
EKPQC
Educational Kit: Programmable Quantum

Cryptography

Students’ Guide
First Edition
July 10, 2023

S-Fifteen Instruments Pte. Ltd.
Singapore

https://s-fifteen.com/

https://s-fifteen.com/

Introduction

This manual describes an experimental workshop designed to teach Quantum Key Dis-
tribution (QKD). The workshop presumes that the participants have some rudimentary
understanding of Quantum Mechanics: quantum states, bases, unitary operators, its ax-
ioms, and the no-cloning theorem.1 Our aim is to go from abstract to concrete; from
understanding these quantum-mechanical concepts, to implementing a working QKD sys-
tem.

First, the students set up two communication channels: a classical channel using infrared
pulses, and a “quantum channel” using polarization encoded photons. Next, they dis-
tribute a symmetric key between two parties with the BB84 protocol [3]. Finally, they
use the key to encrypt secret messages and send them over to the other party via the
classical channel.

To simplify implementation of the “quantum” channel, we use macroscopic light intensity
levels, instead of transmitting single-photons, which require more specialized training and
equipment to generate and detect. However, this comes at a cost of introducing a security
loophole, which will be exploited experimentally.

Apart from this hardware implementation difference, the steps in the BB84 protocol are
faithfully implemented – this provides an opportunity for students to understand that the
security of QKD is not solely an intrinsic property of the protocol itself, but relies critically
on exploiting quantum mechanical properties of the particles used to distribute the key.
Incorrect physical implementation2 leads to unintended security vulnerabilities [7].

The workshop has been peer-reviewed in Ref. [8], and successfully implemented with
pre-university students at the Centre of Quantum Technologies, Singapore, from 2018
onwards. Students have reported that the highlight of the workshop was that, despite
being informed about the formidable security that QKD promises, and following the
BB84 protocol to the letter, they were surprised that a flaw in implementation resulted in
a successful hacking attempt – we kept the presence of the hacking team a secret.

We hope that you will enjoy this educational kit. It is fully programmable – please feel
free to modify the kit and write to us at info@s-fifteen.com if you feel that the kit
can be improved to help spread the wonder and fun of learning about the applications of
Quantum Physics!

1Excellent introductory texts include Refs. [1, 2].
2In addition, additional protocols are required in a practical implementation: e.g. authentication is

required to secure against man-in-the-middle attacks, countermeasures are required to overcome device
and source imperfections. There is currently no internationally-recognized standard for practical imple-
mentation security. However, many commercial QKD vendors, including S-Fifteen Instruments, follow
the guidelines published by the European Telecommunications Standards Institute (ETSI) [4–6].

1

info@s-fifteen.com

Organization of Manual
The organization of this manual is as follows:

Chapter 1 provides the theoretical foundations of QKD: namely, the use of randomly
chosen encoding bases, and the no-cloning theorem. It will also provide a high-level
overview of the experimental setup of the educational kit.

Chapter 2 describes the infrared transmitter and receiver circuits used to establish the clas-
sical channel. Students will follow the experimental layout to construct their own classical
channel, with the accompanying software that enables the students to send and receive
test messages. This channel is subsequently used as part of the QKD protocol.

Chapter 3 describes the 650 nm laser and photodiode used to send and receive ‘quantum
bits’. After constructing the quantum channel, students will understand and execute a
calibration procedure that will help communicating parties establish a common coordinate
reference used to define the polarization states of photons.

Chapter 4 combines the key distribution and key sifting steps – students use the quantum
channel established in the previous chapter to send and receive bits of information that can
be ‘sifted’ into the final key. The key-sifting procedure is facilitated by communication over
the classical channel. The final key is then used to encrypt secret messages transmitted
through the classical channel.

Chapter 5 describes the eavesdropping unit and techniques, used to intercept part of the
distributed key. Students will construct the eavesdropping unit and attempt to use the
intercepted key information to decrypt secret messages transmitted between the intended
parties.

Discussion and Further exploration
We have included discussion sections that facilitate instructors to pose thoughtful ques-
tions pertaining to QKD implementation.

Further exploratory tasks, which may involve diving deeper into each experimental com-
ponent, are also included. Some tasks are included to exploit the advantage that a pro-
grammable Arduino microcontroller provides, and can be used in conjunction with other
electronic components to explore experiments not directly associated with QKD – the
microcontroller is primarily used to actuate various parts of the QKD experiment. The
level of theoretical or experimental difficulty associated with the tasks is indicated by the
number of asterisk signs (*).

