.

WriteNow! Programmer's Manual

 22

Manual Project Editing

The Project file created by the Project Wizard is located, by default, in the \Projects

folder, relative to the Project Generator application location (it can be changed any time

by specifying a different “workspace” path: to do so, in the Project Generator, select

Settings > Edit Miscellaneous Settings and modify the Workspace directory).

The generated project file is an ASCII text file and, if necessary, can be edited using any

text editor. Please note, however, that once the file is modified by the user, it can be

opened by the Project Generator but the Project Wizard will not be available.

Model Selection

Go to Settings > Select Hardware Model, and specify your instrument model and

communication settings with the PC. In addition, select the external module if present.

WriteNow! Programmer's Manual

 23

Communication settings

This section describes the simple procedure for the USB, COM and LAN setup.

USB

The USB driver is designed as a virtual COM. In this way, the instrument will be detected

automatically on Windows 10 OS (no additional driver is required). For earlier Windows

versions, the setup software will install the driver, or, if needed, it can be installed

manually through the WNUSB.inf located under the “…\developer\USB driver” directory.

Once connected the USB cable, please check on Device Manager → Ports (COM & LPT)

if the USB Serial Port (COMX) is present. Where X is an integer number.

COM (RS232)

WriteNow! communicates at 115,200 bps by default.

On Windows system, check the proper COM port number in the Device Manager

window:

WriteNow! Programmer's Manual

 24

LAN / Ethernet

The WriteNow! programmer default LAN parameters are:

▪ IP address: 192.168.1.10

▪ Netmask: 255.255.255.0

▪ Gateway: 192.168.1.1

Connect WriteNow! to your LAN through the ethernet cable. If you are using a router,

make sure that the configuration settings match.

WriteNow! could also be connected directly to your PC. In this case or if you want to

configure your LAN manually, set a static IP:

▪ On Windows system, go to the network card properties window and choose the

“Internet Protocol Version 4” item:

▪ Set the proper IP, subnet mask and the default gateway:

Once connected to the instrument, change the current LAN parameters if needed. To

WriteNow! Programmer's Manual

 25

do this, open the “WriteNow! Hardware Settings” and then select “LAN/RS232 Settings”.

The new configuration will be active after the programmer reboots.

WriteNow! Programmer's Manual

 26

Hardware Settings

Firmware Upgrade

To update the firmware, click on the Firmware Upgrade button. Then browse the proper

programmer firmware version.

It is located in Programs > Algocraft > WriteNow! Software > sys.

For WriteNow! programmer the firmware filename is wncore01.wnd

For µISP programmer the firmware filename is uicore01.wnd.

Wait until the firmware has been updated successfully:

At this time the new firmware is already working. It’s not necessary to reboot the system.

Hardware Test

The diagnostic procedure is a very easy way to verify if some hardware faults occur.

Use the provided test-board to check the connections to all the ISP sites.

WriteNow! Programmer's Manual

 27

4. Image file Creation

Overview

This chapter describes all the features which could be used to create your image file.

The standard output format is the WriteNow! image (.wni), optimized for reading and

writing data.

When the image file is created, the CRC32 and the MD5 values are shown in order to

check the file integrity information:

In the following sections will be explained all the input data types.

The CRC32 and MD5 values are not calculated on the entire file, but it skips

the first 512 bytes.

WriteNow! Programmer's Manual

 28

Adding a Source File (File Formats)

The supported file formats are:

Intel-Hex formats

The Intel HEX file is an ASCII text file. A sample HEX is shown below:

The format for this file is:

First character (:): Start of a record

Next two characters: Record length (in this example, 10h)

Next four characters: Load address (in this example, 0080h)

Next two characters: Record type (see below)

Remaining characters: Actual data

Last two characters: Checksum (i.e., sum of all bytes + checksum = 00)

HEX record types are shown below:

00 = Data record

01 = End of file record

02 = Extended segment address record

WriteNow! Programmer's Manual

 29

03 = Start segment address record

04 = Extended linear address record

05 = Start linear address record

The Intel Hex16LE and Intel Hex16BE formats are very similar to the Intel-Hex format,

except that the addresses are word addresses. The count field is a word count.

Motorola S-Rec formats

The Motorola S-record is a file format that conveys binary information in ASCII hex text

form. This file format may also be known as SRECORD, SREC, S19, S28, S37. A sample

Motorola S-Rec is shown below:

S-records are character strings of five fields: record type, record length, memory

address, data and checksum.

The record type as follows:

S0 = Header record

S1 = Data record for 16-bit addresses

S2 = Data record for 24-bit addresses

S3 = Data record for 32-bit addresses

S5 = Count record

S7 = Terminator record for 32-bit addresses

S8 = Terminator record for 24-bit addresses

S9 = Terminator record for 26-bit addresses

The Motorola S-Rec16LE and Motorola S-Rec16BE format formats are very similar to the

standard Motorola S-record format, except that the addresses are word addresses. The

count field is a word count.

Intel Hex16LE (little-endian byte orders) and Intel Hex16BE (big-endian byte

orders) are Intel Hex file format with 16 bits data word for TMS320F devices.

WriteNow! Programmer's Manual

 30

Binary formats

The Binary format is a literal representation of the data to be transferred and no

translation of the data takes place during the transfer. There are no overhead characters

added to the data (i.e. no address record, start code, end code, nulls, or checksum).

Every byte transferred represents the user’s data.

The Binary BitSwap format is very similar to the Binary format, except that the bits are

swapped. This format can be also used to load a .rpf file. The .rpd (Raw Programming

Data) file is a binary file containing configuration data for external serial memory like

EPCS or EPCQ serial configuration devices. Data written to a serial configuration device

should be shifted so that the least-significant bit is loaded into the device first.

For example, if the .rpd contains the byte sequence 02 1B EE 01 FA, the serial data

programmed into the configuration device must be 100-0000 1101-10000111-0111 1000-

0000 0101-1111.

JEDEC format

A JED format is a Xilinx JEDEC hardware configuration file.

It is used for programming complex programmable logic devices (CPLDs/FPGAs).

The JEDEC format consists of a start-of-text character (STX), various fields, an end-of-

text character (ETX), and a transmission checksum.

Here is an example file taken from the reference below:

QP48*

QF17200*

G0*

F0*

L00000

1101101011000100001000010000100001101010000110001100010000100

0010000100001111111

0110101100101000010000100001000011010100001101001100010000100

0010000100001111111

Note: Motorola SREC16LE (little-endian byte orders) and Motorola

SREC16BE (big-endian byte orders) are Motorola S-record file format with 16

bits data word for TMS320F devices.

Note: Motorola S12X PAGED S-Rec format must be selected for NXP

HCS12(X) MCU family only. It converts a Motorola S-Rec file remapping the

address UNPAGED map (0x4000 - 0xFFFF) to PAGED map (0xFD8000 -

0xFF8000).

