

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 3

Extrax Bestest Buds 2g Disposables Key Lime

atch: /pe: Finished Product - In latrix: Concentrate - Vape nit Mass (g):	52 halable	Received: 01/12 Completed: 01/		Client Savage Enterprises 7505 Irvine Center Drive, Suite 200 Irvine, CA 92618 USA		
-			Summary			
			Test	Date Tested	Status	
SUGI	R SUGAR		Cannabinoids	01/23/2024	Tested	
Rett			Microbials	01/30/2024	Tested	
			Residual Solvents		Tested	
ND	49.4 %	52.4 %	Not Tested	Not Tested	Yes	
Total ∆9-THC	∆8-THC	Total Cannabinoids	Moisture Content	Foreign Matter	Internal Standard	
					Normalization	
annabinoids by	L	OD	LOQ	Result	Result	
nalyte	L	OD %)	LOQ (%)	(%)	Result (mg/g)	
nalyte BC	L (OD %) 0095	LOQ (%) 0.0284	(%) ND	Result (mg/g) ND	
nalyte BC BCV	L (0.0	OD %) 0095 006	LOQ (%) 0.0284 0.018	(%) ND ND	Result (mg/g) ND ND	
nalyte BC BCV BD	L (0.0 0.0 0.0	OD %) 0095 006 0081	LOQ (%) 0.0284 0.018 0.0242	(%) ND ND ND	Result (mg/g) ND ND ND ND	
nalyte BC BCV BD BDV	L (0.0 0.0 0.0 0.0	OD (%) 0095 006 0081 0061	LOQ (%) 0.0284 0.018 0.0242 0.0182	(%) ND ND ND ND	Result (mg/g) ND ND ND ND ND ND	
nalyte BC BCV BD BDV BG	L (0.0 0.0 0.0 0.0 0.0	OD %) 0095 006 0081 0061 0057	LOQ (%) 0.0284 0.018 0.0242 0.0182 0.0172	(%) ND ND ND ND ND	Result (mg/g) ND ND ND ND ND ND ND	
nalyte BC BCV BD BDV BG BL	L (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	OD %) 0095 006 0081 0061 0057 0112	LOQ (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335	(%) ND ND ND ND ND ND ND	Result (mg/g) ND ND ND ND ND ND ND ND	
nalyte BC BCV BD BDV BG BL BN	L (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	OD %) 0095 006 0081 0061 0057 0112 0056	LOQ (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169	(%) ND ND ND ND ND ND 1.43	Result (mg/g) ND ND ND ND ND ND ND ND 14.3	
nalyte BC BCV BD BDV BG BL BN BN acetate	L (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	OD %) 0095 006 0081 0061 0057 0112 0056 0067	LOQ (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.02	(%) ND ND ND ND ND ND ND 1.43 ND	Result (mg/g) ND ND ND ND ND ND ND 14.3 ND	
nalyte BC BCV BD BDV BG BL BN BN acetate BT	L (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	OD %) 0095 006 0081 0061 0057 0112 0056 0067 .018	LOQ (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.02 0.054	(%) ND ND ND ND ND ND 1.43 ND 0.131	Result (mg/g) ND 14.3 ND 1.31	
nalyte BC BCV BD BDV BG BL BN BN acetate BT 4,8-iso-THC	L (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	OD %) 0095 006 0081 0061 0057 0112 0056 0067 .018 0067	LOQ (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.02 0.054 0.02	(%) ND ND ND ND ND ND 1.43 ND 0.131 0.143	Result (mg/g) ND 14.3 ND 1.31 1.43	
nalyte BC BCV BD BDV BG BL BN BN acetate BT 4,8-iso-THC 8-iso-THC	L (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	OD %) D095 006 0081 0061 0057 0112 0056 0067 .018 0067 0067	LOQ (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.02 0.054 0.02 0.02	(%) ND ND ND ND ND ND 1.43 ND 0.131 0.143 0.797	Result (mg/g) ND ND ND ND ND ND 14.3 ND 1.31 1.43 7.97	
nalyte BC BCV BD BDV BG BL BN BN acetate BT 4,8-iso-THC 8-iso-THC 8-THC	L (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	OD %) D095 006 0081 0061 0057 0112 0056 0067 0087 0067 0067 0067 0104	LOQ (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.02 0.054 0.02 0.02 0.02 0.02 0.0312	(%) ND ND ND ND ND ND 1.43 ND 0.131 0.143 0.797 49.4	Result (mg/g) ND ND ND ND ND ND 14.3 ND 1.31 1.43 7.97 494	