Safety
The < 1 mW 650 nm laser diode used in the experiment, is a Class 2 laser in accordance
to Radiation Protection (Non-Ionising) Regulations 1991 [9]:

“Class 2 lasers emit visible light and are limited to a maximum output power of 1 milliwatt
(mW). A person receiving an eye exposure from a Class 2 laser will be protected from
injury by the person’s natural aversion response – an involuntary response which causes
the person to blink and turn their head, thereby avoiding further eye exposure.”

Although there is no requirement for additional protective equipment, nonetheless, we
would like to highlight the following safety precautions:

2

1. Ensure that the experimental setup is constructed below eye level.

2. Do not look directly at the laser, or point it at someone’s eye.

3. Alert everyone on the beam path, so that they can avoid it.

4. Do not wear accessories that may accidentally reflect the beam into somebody’s eye
e.g. watches, bracelets and rings.

5. Turn off the laser after use.

Warning!
This programmable QKD system is designed for pedagogical purposes only: it imple-
ments the BB84 QKD protocol albeit with a slight modification, which introduces a
security loophole. We do not recommend using the system for establishing QKD in a
non-educational context.

Annotation
Note that the following set of polarization states {|H⟩ , |V ⟩ , |D⟩ , |A⟩} are used inter-
changeably with {|↔⟩ , |↕⟩ |↗↙⟩ , |↖↘⟩}, and they indicate horizontal, vertical, diagonal,
and anti-diagonal polarization states, respectively. Where the ket notation (| ⟩) does
not provide additional insight, they are dropped and the polarization states are indicated
by {H, V, D, A} instead.

Related materials
Assembly and Installation Manual

A detailed inventory list, software installation and hardware assembly guide are available
in a separate manual; the present manual focuses more on how the experimental system
can be delivered in the form of an educational workshop.

Media

Kit assembly instructions are available at:
https://www.youtube.com/channel/UCRx-sMrlPE24LeWxHMTps4g.

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

3

https://www.youtube.com/channel/UCRx-sMrlPE24LeWxHMTps4g

Contents

1 Theoretical Foundations & Experiment Overview 6
1.1 Basics of QKD . 6
1.2 BB84 Protocol . 7
1.3 Theoretical foundations of BB84 . 9

1.3.1 Coding in different, randomly selected bases 9
1.3.2 No-cloning theorem . 10

1.4 Simplified BB84 implementation overview 11
1.5 Software . 14

1.5.1 Installation . 14
1.5.2 Summary of programs . 15

2 Building a classical channel 17
2.1 Background . 17
2.2 Experimental Setup . 17
2.3 Arduino Microcontroller & Breadboard . 19

2.3.1 Arduino Microcontroller . 19
2.3.2 Solderless Breadboard . 20

2.4 Task 1: Assembling the IR sending and receiving unit 20
2.4.1 Sender . 20
2.4.2 Receiver . 21

2.5 Task 2: Sending messages back and forth between remote parties 22
2.6 Discussion . 23
2.7 Further Exploration . 23

3 Building and characterising a simulated quantum channel 24
3.1 Background . 24
3.2 Task 1: Setup assembly and alignment . 29

3.2.1 Polarized laser pulse sending and receiving unit 30
3.3 Task 2: Aligning Alice’s and Bob’s coordinate systems 31
3.4 Task 3: Pulse synchronization and intensity matrix calibration 37

3.4.1 Synchronizing the transmission and measurement of pulse sequences 37
3.4.2 Measuring the intensity matrix . 38

3.5 Discussion . 39
3.6 Further exploration . 39

4 Key distribution, sifting, and usage 40
4.1 Task 1: Raw Key distribution . 40
4.2 Task 2: Key sifting (Manual) . 41

4

4.2.1 Key Sifting Implementation . 41
4.3 Task 2: Automated key distribution and 32-bit key generation 45
4.4 Task 3: Secret message encryption and transmission 46