Note: Motorola S08 PAGED S-Rec format must be selected for NXP S08

MCU with more than 64KB. It converts an Motorola S-Rec file remapping the

extended address memory map: ex: 0x4000-0x7FFF to PAGE1 0x8000-

0xBFFF.

WriteNow! Programmer's Manual

 31

1011000101000001000010000110101000011000110001000010011100000

0010000100001111111

*

CF5F2*

POF Format

The POF (Programmable Object File) format provides a highly compact data format to

enable translation of high bit count logic devices efficiently. This format currently applies

to Altera/Intel devices. The information contained in the file is grouped in packet. The

POF is composed of a header and a list of packets.

HEX Dump format

The HEX Dump format is a human readable hexadecimal dump.

Each data byte is represented as 2 hex characters, and is separated by white space. The

address is set by using a sequence of 8 hex characters.

Here is an example of ASCII HEX file.

It contains the data Hello, World to be loaded at address 0x1000:

0001000 48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 0A

Infineon Tricore Hex/SRec format

This format must be selected for Infineon Tricore MCU family only. It converts an Intel-

Hex or Motorola S-Rec file remapping the address from h80000000 to hA0000000.

TI-TXT format

The TI-TXT format is used by the Texas Instruments MSP430 devices.

The TI-TXT hex format supports 16-bit hexadecimal data.

It consists of one or more sections, followed by the end-of-file indicator.

Each section consists of an at (@) sign followed a start address (in hexadecimal)

and then data bytes (in hexadecimal).

The end-of-file indicator is the letter Q followed by a newline.

Here is an example TI-TXT file taken from the reference below:

@F000

31 40 00 03 B2 40 80 5A 20 01 D2 D3 22 00 D2 E3

21 00 3F 40 E8 FD 1F 83 FE 23 F9 3F

@FFFE

00 F0

Q

Algocraft has introduced an optional new field (#) to represent the data size (8,16 or 32

bits)

WriteNow! Programmer's Manual

 32

#8 = data byte

#16 = data word

#32 = data longword

This format is used when you need to specify few bytes/words value for configuration

memory. An example:

Espressif Binary format

This format must be selected for Espressif ESP32 devices only.

The binary file loaded is converted and compressed using gzip deflate algorithm for

improving programming times.

Atmel XCFG format (ATMXT641T device)

A XCFG format is a Microchip configuration file for ATMXT641T

Here is an example file taken from the reference below:

WriteNow! Programmer's Manual

 33

NXP PMIC CFG format (PF0100A device)

A PMIC CFG format is a NXP configuration file for some PMIC devices

Here is an example file taken from the reference below:

Elmos E522 CFG format (E522.49 device)

A E522 CFG format is an Elmos configuration file for the E522.49 Led Driver.

Here is an example file taken from the reference below:

XDPL AHEX format (XDPL821x devices)

A AHEX format is an Infineon configuration file for XDPL8218/ XDPL8219 devices

Here is an example file taken from the reference below:

WriteNow! Programmer's Manual

 34

Micronas HAL format (HAL37xx devices)

This file format must be selected for Micronas HAL/HAR devices only.

Editing a Source File

When the source file loading is completed, you can change the image file settings by

clicking on the Edit button:

The original file range values show the start address and the end address of your

source file. It is possible to remove data from the programming through the new file

range section.

The buffer range values are used to set the offset for the start address and the end

address according to the device memory map.

Const Data Pattern

This option is useful if you want to program some bytes which are not included in the

firmware. For example, if you want to program the option bytes of STM32 devices, you

can set the proper RDP level, BOR level ecc.

Exclude Range

 This option can be used to skip a memory area from being programmed (typically for

debug purpose).

WriteNow! Programmer's Manual

 35

Variable Data

WriteNow! has built-in, dedicated memory banks for each programming site. This

memory can be used to temporarily store variable data that will be written to the target

device during programming. This is useful for serial numbering and for any other

variable data that needs to be written to the target device at programming time.

To implement variable data programming:

• Set the target device address range to be programmed and the offset of the

memory bank that will contain the variable data (the maximum data length

available is 512 bytes).

• Proceed to the end of the Project Creation wizard. Your programming project

is now ready to accept variable data.

• Before executing the project, you must supply the variable data to each of the

programming sites. To do so, send the #volatile -o write command through

the WriteNow! Terminal (for more information, see “Volatile Memory

Commands” on page 49). For example, if you want to program a MAC address:

#volatile -o write -s 1 -a h0 -l 6 -d [h00 h90 h96 h90 h48 h85]

#volatile -o write -s 2 -a h0 -l 6 -d [h00 h90 h96 h90 h48 h86]

Alternatively, you can skip steps 1 to 3, but you must manually edit your programming

project by inserting an appropriate #data -o set -c out -t volatile command and

subsequent appropriate programming commands (for more information, see “Data

In/Out Commands).

Conversion Report and Analysis

The conversion report is useful to check if the source file conversion will be performed

successfully. It is named as the image file and it is located in the same directory.

Here’s an example:

***** File Creation Report *****

Block Type Start Addr End Addr

==================================

WriteNow! Programmer's Manual

 36

Skip Area: 00000000 - 0000FFFF

Data Area: 00010000 - 0001FFFF

The “Skip Area” is not included in the memory programming as “Data Area” and “Fill

Area” (see the following section).

The same report is also available on a dedicated window “Memory Map Analysis”. This

window contains a lot of useful information about the image file segmentation (.wni)

and memory map of the device.

Fill Unused Location

This option allows to program the skip areas included in the source file with the

specified value. The main reason to use this option is to avoid unexpected programming

errors (e.g. data unaligned error).

 It is very important to make sure that the fill value matches the blank value of the

device.

Command Line conversion utility

It’s also possible to create the image file using a command line utility (wn_bin2wni.exe).

Here is an example from Image File Creation window:

WriteNow! Programmer's Manual

 37

5. Commands

Overview

WriteNow! is a slave unit and is always waiting for a new command coming from the

master (PC).

When the programmer receives a SOF (Start Of Frame) character (#), indicating the start

of a new command, it loads all incoming characters in a buffer until the reception of the

return character (\n, ASCII code h0A). The maximum command length is 256 characters.

After reception of the return character, the programmer interprets and executes the

received command; depending on the execution of the received command the protocol

will answer to the master in three different ways.

1. If the command is correctly executed, the programmer answers with an OK frame.

2. If the command execution generates errors, the programmer answers with an ERR

frame.

3. If the command takes long to execute, the programmer periodically answers with a

BUSY frame, until command execution is over and an OK or ERR frame appears.

All commands and answers are case-insensitive.

Command Syntax

A WriteNow! command begins with the SOF character (#), followed by the command

name, then followed by zero or more command switches, and terminates with the

return character (\n).

