Near-Infrared Single-Photon Detector - IRSPD1 by S-Fifteen Instruments

1 Features

- 10% Photon detection efficiency
- Single-photon sensitivity from 1020 nm to 1650 nm
- Free-running
- Dark counts below 20 000 s^{-1}
- Detection timing jitter below 300 ps
- User-adjustable diode parameters (temperature, threshold, hold-off time, reverse-bias voltage)
- Integrated detection events counter

Applications: LIDAR & LADAR, Rangefinding, Optical communications, Ultra-sensitive fluorescence measurements, Environmental analysis, Biomedical devices, Quantum key distribution

2 General Description

The IRSPD1 is a single-photon detector module sensitive to the near-infrared spectrum. The photodetection is performed by a passively quenched InGaAs/InP avalanche photodiode in Geiger mode. A monolithically integrated quenching resistor provides a stable high-gain single-photon response and low dark counts.

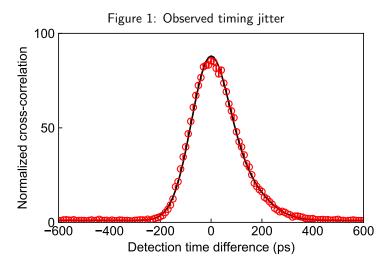

3 Specifications

	Table 1: Device Specifications				
Diode Properties – Cooled Negative Feedback Avalanche Diode					
Photon Detection Efficiency	10% @ 1320 nm, -40°C device temperature				
Spectral Response Range	1020 nm to 1650 nm				
Dark Count (DC) Rate	<20 000 DC/s, typical 15 000 DC/s				
Diode Temperature	Min50°C with the device case at 25°C, Software controllable				
Breakdown Voltage V _B	70 V – 85 V				
Temperature Coefficient of V _B	0.1 V/K				
Available Reverse-bias Range	0 – 100 V, Software controllable				
Quenching Mechanism	Passive				
Hold-off Time	0 – 1 μs, Software controllable				
Fiber Pigtail	SMF28 FC/UPC				
Software Interface					
Physical Port	USB 2.0, Type B				
Communication	Serial communication via virtual COM port / USB CDC ACM class				
Electrical Specifications					
Output Pulse	NIM (Negative True -0.8 V, False 0 V, 50 Ω Load) or				
	TTL (Positive True 2 V, False 0 V, 50 Ω Load), Software controllable				
Pulse Rise/Fall Time	<2 ns (20% to 80%)				
Timing jitter	<300 ps				
Connector	LEMO 00 (NIM-CAMAC CD/N 549) or SMA, Selectable at product purchase				
Power supply	4W, 12V DC, 2.1mm Barrel socket				
Physical Dimensions					
Size (W×L×H)	107 mm x 160 mm x 58 mm				
Weight	500 g				
Ambient Temperature Operating Range	15 – 35°C				

4 **Detection Time Accuracy**

A time-correlation measurement between an InGaAs-APD and a reference superconducting nanowire single-photon detector (SNSPD) shows a jitter feature with a full-width at half-maximum of 196 ps. This characterization uses time-correlated photon pairs derived from down-conversion in a non-linear crystal. The timing uncertainty is mainly due to the InGaAs-APD as the SNSPD jitter <4 ps and photon pair timing uncertainty <1 ps do not contribute significantly. The feature is modeled with 2 Gaussian distributions (black line in Fig.1).

5 Software Control Commands

Send plain-text commands terminated/separated by newline/cr or semicolon via the virtual COM port. An eventual reply comes terminated with cr+lf. The commands are case-insensitive.

Table 2: List of serial commands/queries available on the detector			
Command	Description		
*IDN?	Returns device identifier		
*RST	Resets device		
TEMP?	Returns the current diode temperature		
HVOLT <value></value>	Sets the diode reverse bias to <value> Volt.</value>		
HVOLT?	Returns the current voltage setting		
PVOLT <value></value>	Sets the Peltier element to <value>Volt.</value>		
SETTEMP <value></value>	Sets the APD temperature to <value> Celsius.</value>		
SETTEMP?	Returns the set temperature.		
CONSTP <value></value>	Sets the P loop constants in V/K .		
CONSTI <value></value>	Sets the I loop constants in $V/s/K$.		
CONSTD <value></value>	Sets the D loop constants in Vs/K.		
LOOP <s></s>	Sets the temp loop status $\langle s \rangle$. 1: on, 0: off		
LOOP?	Returns the temperature loop status.		
THRESHVOLT <value></value>	Sets the threshold to $\langle value \rangle$ Volt. Can be both polarities.		
THRESHVOLT?	Returns current threshold voltage.		
TIME <t></t>	Sets the counter integration time to $<$ t $>$ millisec.		
TIME?	Returns the counter integration time in millisec.		
COUNTS?	Returns the events counted in an integration time.		
CONFIG 3	NIM output pulse		
CONFIG 8	TTL output pulse		
DELAY <value></value>	Sets the hold-off time to $\langle value \rangle \times 5$ ns.		
SAVE	Saves the current settings.		
HELP	Print help text.		

Table 2: List	of serial comma	nds/queries avai	ilable on the detector
Table 2. List	of serial comma	nus/queries avai	

5.1 Python Library for S-Fifteen Instruments

A python class encapsulating all serial commands can be found on https://github.com/s-fifteen-instruments/ pyS15. To install the library follow the instructions on GitHub.

Here a code example to count photon detections for 1 second:

```
from S15lib.instruments import SinglePhotonDetector
detector = SinglePhotonDetector('/dev/tty.usbmodemISPD_0101')
detection_events = detector.counts(1)
```