4.4.1 Encryption Implementation and Transmission 46
4.4.2 Decrypting Implementation . 47

4.5 Discussion . 48
4.6 Further exploration . 48

5 Eavesdropping of a weak quantum cryptography setup 49
5.1 Task 1: Assembling the eavesdropping setup 51
5.2 Task 2: Eavesdropping on the channels, and reconstructing encrypted mes-

sages . 53
5.2.1 Eavesdropping the classical channel for the matched basis string . . 53
5.2.2 Eavesdropping the quantum channel for the raw key string 54
5.2.3 Eavesdropping the classical channel during encrypted message trans-

mission . 55
5.2.4 Guessing the final key and decrypting encrypted messages 55

5.3 Discussion . 58
5.4 Further exploration . 58

5

Chapter 1

Theoretical Foundations & Experiment
Overview

Objectives: This chapter provides a brief description of the BB84 QKD protocol. Most
commercial QKD systems adopt this protocol, albeit with additional modifications that
secure it against sophisticated eavesdropping attacks [10].

An overview of the experimental implementation is presented. Importantly, we high-
light the key differences between this setup, which is meant to train participants on the
foundations of the BB84 protocol, and its original implementation.

In addition, we will also present the installation instructions of the software used to control
the classical and quantum communication channels of the setup.

1.1 Basics of QKD
Quantum Key Distribution (QKD) is the process where secret symmetric digital keys can
be shared privately between two parties exploiting the concepts of Quantum Mechanics.
The security of QKD does not rely on computational complexity and thus will not be
vulnerable to future enhancements in algorithms, processing power or the emergence of
quantum computers. QKD does not address the issue of authentication and how the
keys will be used to encrypt data, however, typically, authentication can be performed by
private-public key authentication while encryption via AES128 algorithm.

Suppose one party Alice, wants to communicate to another party Bob securely with the
certainty that their communication is not being eavesdropped upon by a third party,
Eve (See Figure 1.1). To do this, Alice prepares and transmits photons to Bob, polar-
ized randomly in one of two non-orthogonal bases (Rectilinear or Diagonal), as shown
in Table 1.1. The bases are used to encode logical bits of information. Bob, having no
information about the state or basis of the incoming photon, randomly chooses one of two
non-orthogonal bases from the same set as Alice, and measures the polarization state.
The process is repeated until a desired number of measurements is obtained. After the
measurements, they publicly discuss their measurement basis. For a particular polar-
ization state measurement, if their basis coincide, they keep the results of the encoded
bit, otherwise, the results are discarded. To check for the presence of an eavesdropper,
some of the results are compared. Any error on the measurement can be due to the Eve
performing her own measurements on the transmitted photons from Alice to Bob. Eve

6

Classical Channel

Quantum
Channel

Detector

Alice Bob
EveKey Key

Single-Photon
Source

Figure 1.1: Alice and Bob wish to communicate securely where both of them are assured
that any attempt by Eve to listen to their communication can be detected. Each party
follows a QKD protocol using a classical and quantum communication channel, whose
outcome is to provide them with a shared, private key. The key can be subsequently used
to encrypt messages transmitted across the classical channel. QKD security relies on the
properties of quantum states distributed across the quantum channel. Eavesdropping by
Eve results in a quantifiable error in the fidelity of the transmitted quantum states. When
the transmission error crosses an intolerable threshold, no private key will be generated
by the protocol, i.e. while Eve can impose a denial-of-service attack, she is nonetheless
prevented from possessing any useful portion of the shared key.

is unable to perform measurements without introducing errors in the measurements for
Bob due to the no-cloning principle of Quantum Mechanics that states that an arbitrary
quantum state cannot be cloned without knowledge of the state a-priori. Alice and Bob
then perform error correction and privacy amplification to ensure that any knowledge of
Eve of the shared key can be reduced to an arbitrarily small amount with the trade-off of
final key length.

Basis Alternate name Polarization angle(o) 0 1
Rectilinear(+) Horizontal Vertical (H-V) 0,90 ↔ ↕
Diagonal(×) Diagonal Anti-Diagonal (D-A) +45,-45 ↗↙ ↖↘

Table 1.1: Two non-orthogonal bases for polarization measurments. Measurements in
the rectilinear (diagonal) basis will result in outcomes ↔(↗↙) or ↕(↖↘) which will encode
bits of 0 or 1.

1.2 BB84 Protocol
In 1984, Charles Bennett and Gilles Brassard published their famous protocol for key
distribution in a Proceedings of IEEE International Conference on Computers [3]. Here
we highlight the implementation and elaborate slightly on the possible measurments and
their outcomes (Refer to Table 1.2 for an example).