This is an example of a WriteNow! valid command:

#status -o ping{\n}

OK Answer

An OK answer is composed of zero or more characters, followed by the > character,

followed by the return character (\n).

This is an example of a WriteNow! OK answer:

pong>{\n}

ERR Answer

An ERR answer is composed of zero or more characters (usually the hexadecimal error

code), followed by the ! character, followed by the return character (\n).

This is an example of a WriteNow! ERR answer:

h40000103!{\n}

WriteNow! Programmer's Manual

 38

BUSY Answer

A BUSY answer is sent by the programmer to the PC if a command takes some time to

execute. A BUSY answer is sent at most every 3 seconds. If no OK, ERR or BUSY answer

is sent within 3 seconds from the last command sent to the programmer, a

communication error has probably occurred.

A BUSY answer is composed of zero or more characters, followed by the * character,

followed by the return character (\n).

This is an example of a WriteNow! BUSY answer:

*{\n}

WriteNow! Terminal

Commands can be sent (and answers received) using any terminal application. For your

convenience, the Project Generator application includes a Terminal window that will

simplify the communication with the instrument. Just select Tools > WriteNow! Terminal

to open the Terminal window.

Command Reference

The following pages list all of the WriteNow! commands, grouped by function, together

with their syntax and usage examples.

A valid answer always ends with two characters: >{\n}, !{\n} or *{\n},

depending on whether an OK, ERR or BUSY frame is sent to the host.

Additional return characters (\n) may be present in the answer, but they don’t

signal the end of the answer.

WriteNow! Programmer's Manual

 39

Data In/Out Commands

Syntax

#data -o set -c <direction> -t file -f <filename> --fill <value>

#data -o set -c <direction> -t volatile

#data -o set -c in -t file -f \images\myimage.wni -s <MD5/CRC32>

Parameters

<direction> in or out.

<filename> Filename on the instrument’s file system.

Description

Specify the source and destination of the programming data.

Examples

▪ Sets the input image file to be programmed, and subsequently programs it:

#data -o set -c in -t file -f \images\myfile.wni

>

#prog -o cmd -c program -m flash -s h8000 -t h8000 -l h8000

>

If you add the "-s MD5 | CRC32" flag, the programmer checks the full-integrity of the

wni file and returns an error in case of wrong integrity.

▪ Sets the output file to receive binary data, and subsequently reads data from the

target device:

#data -o set -c out -t file -f \images\dump.bin

>

#prog -o cmd -c read -m flash -s h8000 -t h8000 -l h8000

>

If you add the --fill flag, the programmer will fill the unused location with the <value>

data.

WriteNow! Programmer's Manual

 40

Execution Command

Syntax

#exec -o prj -f <project> -s <sites>

#exec -o prj -f <project> -s <sites> --dmux <channel>

Parameters

<project> The Project filename to execute.

<sites> A 8-bit value indicating the programming sites to be enabled.

Description

Executes the specified Project over the specified programming sites. In case of error, a

32-bit value is returned. This value indicates whether the error is site-specific (bit 29 = 1)

or system-specific (bit 29 = 0). If the error is site-specific, the 8 least significant bits (bits

from 7 to 0) signal whether programming in the corresponding programming site (bit 7

= programming site 8, bit 0 = programming site 1) was successful (bit = 0) or not (bit =

1).

To retrieve error messages, use the #status -o get -p err -v <site> -l

<errlevel> command, where <site> is 1 to 8 to retrieve a specific programming

site error, or 0 to retrieve a system error. <errlevel> is the error detail information

that is returned and can be 1, 2, 3.

Examples

▪ Executes the Project “myprj.wnp” on programming sites 1, 2, 3, 4:

#exec -o prj -f \projects\myprj.wnp -s h0f

h20000003!

In this case, the returned error indicates that there are site-specific errors (bit 29 = 1)

and that the sites where errors occurred are sites 1 and 2. To retrieve detailed error

information about site 1, for example, the following command can be sent:

#status -o get -p err -v 1 -l 2

h5000001,23,”Error: Timeout occurred”

>

The answers indicates that Project line 23 issued a h5000001 error, and the text

between quotes explains the error.

WriteNow! Programmer's Manual

 41

File System Commands

Syntax

#fs -o rmdir -d <directory>

#fs -o mkdir -d <directory>

#fs -o dir -d <directory>

#fs -o del -f <filename>

#fs -o send -d <filename>

#fs -o receive -d <filename>

#fs -o enc --if images\myfile --of images\myfile.wnef --password <password>

#fs -o dec --if images\myfile.wnef --of images\myfile --password <password>

#fs -o get -f images/myimages.wni -p <info/calc> -r MD5

#fs -o get -f images/myimages.wni -p <info/calc> -r CRC32

#fs -o dump -f <filename> -a <offset> -l <len>

Parameters

<directory> Full path of a directory.

<filename> Full path of a filename.

<offset> Address offset of the filename

<len> Length of data

Description

Allow to perform various operations on the programmer’s file system.

Examples

▪ Shows the contents of the programmer’s root directory:

#fs -o dir -d \

2010/06/21 16:35:06 [DIR] projects

2010/06/21 16:35:16 [DIR] sys

2010/06/21 16:35:20 [DIR] images

2010/06/21 16:35:26 [DIR] drivers

>

▪ CRC32/MD5 values:

#fs -o get -f images/myimages.wni -p info -r MD5

"D0B8E00F64710AFB14EAE012D2225C8D">

#fs -o get -f images/myimages.wni -p info -r CRC32

h160AB585>

These commands return the MD5/CRC32 values without checking the data integrity.

The CRC32 and MD5 values are not calculated on the entire file, but it skips the first 512

bytes.

WriteNow! Programmer's Manual

 42

The similar commands with the option -p calc, return the calculated MD5/CRC32 values

of the entire file.

#fs -o get -f images/myimages.wni -p info -r MD5

"3AED69753C360B5B9615DDDF453D4249">

#fs -o get -f images/myimages.wni -p info -r CRC32

hBFAED26D>

▪ Dumps the contents of any f:

#fs -o dump -f \images\dump.bin -a 0 -l 128

00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

>

WriteNow! Programmer's Manual

 43

Programming Commands

Syntax

#load -l <driver> -m <manufacturer> -d <device>

#dev -o begin

#dev -o end

#dev -o set -p <parameter> -v <value>

#conf -o begin

#conf -o end

#conf -o set -p <parameter> -v <value>

#prog -o begin

#prog -o end

#prog -o cmd -c pps -v <pps value>

#prog -o cmd -c connect

#prog -o cmd -c disconnect

#prog -o cmd -c unprotect

#prog -o cmd -c erase -m <mem type> -t <tgt addr> -l <len>

#prog -o cmd -c blankcheck -m <mem type> -t <tgt addr> -l <len>

#prog -o cmd -c program -m <mem type> -s <src addr> -t <tgt addr> -l <len>

#prog -o cmd -c verify -v <ver mode> -m <mem type> -t <tgt addr> -l <len>

#prog -o cmd -c read -m <mem type> -s <dst addr> -t <tgt addr> -l <len>

#delay -o set -p <us/ms> -v <value>

Parameters

<driver> Filename of the .wnd driver.