nalyte BC BCV BD BDV BG BL BN BN acetate BT 4,8-iso-THC 8-iso-THC 8-fHC 8-THC acetate	L (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	OD %) D095 006 0081 0061 0057 0112 0056 0067 018 0067 0067 0067 0104 0067	LOQ (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.02 0.054 0.02 0.02 0.02 0.02 0.0312 0.02	(%) ND ND ND ND ND 1.43 ND 0.131 0.143 0.797 49.4 ND	Result (mg/g) ND ND ND ND ND ND ND 14.3 ND 131 1.43 7.97 494 ND	
nalyte BC BCV BD BDV BG BL BN BN acetate BT 4,8-iso-THC 8-iso-THC 8-THC 8-THC 8-THC acetate 8-THC V	L (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	OD %) D095 006 0081 0061 0057 0112 0056 0067 0067 0067 0067 0067 0067 0067 0067 0067	LOQ (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.02 0.054 0.02 0.02 0.02 0.0312 0.02 0.0312 0.02 0.02	(%) ND ND ND ND ND 1.43 ND 0.131 0.143 0.797 49.4 ND 0.476	Result (mg/g) ND ND ND ND ND ND ND 14.3 ND 131 1.43 7.97 494 ND 4.76	
nalyte BC BCV BD BDV BG BL BN BN acetate BT 4,8-iso-THC 8-iso-THC 8-THC 8-THC 8-THC acetate 8-THC v 9-THC	L (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	OD %) D095 006 0081 0061 0057 0112 0056 0067 0076 0067 007	LOQ (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.02 0.054 0.02 0.02 0.02 0.0312 0.02 0.0312 0.02 0.02 0.02 0.02 0.02	(%) ND ND ND ND ND 1.43 ND 0.131 0.143 0.797 49.4 ND 0.476 ND	Result (mg/g) ND ND ND ND ND ND 14.3 ND 14.3 ND 1.31 1.43 7.97 494 ND 4.76 ND	
nalyte BC BCV BD BDV BG BL BN BN acetate BT 4,8-iso-THC 8-iso-THC 8-THC 8-THC 8-THC 8-THC 8-THC 9-THC 9-THC 9-THC acetate	L (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0D %) 0095 006 0081 0061 0057 0112 0056 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067	LOQ (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.02 0.054 0.02 0.02 0.02 0.02 0.0312 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.	(%) ND ND ND ND ND 1.43 ND 0.131 0.143 0.797 49.4 ND 0.476 ND ND ND	Result (mg/g) ND ND ND ND ND ND 14.3 ND 14.3 ND 1.31 1.43 7.97 494 ND 4.76 ND ND ND	
nalyte BC BCV BD BDV BG BL BN BN acetate BT 4,8-iso-THC 8-iso-THC 8-iso-THC 8-THC 8-THC 8-THC 8-THC 8-THC 9-THC 9-THC 9-THCA	L (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0D %) 0095 006 0081 0061 0057 0112 0056 0067 0067 0067 0104 0067 0067 0067 0084 0067	LOQ (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.02 0.054 0.02 0.02 0.02 0.0312 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.	(%) ND ND ND ND ND ND 1.43 ND 0.131 0.143 0.797 49.4 ND 0.476 ND ND ND ND	Result (mg/g) ND ND ND ND ND ND 14.3 ND 14.3 ND 1.31 1.43 7.97 494 ND 4.76 ND ND ND ND	
nalyte BC BCV BD BDV BG BL BN BN acetate BT 4,8-iso-THC 8-iso-THC 8-THC 8-THC 8-THC 8-THC 8-THC 8-THC 9-THC 9-THC 9-THCA 9-THCA 9-THCV	L (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0D %) 0095 006 0081 0061 0057 0112 0056 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0069 0069	LOQ (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.02 0.054 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	(%) ND ND ND ND ND ND 1.43 ND 0.131 0.143 0.797 49.4 ND 0.476 ND 0.476 ND ND ND ND ND ND ND ND ND ND	Result (mg/g) ND ND ND ND ND ND ND ND 14.3 ND 131 1.43 7.97 494 ND 4.76 ND ND ND ND ND	
nalyte BC BCV BD BDV BG BL BN BN acetate BT 4,8-iso-THC 8-iso-THC 8-iso-THC 8-THC 8-THC 8-THC 8-THC 8-THC 9-THC 9-THC 9-THCA	L (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0D %) 0095 006 0081 0061 0057 0112 0056 0067 0067 0067 0104 0067 0067 0067 0084 0067	LOQ (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.02 0.054 0.02 0.02 0.02 0.0312 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.	(%) ND ND ND ND ND ND 1.43 ND 0.131 0.143 0.797 49.4 ND 0.476 ND ND ND ND	Result (mg/g) ND ND ND ND ND ND 14.3 ND 14.3 ND 1.31 1.43 7.97 494 ND 4.76 ND ND ND ND	