In BB84, Alice has single photons and prepares the state that is then sent to Bob. This
state preparation can be in one of four states using two randomly chosen bases. Bob will
also perform state measurement by choosing one of the two bases from the same set as
Alice. Bob’s measurement result will be correlated (same) as Alice when his measurement
basis matches Alice’s and uncorrelated (random) otherwise. This process is repeated for
a string of transmitted states. Once the measurement sequence is completed, Bob will

7

Figure 1.2: BB84 Protocol: Alice (left) and Bob (right) wish to establish a common secret
key that they can use to encrypt secret messages. Alice sends Bob single-photon states
which encode a bit in a basis determined by a random number generator (RNG). Bob
measures the states in a basis that is also randomly determined by his RNG. Both parties
communicate their bases over a public channel after a string of states are transmitted;
revealing bases does not reveal the value encoded by Alice. When their measurement
basis agree, the value is received accurately by Bob and is kept to generate a common
secret key. Otherwise, Bob’s measurement is uncorrelated (random) and the measurement
round is discarded by both parties. This process of comparing bases is called key sifting.
EO modulators/modulator: Electro-optic modulators used to set the polarization of light
sent by Alice, and is also used to set the measurement basis at Bob – each modulator
implements a polarization rotation to the photon. Dice: RNG. PBS: Polarization Beam
Splitter reflects/transmits photons according to their polarization.

publicly announce the sequence of basis he has measured Alice’s photon in and Alice will
acknowledge for which measurements Bob’s basis matched hers. On average, their basis
will match for half of the measurement results, and Bob retains those results as he can
be assured that they should be the same as the states prepared by Alice. The remaining
results obtained when their basis do not match will be discarded. This process is called
key-sifting.

After this they will have some shared information that may or may not contain errors
due to measurement and/or the presence of an eavesdropper. To check for this, Bob
reveals some of his keys at random and then Alice confirms them. If the keys match,
then Alice and Bob can say that their communication was not intercepted with some
confidence. If some of the keys don’t match, they need to determine what is the error
rate and whether their communication can still be secure by some error correction [11, 12]
and privacy amplification techniques (e.g. by means of a compression matrix). Finally,
they will establish a Quantum Bit Error Rate (QBER). Only if the QBER falls below a
certain value will the QKD communication be considered secure [13] and the final secret
key can be used.

8

Quantum Transmission
Alice’s random bits 0 1 1 0 1 1 0 0 1 0 1 1 0 0 1
Random sending bases D R D R R R R R D D R D D D R
Photons Alice sends ↗↙ ↕ ↖↘ ↔ ↕ ↕ ↔ ↔ ↖↘ ↗↙ ↕ ↖↘ ↗↙ ↗↙ ↕
Random receiving bases R D D R R D D R D R D D D D R
Bits as received by Bob 1 1 1 0 0 0 1 1 1 0 1

Public Discussion
Bob reports bases of received bits R D R D D R R D D D R
Alice says which bases were cor-
rect

OK OK OK OK OK OK

Presumably shared information
(if no eavesdrop)

1 1 0 1 0 1

Bob reveals some key bits at ran-
dom

1 0

Alice confirms them OK OK
Outcome

Remaining shared secret bits 1 0 1 1

Table 1.2: Example of the BB84 protocol from [3].

1.3 Theoretical foundations of BB84
The security of the quantum channel relies mainly on two quantum mechanical concepts:
conjugate coding and the no-cloning theorem. We briefly describe each concept and
explain how they contribute to the security of the protocol. 1

1.3.1 Coding in different, randomly selected bases
In BB84, Alice encodes logical bits (0 or 1), in a qubit using different bases which she
chooses at random (Table 1.1). This technique is known as conjugate coding [14]. When a
qubit is prepared in one basis but measured with another basis, the outcome is completely
randomized. Consequently, the receiver needs to know the bases in which an unknown
qubit is prepared in, in order to receive the transmitted logical bit information without
error.

Consider, for example, that Alice sends a logical bit 0 bit using the rectilinear basis i.e.
she transmits a horizontally polarized photon in the polarization state |↔⟩.

Since Eve does not know a-priori the basis with which Alice prepares the state, she would
choose the incorrect basis (diagonal) half the time.

When Eve measures |↔⟩in the diagonal basis, she would obtain either the |↗↙⟩outcome
half the time:

|⟨↗↙| ↔⟩|2 =
∣∣∣∣⟨↔|+ ⟨↕|√

2
|↔⟩

∣∣∣∣ 2 = 1

2
(1.1)

1Understanding these proofs require understanding quantum states and measurements. An introduc-
tion to these concepts may be found in Ref. [2].