<manufacturer> Target device’s silicon manufacturer.

<device> Target device code.

<parameter> Target parameter to set.

<value> Value of the corresponding parameter.

<pps value> on or off.

<mem type> Target memory type.

<tgt addr> Target start address.

<len> Data length.

<src addr> Source (buffer) start address.

<ver mode> Verify mode: read or chks.

<dst addr> Destination start address.

Description

Perform various programming settings and operations on the target device.

WriteNow! Programmer's Manual

 44

Status Commands

Syntax

#status -o ping

#status -o get -p err -v <site> -l <errlevel>

Parameters

<site> 1 to 8 to get programming site errors. Use 0 to return system

errors.

<errlevel> 1 to 3.

Description

Get instrument status or error information.

When retrieving error information, one or more error lines (depending on the

<errlevel> parameter) are returned. Each line begins with a 32-bit code, which

codifies the following information:

Bit 31: Reserved

Bit 30: If 1, an error message in text format is available.

Bit 29: If 1, the error is programming site specific.

Bit 28: If 1, the error is driver (programming algorithm) specific.

Bit 27: If 1, the error is a system fatal error.

Bits 26 to 24: Reserved.

Bits 23 to 0: Error code. If bit 29 is 1, then bits 7 to 0 signal whether programming in

the corresponding programming site (bit 7 = programming site 8, bit 0

= programming site 1) was successful (bit = 0) or not (bit = 1).

Examples

▪ Pings the instrument to check if communication is OK:

#status -o ping

pong>

Retrieves the last generated errors, on programming site 1, with different error levels:

#status -o get -p err -v 1 -l 1

H50000023

>

#status -o get -p err -v 1 -l 2

H50000023,71,"Connection Error."

>

#status -o get -p err -v 1 -l 3

H50000023,71,"Connection Error.","algo_api",337

H10000000,71,"","st701_cmds",432

WriteNow! Programmer's Manual

 45

H10000000,71,"","st701_entry",287

H10000000,71,"","st701_icc",208

H10000001,71,"","hal_icc1",144

>

WriteNow! Programmer's Manual

 46

System Commands

Syntax

#sys -o get -p sn

#sys -o get -p ver -v <code>

#sys -o set -p lliop -s <prj sel> -f <prj filename>

#sys -o get -p lliop -s <prj sel>

#sys -o set -p ip -v <192.168.1.10>

#sys -o get -p ip

#sys -o set -p nm -v <255.255.255.0>

#sys -o get -p nm

#sys -o set -p gw -v <192.168.1.1>

#sys -o get -p gw

#sys -o set -p clip -v <2101>

#sys -o get -p clip

#sys -o set -p protection --password <password> --enable <yes/no>

#sys -o set -p user --name <admin/operator> --password <password>

#sys -o rst

Parameters

<code> sys or driver.

<prj sel> Project number, as selected by the PRJ_SEL[5..0] lines on the Low-

Level Interface connector.

<prj filename> Project file associated to <the prj sel> setting.

Description

Set or get instrument’s internal parameters.

Examples

▪ Retrieves the instrument’s serial number:

#sys -o get -p sn

00100>

▪ Associating the project for Standalone Mode:

Associates the project test.wnp to the project number 1:

#sys -o set -p lliop -s 1 -f \projects\test.wnp

>

▪ Sets a new LAN configuration:

IP:

WriteNow! Programmer's Manual

 47

#sys -o set -p ip -v 10.0.0.10

>

Netmask:

#sys -o set -p nm -v 255.255.255.0

>

Gateway:

#sys -o set -p gw -v 10.0.0.1

>

The new configuration will be added after the programmer reboot.

▪ Reset via software:

#sys -o rst

>

The programmer will be restarted after about 5 seconds.

WriteNow! Programmer's Manual

 48

Time Commands

Syntax

#time -o set -p date -d <date>

#time -o set -p time -d <time>

#time -o get -p date

#time -o get -p time

Parameters

<date> A date in the format yyyy/mm/dd.

<time> A time in the format hh:mm:ss.

Description

Set or get the instrument’s date and time. Once set, the date and time are maintained

even when the instrument is powered off.

Examples

▪ Sets the date/time to February 1st, 2011, at noon:

#time -o set -p date -d 2011/02/01

>

#time -o set -p time -d 12:00:00

>

▪ Retrieves the instrument’s date and time:

#time -o get -p date

2011/02/01>

#time -o get -p time

12:02:05>

WriteNow! Programmer's Manual

 49

Volatile Memory Commands

Syntax

#volatile -o write -s <site> -a <start address> -l <len> -d <data>

#volatile -o read -s <site> -a <start address> -l <len>

Parameters

<site> Programming site. 1 to 8 to set specific site data, 0 to set the

same data for all sites.

<start address> Volatile memory starting address.

<len> Data length.

<data> A data array.

Description

Read and write data from/to the instrument’s volatile memory.

Examples

▪ Uses the volatile memory on site 1 to store the target board’s MAC address:

#volatile -o write -s 1 -a h0 -l 6 -d [h00 h90 h96 h90 h48 h85]

>

▪ Retrieves data from site 1 volatile memory:

#volatile -o read -s 1 -a h0 -l 6

1,[h00 h90 h96 h90 h48 h85]>

WriteNow! Programmer's Manual

 51

6. Programming Variable Data and

Serial Number

Thanks to its built-in volatile memory, WriteNow! is able to store variable parameters

during the programming process. These parameters can change at every programming

cycle and, in case of a multi-site programmer, different values for each site.

To program a variable data (ex. Serial number) to the target device memory, follow

these steps:

Define the device address range

During the Image file creation process, set the target device address range to be

programmed and the offset of the volatile memory bank that will contain the variable

data, as follows:

Generate and set the variable memory

Before any programming cycle, the host system can send the variable data and then it

transfers these values to the WriteNow! volatile memory by using the “#volatile -o

write” commands.

You can view or edit the content of the built-in volatile memory from the following

window:

WriteNow! Programmer's Manual

 52

Start the programming process

The content of the volatile memory is then programmed into the target device during

the project execution.

Example

Let’s say the internal memory of the target device is mapped in the range 0x00000 -

0x1FFFF (128KB), which is programmed completely by using a binary file. In addition, a

serial number must be set from 0x1FF00 to 0x1FF07 (8 bytes) and a production batch

code from 0x1FFFC to 0x1FFFF (4 bytes). The serial number is different for each board

while the production batch code is common for all of them.