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

lower

Generated By: Alex Morris Quality Manager Date: 01/31/2024

Tested By: Scott Caudill Laboratory Manager Date: 01/23/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

2 of 3

Extrax Bestest Buds 2g Disposables Key Lime

Sample ID: SA-240112-33052 Batch: Type: Finished Product - Inhalable Matrix: Concentrate - Vape Unit Mass (g):		d: 01/12/2024 ted: 01/30/2024	Client Savage Enterprises 7505 Irvine Center Drive, Suite 200 Irvine, CA 92618 USA		
Microbials by PCR and Pl	ating LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)		
			itesuit (Qualitative)		
Total aerobic count	1	ND			
	1				
Total aerobic count	1 1 1	ND			
Total aerobic count Total coliforms		ND ND	Not Detected per 1 gram		

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Morris

Generated By: Alex Morris Quality Manager Date: 01/31/2024

Lade Rinuston

Tested By: Jade Pinkston Microbiology Technician Date: 01/30/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

3 of 3

Extrax Bestest Buds 2g Disposables Key Lime

Sample ID: SA-240112-33052 Batch: Type: Finished Product - Inhalable Matrix: Concentrate - Vape Unit Mass (g):

Received: 01/12/2024 Completed: 01/30/2024 Client Savage Enterprises 7505 Irvine Center Drive, Suite 200 Irvine, CA 92618 USA

Residual Solvents by HS-GC-MS

	5						
Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)
Acetone	167	500	ND	Ethylene Oxide	0.5	1	ND
Acetonitrile	14	41	ND	Heptane	167	500	ND
Benzene	0.5	1	ND	n-Hexane	10	29	ND
Butane	167	500	ND	Isobutane	167	500	ND
1-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanol	167	500	ND	Isopropyl Alcohol	167	500	ND
2-Butanone	167	500	ND	Isopropylbenzene	167	500	ND
Chloroform	2	6	ND	Methanol	100	300	ND
Cyclohexane	129	388	ND	2-Methylbutane	10	29	ND
1,2-Dichloroethane	0.5	1	ND	Methylene Chloride	20	60	ND
1,2-Dimethoxyethane	4	10	ND	2-Methylpentane	10	29	ND
Dimethyl Sulfoxide	167	500	ND	3-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	n-Pentane	167	500	ND
2,2-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
2,3-Dimethylbutane	10	29	ND	n-Propane	167	500	ND
N,N-Dimethylformamide	30	88	ND	1-Propanol	167	500	ND
2,2-Dimethylpropane	167	500	ND	Pyridine	7	20	ND
1,4-Dioxane	13	38	ND	Tetrahydrofuran	24	72	ND
Ethanol	167	500	ND	Toluene	30	89	ND
2-Ethoxyethanol	6	16	ND	Trichloroethylene	3	8	ND
Ethyl Acetate	167	500	ND	Xylenes (o-, m-, and p-)	73	217	ND
Ethyl Ether	167	500	ND				
Ethylbenzene	3	7	ND				

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Alex Morris Quality Manager Date: 01/31/2024

Tested By: Kelsey Rogers Scientist

Date: 01/30/2024 Date: 01/30/2024
This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.