9

or the |↖↘⟩outcome the other half of the time:

|⟨↖↘| ↔⟩|2 =
∣∣∣∣⟨↔| − ⟨↕|√

2
|↔⟩

∣∣∣∣ 2 = 1

2
(1.2)

Since |↗↙⟩and |↖↘⟩, which represent a logical bit 0 and 1 respectively, occur completely at
random, Eve’s cannot determine the logical bit sent by Alice.

Moreover, if she attempts to resend the intercepted qubit to the intended receiver, she
will do so in the incorrect basis half of the time. Consider the scenario when Eve resends
a qubit in the diagonal basis to Bob. If Bob measures the qubit in the rectilinear basis, he
will measure |↕⟩ with a probability of 1/2. This is a marked contrast to the situation where
Eve is absent: since Bob’s measurement basis is the same as Alice’s preparation bases, he
is supposed to measure |↕⟩ with zero probability, given that Alice sent |↔⟩. Consequently,
such measurement errors can be used to detect the presence of an eavesdropper. In typical
operation, Alice and Bob will compare a random subset of their transmitted and measured
qubits, and check for errors in measurement rounds where their basis is the same. Once
they are satisfied that there is no eavesdropping attempt, they will use the remaining
subset to generate the final encryption key.

1.3.2 No-cloning theorem
The no-cloning theorem prevents Eve from making identical copies of a quantum state.
This effect is desirable since Eve would be unable to analyse a copy of the transmitted
state [15, 16], which would have allowed her to gain information without the concomitant
risk of introducing an error to the original, transmitted state.

Cast in the operator formalism of quantum mechanics, the no-cloning theorem essentially
states that, there is no unitary operator Û which acts on an arbitrary, unknown quantum
state |ψ⟩ and an ancillary qubit |0⟩, so that Û transforms the ancilliary qubit to an exact
copy |ψ⟩:

U (|ψ⟩ |0⟩) = |ψ⟩ |ψ⟩ (1.3)

Proof by contradiction:

Suppose that a unitary operator that could perform cloning exists. Then we would
have:

Û |0⟩ |0⟩ = |0⟩ |0⟩ (1.4)

and
Û |1⟩ |0⟩ = |1⟩ |1⟩ (1.5)

Consider now an arbitrary state ψ = α |0⟩+ β |1⟩ with α, β ∈ C. Then,

Û |ψ⟩ |0⟩ = Û(α |0⟩+ β |1⟩) |0⟩ (1.6)

= αÛ |0⟩ |0⟩+ βÛ |1⟩ |0⟩ (1.7)
= α |0⟩ |0⟩+ β |1⟩ |1⟩ . (1.8)

However, we also have the definition of what this cloning unitary operator should be able
to do when it is applied directly to |ψ⟩ from Eqn. 1.3:

10

Û |ψ⟩ |0⟩ = |ψ⟩ |ψ⟩ (1.9)
= (α |0⟩+ β |1⟩)(α |0⟩+ β |1⟩) (1.10)
= α2 |0⟩ |0⟩+ αβ(|0⟩ |1⟩+ |1⟩ |0⟩) + β2 |1⟩ |1⟩ (1.11)

The results of Eqn. 1.6 and Eqn. 1.9 are different except for the very specific case when
α = 1 or β = 1, i.e. such a Û does not exist.

1.4 Simplified BB84 implementation overview

Alice Bob

Figure 1.3: BB84 setup – quantum channel: Alice encodes a string of bits using different
polarization choices set by her rotatable polarizer (RP). The quarter-wave plate (QWP)
transforms the linearly polarized light from the laser diode into circular polarization such
that the output from Alice’s polarizer has equal intensity for all linear polarization choices.
Bob projects Alice’s photons into different polarization bases, and measures the corre-
sponding intensity with a photodetector (PD).
Classical channel: Using infrared transceivers (IR-TR), Alice and Bob communicate the
matched bases and the encrypted message.
Side channel attack (SCA): Using a beam splitter (BS), Eve intercepts and measures some
of Alice’s photons in two different bases simultaneously. As Eve’s basis choice is a priori
not aligned to Alice and Bob’s, she may not be able to distinguish between polarization
states optimally. However, by measuring in more than one basis choice simultaneously,
she improves her ability to identify distinct polarization states even in the presence of
laser intensity noise. She also intercepts the matched bases and encrypted message using
her IR receiver from the classical channel.