Step1: Create the image file

Add the binary file:

WriteNow! Programmer's Manual

 53

Then define a variable buffer range for the serial number. The data will be loaded at

offset 0x00 of the volatile memory.

And finally define the variable buffer range for the production batch code. The data will

be loaded at offset 0x08 of the volatile memory.

Step2: Set the variable memory

The serial numbers are:

Site1 = h10 h11 h12 h13 h14 h15 h16 h17

Site2 = h20 h21 h22 h23 h24 h25 h26 h27

Site3 = h30 h31 h32 h33 h34 h35 h36 h37

Site4 = h40 h41 h42 h43 h44 h45 h46 h47

WriteNow! Programmer's Manual

 54

The production batch code is hAA hBB hCC hDD

Before starting the project execution, set the volatile memory area for each site by using

a sequence of “#volatile -o write” commands, like this:

#volatile -o write -s 1 -a h00 -l 8 -d [h10 h11 h12 h13 h14 h15 h16 h17]

>

#volatile -o write -s 2 -a h00 -l 8 -d [h20 h21 h22 h23 h24 h25 h26 h27]

>

#volatile -o write -s 3 -a h00 -l 8 -d [h30 h31 h32 h33 h34 h35 h36 h37]

>

#volatile -o write -s 4 -a h00 -l 8 -d [h40 h41 h42 h43 h44 h45 h46 h47]

>

#volatile -o write -s 1 -a h08 -l 4 -d [hAA hBB hCC hDD]

>

#volatile -o write -s 2 -a h08 -l 4 -d [hAA hBB hCC hDD]

>

#volatile -o write -s 3 -a h08 -l 4 -d [hAA hBB hCC hDD]

>

#volatile -o write -s 4 -a h08 -l 4 -d [hAA hBB hCC hDD]

>

Step3: Start Programming

Run the project.

WriteNow! Programmer's Manual

 55

7. WriteNow! File System

Overview

WriteNow! has a large, built-in non-volatile memory, used to store the various files

required by the instrument: programming projects, image files, etc. This memory is

organized by a file system. You can explore the WriteNow! files either by using a

Terminal application and sending file-system related commands, or (more simply) by

using the File Manager window of the Project Generator application. The File Manager

window allows you to easily see the instrument file structure and transfer files with the

PC. To open the File Manager, choose Tools > WriteNow! File Manager from the

Project Generator menu.

WriteNow! Programmer's Manual

 56

From this window you can also view the content of any file present in the programmer

memory or PC. Just press “HEX Dump” button and the following window will appear:

File System Structure

The files required by the instrument are organized in various folders, as explained

below:

▪ \drivers folder: contains programming algorithms (.wnd files).

These files are provided by Algocraft.

▪ \sys folder: contains systems files, such as programming licenses, firmware files, etc.

These files are provided by Algocraft.

▪ \project folder: contains programming projects (.prj files).

You can create programming projects using the Project Generator application.

▪ \images folder: contains WriteNow! image files to be programmed to the target (.wni

files). WriteNow! image files contain all the information needed to program a target

device memory. These files are created by the Project Generator application.

You can create additional folders, but the four folders listed above must

always be present on the WriteNow! file system and must not be removed.

Additionally, do not remove or rename the contents of the \SYS folder.

WriteNow! Programmer's Manual

 57

8. Standalone Mode

Overview

WriteNow! can work with no connection to a PC (standalone mode). In standalone

mode, the instrument is controlled through a low-level connection interface.

Project Assignment

Before working in standalone mode, you must link the project(s) to be executed with the

corresponding PRJ_SELx pattern.

To do so, in the WriteNow! Project Generator application select Settings > Hardware

Settings. In the window that will appear, assign a PRJ_SEL value to the project filename

by clicking the “Set Project” button for each PRJ_SEL configuration you wish to set up.

For example, choose PRJ_SEL00 in case all the PRJ_SELx lines are driven low, PRJ_SEL01 if

only PRJ_SEL0 line is driven high etc. (refer to the hardware manual of your product for

further details).

Note: A project can be linked by using the following serial commands:

#sys -o set -p lliop -s <prj sel> -f <prj filename>

#sys -o get -p lliop -s <prj sel>

WriteNow! Programmer's Manual

 59

9. Protected Mode and Data

Encryption

Protected Mode

A security feature has been designed to protect the intellectual property of the

embedded firmware code. This is possible by locking the programmer with a unique

private password, which will be used to encrypt all the files to be sent or received from

the host PC. Care must be taken when choosing to lock the programmer. In fact, if the

password is lost, the WriteNow! memory cannot be written anymore. The protection state

is referred as follows:

▪ Protection mode disable -> Level 00

▪ Protection mode enable -> Level 02

When the protection is active, two user modes are available:

▪ Operator mode

▪ Admin mode

In operator mode, the user can transfer only encrypted data to/from the programmer.

In admin mode, the user can transfer any file to/from the programmer. Only in admin

mode it is allowed to change the protection level. The operator mode will be reactivated

starting from the next reboot.

To get access to the security settings, select “Tools->Protected Mode” and the following

window will appear:

The same can be achieved by using WriteNow! commands. Especially, the following

command is used to activate the protected mode:

WriteNow! Programmer's Manual

 60

#sys -o set -p protection --password ALGOCRAFT --enable yes

>

Now the current protection level is 02 and the user mode is operator.

To enter in admin mode use the following command:

#sys -o set -p user --name admin --password ALGOCRAFT

>

(Optional) Make sure that the password matched by checking the current user mode:

#sys -o get -p user

Admin
>

Now that you have the admin rights, send the following command if you want to

disable the protected mode:

#sys -o set -p protection --password ALGOCRAFT --enable no

>

Protection model.

Protection: enabled

User: Operator

n

o

n

e

none

Protection: enabled

User: Admin

n

o

n

e

none

Files to be transferred must

be encrypted with

[PASSWORD] in wnef format

S
e
t

p
ro

te
ct

io
n
:
n
o

[P
A

S
S
W

O
R

D
]

Any files can be transferred

Protection: disabled

User: None

n

o

n

e

none

WriteNow! Programmer's Manual

 61

Data Encryption

Encrypting the files can be done through the wn_sec.exe command line tool, located in

the \developer\C++ directory, as follows:

1. Encrypt your files with the same password used to lock the programmer:

wn_sec.exe -o -enc -if ".\myprj.wnp" -of ".\myprj.wnp.wnef" -password

ALGOCRAFT

wn_sec.exe -o -enc -if ".\myimage.wni" -of ".\myimage.wni.wnef" -password

ALGOCRAFT

2. Transfer the encrypted files to the programmer:

3. In WriteNow! terminal, type the following command to decrypt the file (the password is

NOT mandatory):

#fs -o dec --if \images\myimage.wni.wnef --of \images\myimage.wni

WriteNow! Programmer's Manual

 62

10. WriteNow! API

Overview

You can build your own PC software that interfaces to the instrument, by using the

provided WriteNow! Application Programming Interface (API). The WriteNow! API

consists of a series of functions, contained in the wn_comm DLL (Dynamic-Link Library),

which allow you to set up and control the programmer.