In this experiment, we will implement a modified version of the original BB84 QKD
protocol, shown in Fig. 5.1. Note that Fig. 5.1 shows a simplified schematic – more

11

Alice (Sender)

Quantum Channel

Bob (Receiver)

Quantum Channel

Eve (Receiver)

Quantum Channel

Bob (Transceiver)

Classical Channel

Alice (Transceiver)

Classical Channel

Eve (Receiver)

Classical Channel

BS

Figure 1.4: Photograph showing the layout of various components in the setup, without
USB and power cables attached. BS: Beam splitter used by Eve to intercept some of
Alice’s photons in the quantum channel.

detailed schematic that facilitates the assembling of the constituent components, will be
provided in the following chapters.

For ease of implementing the quantum channel, Bob will be measuring the polarization
state of the photons using a motorized, rotatable linear polarizer, and a single photode-
tector. This contrasts with the EO-modulator, PBS and dual single-photon detector
combination shown in Fig. 1.2.

Alice and Bob will also establish a public classical channel using infrared (IR) pulses
by assembling IR transmitting and receiving circuits. Eve will attempt to eavesdrop
on the quantum and classical channels using a beamsplitter and additional IR devices,
respectively.

Apart from the implementation differences in the quantum channel, the steps involved
in the BB84 protocol remains the same as the original protocol i.e. distributing and
measuring polarization states in conjugate bases, and key sifting. However, we will not

12

be performing any error correction or privacy amplification as the focus of the experiment
is on the key distribution aspect of BB84. Nonetheless, the experiment is programmable
and the end-user can in fact, write associated programs to perform these functions on the
generated keys. Finally, you will also use the final key to encrypt a secret message. A key
learning outcome is to determine if this simplified implementation compromises security
in any significant way, despite following the steps outlined by the protocol.

13

1.5 Software
1.5.1 Installation

1. The software to operate this educational QKD system is hosted on Github at https:
//github.com/s-fifteen-instruments/s15_Qcamp2022. Download the software in
your desired directory by opening command line and entering the following com-
mand. Assuming that you wish to install the program in C:

C:\> git clone https://github.com/s-fifteen-instruments/s15_Qcamp2022

This requires that Git is installed in your operating system – it is available at
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git.

2. The software requires a set of Python libraries to be installed. Navigate to the main
programs folder s15_Qcamp2022 and execute the following command to download
the relevant libraries:

C:\s15_Qcamp2022> pip install -r requirements.txt

Note that, if you are using the Raspbian distribution of Linux on a Raspberry Pi,
please instead use:

C:\s15_Qcamp2022> pip install -r requirements_raspbian.txt

Please do not hesitate to contact us at info@s-fifteen.com for assistance in this process
if required.

14

https://github.com/s-fifteen-instruments/s15_Qcamp2022
https://github.com/s-fifteen-instruments/s15_Qcamp2022
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
info@s-fifteen.com

1.5.2 Summary of programs
For convenience, we briefly list the the programs used to operate the QKD system in the
subsequent chapters. Example execution codes are provided where appropriate. More
information will be provided in the relevant chapters.

Note that, throughout the workshop, Alice will always take the role of the sender, and
Bob the receiver during key distribution. Consequently, they will use different programs
when the need arises.

The only scenario when they can take both roles is after the key distribution process,
when they are using the final distributed key to send and receive encrypted messages over
the classical channel. Of course, they may also chat over the classical channel in both
directions at anytime, if only to test whether the channel is still working.

Chapter 2

programs\1_Classical\led _on_off.py – switches the infrared LED, used for establish-
ing the classical channel, on and off. The appropriate COM port where the Arduino
controlling the LED is connected to, should be provided. The command can be executed
in the appropriate directory with:

programs\1_Classical> python led_on_off.py --serial COM5

In this example, the Arduino controller was located at COM5.