The wn_comm DLL is located in the \Developer folder, relative to the WriteNow!

software installation path. In the same folder you can find the source code of sample

applications, in various programming languages, that use the wn_comm DLL.

The wn_comm DLL is available in Visual C++ and in Visual C# (COM Interop class library

based on Microsoft .NET).

Additionally, a command line application (wn_cmds.exe) is provided, which reads a

programming command from the stdin, sends the command to the instrument, and

writes the command answer on the stdout.

For example, using the following commands to send a file through COM, USB or

Ethernet ports:

Including the API in Your Application

To use the WriteNow! API, you must:

▪ Include the “wn_comm.lib” and “wn_comm.h” files in your application project (only

needed for Visual C++ projects);

▪ Include the “wn_comm.tlb” file in your application project (only for Visual for C++/CLI

projects);

▪ Copy the “wn_comm.dll” file in the same folder of your application executable (this file

must also be redistributed with your application).

The typical programming flow to interface with WriteNow! is the following:

WriteNow! Programmer's Manual

 63

Function Reference (C++ Library)

API functions are listed and explained alphabetically in the following pages.

1. Open communication

(WN_OpenCommPort() function)

2. Execute commands

(WN_ExeCommand() function)

3. Transfer files to/from the instrument’s internal memory

(WN_SendFile() and WN_ReceiveFile() functions)

4. Close communication

(WN_CloseCommPort() function)

WriteNow! Programmer's Manual

 64

WN_CloseCommPort()

Prototype

ASCII version: WN_COMM_ERR WINAPI WN_CloseCommPortA (WN_COMM_HANDLE handle);

Unicode version: WN_COMM_ERR WINAPI WN_CloseCommPortW (WN_COMM_HANDLE handle);

Description

Closes the communication channel with the instrument.

Return Value

0 The function call was successful.

!=0 The function call was unsuccessful. Call the

WN_GetLastErrorMessage() function to get error information.

Parameters

handle Communication handle returned by the WN_OpenCommPort() function.

WriteNow! Programmer's Manual

 65

WN_ExeCommand()

Prototype

ASCII version: WN_COMM_ERR WINAPI WN_ExeCommandA (WN_COMM_HANDLE handle, const char

*command, char *answer, unsigned long maxlen, unsigned long timeout_ms,

WN_ANSWER_TYPE *type);

Unicode version: WN_COMM_ERR WINAPI WN_ExeCommandW (WN_COMM_HANDLE handle, const wchar_t

*command, wchar_t *answer, unsigned long maxlen, unsigned long timeout_ms,

WN_ANSWER_TYPE *type);

Description

Executes a WriteNow! command. This function automatically sends a command to the

instrument and returns the answer read back from the instrument. This function

combines the WN_SendFrame() and WN_GetFrame() function in a single call.

Return Value

0 The function call was successful.

!=0 The function call was unsuccessful. Call the

WN_GetLastErrorMessage() function to get error information.

Parameters

handle Communication handle returned by the WN_OpenCommPort()

function.

command A valid WriteNow! command.

answer The answer read back from the instrument in response to the

command sent.

maxlen Maximum length, in characters, of the answer buffer.

timeout_ms Time (in milliseconds) before the function times out.

type Type of answer received: can be:

WN_ANSWER_ACK (an OK frame was received);

WN_ANSWER_NACK (an ERR frame was received);

WN_ANSWER_TOUT (command timed out before an answer could be

received).

WriteNow! Programmer's Manual

 66

WN_GetFrame()

Prototype

ASCII version: WN_COMM_ERR WINAPI WN_GetFrameA (WN_COMM_HANDLE handle, char *answer,

unsigned long maxlen, unsigned long timeout_ms);

Unicode version: WN_COMM_ERR WINAPI WN_GetFrameW (WN_COMM_HANDLE handle, wchar_t *answer,

unsigned long maxlen, unsigned long timeout_ms);

Description

Reads the answer to the command sent by the WN_SendFrame() function.

Return Value

0 The function call was successful.

!=0 The function call was unsuccessful. Call the

WN_GetLastErrorMessage() function to get error information.

Parameters

handle Communication handle returned by the WN_OpenCommPort()

function.

answer The answer read back from the instrument in response to the

command sent.

maxlen Maximum length, in characters, of the answer buffer.

timeout_ms Time (in milliseconds) before the function times out.

WriteNow! Programmer's Manual

 67

WN_GetLastErrorMessage()

Prototype

ASCII version: void WINAPI WN_GetLastErrorMessageA (char *error_msg, unsigned long

tring_len);

Unicode version: void WINAPI WN_GetLastErrorMessageW (wchar_t *error_msg, unsigned long

string_len);

Description

Returns a string containing the last WriteNow! error message.

Parameters

error_msg The string that will receive the error message.

msg_len Length, in characters, of the error message buffer.

WriteNow! Programmer's Manual

 68

WN_ReceiveFile()

Prototype

ASCII version: WN_COMM_ERR WINAPI WN_ReceiveFileA (WN_COMM_HANDLE handle, const char

*protocol, const char *src_filename, const char *dst_path, bool

force_transfer, WN_FileTransferProgressProc progress);

Unicode version: WN_COMM_ERR WINAPI WN_ReceiveFileW (WN_COMM_HANDLE handle, const wchar_t

*protocol, const wchar_t *src_filename, const wchar_t *dst_path, bool

force_transfer, WN_FileTransferProgressProc progress);

Description

Receives a file from the instrument’s internal memory and saves it to the PC.

Return Value

0 The function call was successful.

!=0 The function call was unsuccessful. Call the

WN_GetLastErrorMessage() function to get error information.

Parameters

handle Communication handle returned by the WN_OpenCommPort()

function.

protocol Transfer protocol. Must be “ymodem”.

src_filename The full filename, including path, of the remote file.

dst_path The PC path where to store the file.

force_transfer If TRUE, file transfer will be executed even if a file with the same

name and CRC exists on the PC; if FALSE, file transfer will be

executed only if necessary.

progress Address of a callback function that will receive progress

information, or 0 if not used.

WriteNow! Programmer's Manual

 69

WN_SendFile()

Prototype

ASCII version: WN_COMM_ERR WINAPI WN_SendFileA (WN_COMM_HANDLE handle, const char

*protocol, const char *src_filename, const char *dst_path, bool

force_transfer, WN_FileTransferProgressProc progress);

Unicode version: WN_COMM_ERR WINAPI WN_SendFileW (WN_COMM_HANDLE handle, const wchar_t

*protocol, const wchar_t *src_filename, const wchar_t *dst_path, bool

force_ transfer, WN_FileTransferProgressProc progress);

Description

Sends a file to the instrument’s internal memory.

Return Value

0 The function call was successful.

!=0 The function call was unsuccessful. Call the

WN_GetLastErrorMessage() function to get error information.

Parameters

handle Communication handle returned by the WN_OpenCommPort()

function.

protocol Transfer protocol. Must be “ymodem”.

src_filename The source full filename.

dst_path The remote instrument file system path where to store the file.

force_transfer If TRUE, file transfer will be executed even if a file with the same

name and CRC exists on the instrument; if FALSE, file transfer will

be executed only if necessary.

progress Address of a callback function that will receive progress

information, or 0 if not used.

WriteNow! Programmer's Manual

 70

WN_SendFrame()

Prototype

ASCII version: WN_COMM_ERR WINAPI WN_SendFrameA (WN_COMM_HANDLE handle, const char

*command);

Unicode version: WN_COMM_ERR WINAPI WN_SendFrameW (WN_COMM_HANDLE handle, const wchar_t

*command);

Description

Sends a command to the instrument. Use the WN_GetFrame() function to retrieve the

answer.

Return Value

0 The function call was successful.

!=0 The function call was unsuccessful. Call the

WN_GetLastErrorMessage() function to get error information.

Parameters

handle Communication handle returned by the WN_OpenCommPort()

function.

command A valid WriteNow! command.

WriteNow! Programmer's Manual

 71

WN_OpenCommPort()

Prototype

ASCII version: WN_COMM_HANDLE WINAPI WN_OpenCommPortA (const char *com_port, const char

*com_settings);

Unicode version: WN_COMM_HANDLE WINAPI WN_OpenCommPortW (const wchar_t *com_port, const

wchar_t *com_settings);

Description

Opens a RS-232, Ethernet or USB communication channel with the instrument.

Return Value

>0 Valid communication handle to use in subsequent functions.

NULL The function call was unsuccessful. Call the

WN_GetLastErrorMessage() function to get error information.

Parameters

com_port Communication port. Can be “COM”, “LAN” or “USB”.

com_settings RS-232 settings for “COM” port (e.g.: ”COM1,115200”);

Ethernet settings for “LAN” port (e.g.: ”192.168.1.100:2101”);

Virtual COM port (e.g. “COM7”)

Function Reference (C++/CLI Library)

This new DLL version has been written in C# language by using the .NET Runtime

Framework.

Once imported the “wn_comm.tlb” in a Visual C++/CLI environment, the .NET DLL is

handled as a COM class within a WN_COMM namespace with the following methods:

 virtual HRESULT __stdcall WN_GetLastErrorMessageW (
 /*[in,out]*/ BSTR * error_msg,
 /*[in]*/ unsigned long string_len) = 0;
 virtual HRESULT __stdcall WN_OpenCommPortW (
 /*[out]*/ VARIANT * handle,
 /*[in]*/ BSTR port,
 /*[in]*/ BSTR settings,
 /*[out,retval]*/ enum WN_COMM_RET * pRetVal) = 0;
 virtual HRESULT __stdcall WN_CloseCommPortW (
 /*[in]*/ VARIANT handle,
 /*[out,retval]*/ enum WN_COMM_RET * pRetVal) = 0;
 virtual HRESULT __stdcall WN_SendFrameW (
 /*[in]*/ VARIANT handle,
 /*[in]*/ BSTR command,

WriteNow! Programmer's Manual

 72

 /*[out,retval]*/ enum WN_COMM_RET * pRetVal) = 0;
 virtual HRESULT __stdcall WN_GetFrameW (
 /*[in]*/ VARIANT handle,
 /*[out]*/ BSTR * answer,
 /*[in]*/ unsigned long maxlen,
 /*[in]*/ unsigned long timeout_ms,
 /*[out,retval]*/ enum WN_COMM_RET * pRetVal) = 0;
 virtual HRESULT __stdcall WN_ExeCommandW (
 /*[in]*/ VARIANT handle,
 /*[in]*/ BSTR command,
 /*[out]*/ BSTR * answer,
 /*[in]*/ unsigned long maxlen,
 /*[in]*/ unsigned long timeout_ms,
 /*[out]*/ unsigned char * type,
 /*[out,retval]*/ enum WN_COMM_RET * pRetVal) = 0;
 virtual HRESULT __stdcall WN_ExeCommand_CBW (
 /*[in]*/ VARIANT handle,
 /*[in]*/ BSTR command,
 /*[out]*/ BSTR * answer,
 /*[in]*/ unsigned long maxlen,
 /*[in]*/ unsigned long timeout_ms,
 /*[out]*/ unsigned char * type,
 /*[in]*/ long progress,
 /*[out,retval]*/ enum WN_COMM_RET * pRetVal) = 0;
 virtual HRESULT __stdcall WN_SendFileW (
 /*[in]*/ VARIANT handle,
 /*[in]*/ BSTR src_filename,
 /*[in]*/ BSTR dst_path,
 /*[in]*/ VARIANT_BOOL force_filetransfert,
 /*[in]*/ long progress,
 /*[out,retval]*/ enum WN_COMM_RET * pRetVal) = 0;
 virtual HRESULT __stdcall WN_ReceiveFileW (
 /*[in]*/ VARIANT handle,
 /*[in]*/ BSTR src_filename,
 /*[in]*/ BSTR dst_path,
 /*[in]*/ VARIANT_BOOL force_filetransfert,
 /*[in]*/ long progress,
 /*[out,retval]*/ enum WN_COMM_RET * pRetVal) = 0;
 virtual HRESULT __stdcall WN_GetLastErrorMessageA (
 /*[in,out]*/ SAFEARRAY * * error_msg,
 /*[in]*/ unsigned long string_len) = 0;
 virtual HRESULT __stdcall WN_OpenCommPortA (
 /*[out]*/ VARIANT * handle,
 /*[in]*/ SAFEARRAY * port,
 /*[in]*/ SAFEARRAY * settings,
 /*[out,retval]*/ enum WN_COMM_RET * pRetVal) = 0;
 virtual HRESULT __stdcall WN_CloseCommPortA (
 /*[in]*/ VARIANT handle,
 /*[out,retval]*/ enum WN_COMM_RET * pRetVal) = 0;
 virtual HRESULT __stdcall WN_SendFrameA (
 /*[in]*/ VARIANT handle,
 /*[in]*/ SAFEARRAY * command,
 /*[out,retval]*/ enum WN_COMM_RET * pRetVal) = 0;
 virtual HRESULT __stdcall WN_GetFrameA (
 /*[in]*/ VARIANT handle,
 /*[out]*/ SAFEARRAY * * answer,
 /*[in]*/ unsigned long maxlen,
 /*[in]*/ unsigned long timeout_ms,
 /*[out,retval]*/ enum WN_COMM_RET * pRetVal) = 0;
 virtual HRESULT __stdcall WN_ExeCommandA (
 /*[in]*/ VARIANT handle,