Note that, the path indicated by the example codes does not include the full path where
the programs are installed. E.g. If the program folder is at C:\s 15_Qcamp2022, you
should for example, execute instead:

C:\s15_Qcamp2022\programs\1_Classical> python led_on_off.py --serial COM5

Please edit the codes accordingly to suit you purposes.

programs\1_Classical\chatting .py – Allows Alice and Bob to communicate unen-
crypted messages over the classical channel. Example execution:

programs\1_Classical> python chatting.py --serial COM5

Chapter 3

programs\2_QuantumKey\AlignmentGUI \runReceiver .py – Graphical user interface
(GUI) used by Bob to receive polarized light transmitted by Alice. The GUI enables
Alice and Bob to agree on a common coordinate axis used to define the orientation of
horizontally polarized light.

programs\2_QuantumKey\AlignmentGUI \runSender .py – GUI used by Alice for the
same purpose stated above.

programs\2_QuantumKey\recv _calibrate.py – Program used by Bob to generate the in-
tensity matrix together with Alice. Start this code before Alice. Example execution:

programs\2_QuantumKey>python recv_calibrate.py -- serial COM5

programs\2_QuantumKey\send _calibrate.py – Program used by Alice to generate the
intensity matrix together with Bob. Start this code after Bob. Example execution:

15

programs\2_QuantumKey>python send_calibrate.py -- serial COM5

Chapter 4

programs\3_QKDComm\recv _key.py – Program used to receive the raw QKD key by Bob.
Example execution:

programs\3_QKDComm> python recv_key.py --serial COM5 --threshold 300

programs\3_QKDComm\send _key.py – Program used to send the raw QKD key by Alice.
Example execution:

programs\3_QKDComm> python send_key.py --serial COM5

programs\3_QKDComm\keysift _hint.py – Program to assist in learning how the key-
sifting process works.

programs\3_QKDComm\encrypt .py – Program to encrypt a plain text message with the
final QKD key.

programs\3_QKDComm\decrypt .py – Program the decrypt the message with the final
QKD key.

programs\3_QKDComm\chatting .py – Program to communicate encrypted messages over
the classical channel. Example execution:

programs\3_QKDComm> python chatting.py --serial COM5

programs\3_QKDComm\recv _32bitQKD.py – Program to perform QKD with automatic
key-sifting. Bob executes this program to initiate his receiver before Alice executes her
program as the sender. Example execution:

programs\3_QKDComm> python recv_32bitQKD.py --Cserial COM5
--Qserial COM8 --threshold 300

programs\3_QKDComm\send _32bitQKD.py Program to perform QKD with automatic key-
sifting. Alice executes this program to perform her role as the sender over the quantum
channel, but only after Bob standbys as the receiver by executing recv_32bitQKD.py.
Example execution:

programs\3_QKDComm> python send_32bitQKD.py --Cserial COM5 --Qserial COM8

Chapter 5

programs\4_HackTools\listener .py – Program that Eve executes to listen in on the
classical channel. Example execution:

programs\4_HackTools> python listener.py --serial COM5

programs\4_HackTools\key _logger.py – Program that Eve executes to eavesdrop on
the quantum channel. Example execution:

programs\4_HackTools> python key_logger.py --serial COM5

programs\4_HackTools\run _interceptor.py – Program that Eve executes to analyse
the data eavesdropped over the quantum channel.

16

Chapter 2

Building a classical channel

Objective: The objective of this part of the experiment is to set up a classical channel
between Alice and Bob. You will send and receive messages encoded in a binary string
sequence. The binary string sequences are translated into infrared (IR) pulsed sequences
using a microcontroller and an IR LED. An IR receiver and another microcontroller are
used to detect and decode the transmission. The classical channel is subsequently used in
the QKD protocol for communicating basis choices during key-sifting, and for exchanging
secret messages encrypted with the distributed quantum key.

2.1 Background
As described in Section 1.2, a key step in QKD requires a classical channel where Alice
and Bob can use it to exchange their basis choices. Interestingly, since the security of
QKD rests on the properties of the quantum channel, QKD remains secure even if Eve has
access to the classical channel. The channel can even be publicly accessible, e.g. through
a newspaper publication.

For ease of implementation, we have chosen to use IR transmitters and receivers, since
they are ubiquitous components. Although not as convenient as communicating over com-
mercially available chatting applications, the tangible aspect of constructing a classical
communication channel from the ground-up, was also a factor in our choice in communi-
cation mode. In a typical QKD system, the classical channel can be realized by a standard
TCP/IP connection.

2.2 Experimental Setup
Each party, Alice and Bob, will construct a sending and receiving unit for themselves,
establishing a two-way communication channel. For each transmission direction, Fig. 2.1
shows the diagram of the circuit that you are to construct on top of a solder-less bread-
board.