WriteNow! Programmer's Manual

 73

 /*[in]*/ SAFEARRAY * command,
 /*[out]*/ SAFEARRAY * * answer,
 /*[in]*/ unsigned long maxlen,
 /*[in]*/ unsigned long timeout_ms,
 /*[out]*/ unsigned char * type,
 /*[out,retval]*/ enum WN_COMM_RET * pRetVal) = 0;
 virtual HRESULT __stdcall WN_ExeCommand_CBA (
 /*[in]*/ VARIANT handle,
 /*[in]*/ SAFEARRAY * command,
 /*[out]*/ SAFEARRAY * * answer,
 /*[in]*/ unsigned long maxlen,
 /*[in]*/ unsigned long timeout_ms,
 /*[out]*/ unsigned char * type,
 /*[in]*/ long progress,
 /*[out,retval]*/ enum WN_COMM_RET * pRetVal) = 0;
 virtual HRESULT __stdcall WN_SendFileA (
 /*[in]*/ VARIANT handle,
 /*[in]*/ SAFEARRAY * src_filename,
 /*[in]*/ SAFEARRAY * dst_path,
 /*[in]*/ VARIANT_BOOL force_filetransfert,
 /*[in]*/ long progress,
 /*[out,retval]*/ enum WN_COMM_RET * pRetVal) = 0;
 virtual HRESULT __stdcall WN_ReceiveFileA (
 /*[in]*/ VARIANT handle,
 /*[in]*/ SAFEARRAY * src_filename,
 /*[in]*/ SAFEARRAY * dst_path,
 /*[in]*/ VARIANT_BOOL force_filetransfert,
 /*[in]*/ long progress,
 /*[out,retval]*/ enum WN_COMM_RET * pRetVal) = 0;

Note: refer to Function Reference (C++ Library) documentation for the

explanation of each parameter.

WriteNow! Programmer's Manual

 75

 Function Reference (C# Library)

This new DLL version has been written in C# language by using the .NET Runtime

Framework.

Once added as reference in a Visual C# environment, the .NET DLL is handled as a

usual class within a WN_COMM namespace with the following methods:

void WN_GetLastErrorMessageA(ref byte[] error_msg, uint string_len)

void WN_GetLastErrorMessageW(ref string error_msg, uint string_len)

WN_COMM_RET WN_OpenCommPortA(out object handle, byte[] port, byte[]
 settings)

WN_COMM_RET WN_OpenCommPortW(out object handle, string port, string
 settings)

WN_COMM_RET WN_CloseCommPortA(object handle)

WN_COMM_RET WN_CloseCommPortW(object handle)

WN_COMM_RET WN_SendFrameA(object handle, byte[] command)

WN_COMM_RET WN_SendFrameW(object handle, string command)

WN_COMM_RET WN_GetFrameA(object handle, out byte[] answer, uint max
len, uint timeout_ms)

WN_COMM_RET WN_GetFrameW(object handle, out string answer, uint max
len, uint timeout_ms)

WN_COMM_RET WN_ExeCommandA(object handle, byte[] command, out byte[
] answer, uint maxlen, uint timeout_ms, out WN_ANSWER_TYPE type)

WN_COMM_RET WN_ExeCommandW(object handle, string command, out strin
g answer, uint maxlen, uint timeout_ms, out WN_ANSWER_TYPE type)

WN_COMM_RET WN_ExeCommand_CBA(object handle, byte[] command, out by
te[] answer, uint maxlen, uint timeout_ms, out WN_ANSWER_TYPE type,
WN_ExeCommandProgressProc progress)

WN_COMM_RET WN_ExeCommand_CBW(object handle, string command, out st
ring answer, uint maxlen, uint timeout_ms, out WN_ANSWER_TYPE type,
WN_ExeCommandProgressProc progress)

WN_COMM_RET WN_SendFileA(object handle, byte[] src_filename, byte[]
 dst_path, bool force_filetransfert, WN_FileTransferProgressProc pr
ogress);

WN_COMM_RET WN_SendFileW(object handle, string src_filename, string
 dst_path, bool force_filetransfert, WN_FileTransferProgressProc pr
ogress);

WN_COMM_RET WN_ReceiveFileA(object handle, byte[] src_filename, byt

WriteNow! Programmer's Manual

 76

e[] dst_path, bool force_filetransfert, WN_FileTransferProgressProc
 progress);

WN_COMM_RET WN_ReceiveFileW(object handle, string src_filename, str
ing dst_path, bool force_filetransfert, WN_FileTransferProgressProc
 progress);

Note: refer to Function Reference (C++ Library) documentation for the

explanation of each parameter.

WriteNow! Programmer's Manual

 77

11. Troubleshooting

This section reports some common problems that may arise during the typical usage.

Please be aware, however, that working with a specific target device

may cause device-specific issues.

USB Driver issues (Windows 7 and earlier)

If the PC cannot establish a communication with the instrument, the USB driver may not

have been correctly installed on your system.

To restore the USB driver, perform the following steps:

1. Connect Writenow! to the PC.

2. Open the Control Panel (“Start > Settings > Control Panel”).

3. Open the “System” options.

4. Select the “Hardware” tab.

5. Click the “Device Manager” button.

6. The “Writenow! Programmer” device will be shown with an exclamation mark

next to it. Double click on this device.

7. In the “General” tab, click the “Reinstall Driver” button. Follow the on-screen

instructions.

Get full access to WriteNow! folder on

Windows 10

After the Software installation, if you choose to save it under the default directory

(C:\Program Files (x86)\Algocraft\WriteNow! Software X.XX), make sure you have full

control of it.

Note: The USB support is available from 03.00.00.00 version of WriteNow!

firmware.

WriteNow! Programmer's Manual

 78

1. Open File Explorer and then locate the command utility line folder.

2. Right-click on the folder, click properties and then the Security tab.

3. Click the Advanced button. The "advanced Security Settings" windows will appear.

4. Click the Add button. The "Permission Entry" window will appear on the screen. Click

"Select a principal" and select your account.

5. Set permissions to "Full control".

WriteNow! Programmer's Manual

 79

Diagnostic Test

WriteNow! has built-in self-test capabilities. This means that you can verify

by yourself, at any time, the correct operation of the instrument hardware.

To perform the diagnostic test select “WriteNow! Hardware Settings > Hardware Test.