Each sending attempt comprises of the following encoding steps:

MESSAGE →ASCII ENCODED MESSAGE →NEC ENCODED MESSAGE

where an original MESSAGE is first digitized in ASCII, and is further encoded via the
NEC protocol [17]. The NEC protocol encodes the ASCII message into a pulsed timing
sequence. Each pulse is a 560µs long 38kHz carrier burst (Fig. 2.2), such that a 0-bit

17

c
ir
c
u
it

Indicator LED

Sender

Receiver

Figure 2.1: Electrical circuit of the IR sender and receiver: A series of IR pulses en-
ables a sender and receiver to communicate with each other. The devices enable them
to exchange classical information e.g. basis choices, encrypted messages. Information,
encoded as binary strings, is translated into pulse sequences. A microcontroller uses the
pulse sequences to switch the state of an IR LED to transmit the message. An IR receiver
detects the pulses and decodes it with a microcontroller.

corresponds to a sequence of signal pulses with a timing characteristic distinct from that
of 1-bit.1

Each receiving attempt comprises of the reversed process:

NEC ENCODED MESSAGE →ASCII ENCODED MESSAGE →MESSAGE

Both encoding processes have been implemented automatically whenever a classical mes-
sage is sent over our system. You may find the encoding codes for ASCII, IR modulation,
and NEC in conv_ascii.py, IRremote.hpp2 and IrSender.sendNECMSB3

Figure 2.2: The NEC protocol uses pulse distance encoding of the bits. Each pulse is a
560µs long 38kHz carrier burst (about 21 cycles). A logical "1" takes 2.25ms to transmit,
while a logical "0" is only half of that, being 1.125ms. Image credit [17].

1This modulation protocol, developed by the Nippon Electric Company (NEC), is ubiquitously
adopted in remote control devices.

2Implemented as a library in ArduinoClassical.ino
3A class method belonging to the IRremote library.

18

Figure 2.3: Parts of the Arduino microcontroller board.

2.3 Arduino Microcontroller & Breadboard
2.3.1 Arduino Microcontroller
Alice and Bob will each be given two Arduino microcontrollers, one for the classical
channel, and the other for the quantum channel.

The board is based on the ATmega328P microcontroller chip, and comes with several
digital and analog input/output (I/O) pins that may be connected to expansion boards
(shields) and other circuits. The chip is programmable with the Arduino IDE (Integrated
Development Environment) via a type B USB cable. The Arduino code used to control
the various components have the file extensions .ino, and can be found in the programs
folder. However, we will not be calling them directly when executing the QKD protocol.
Instead, we are calling them from higher level functions written in Python, which we will
describe throughout this manual.

Starting clockwise from the top center, the various parts of the board are [18]:

1. Analog Reference pin (orange)

2. Digital Ground (light green)

3. Digital Pins 2-13 (green)

4. Digital Pins 0-1/Serial In/Out - TX/RX (dark green) - These pins cannot be used for
digital i/o (digitalRead and digitalWrite) if you are also using serial communication
(e.g. Serial.begin).

5. Reset Button - S1 (dark blue)

6. In-circuit Serial Programmer (blue-green)

7. Analog In Pins 0-5 (light blue)

8. Power and Ground Pins (power: orange, grounds: light orange)

19

9. External Power Supply In (9-12VDC) - X1 (pink)

10. Toggles External Power and USB Power (place jumper on two pins closest to desired
supply) - SV1 (purple)

11. USB (used for uploading sketches to the board and for serial communication between
the board and the computer; can be used to power the board) (yellow)

More information about the Arduino microcontroller can be found at https://www.
arduino.cc/en/reference/board.

2.3.2 Solderless Breadboard

Figure 2.4: Breadboard: holes in the board are electronically connected to its neighbours
as shown in the figure.

Alice and Bob will each assemble a sending and receiving unit (Fig. 2.1) on a solderless
electronic breadboard. The holes on the board are electrically connected in the rows and
columns as shown.

2.4 Task 1: Assembling the IR sending and receiving
unit

2.4.1 Sender

anode (+)

cathode (-)

Figure 2.5: (Left) IR LED: Longer leg (anode) is to be connected to a higher potential.
(Right) BC597 transistor, in a common TO-92 package, used to supply current to the IR
LED.

20

https://www.arduino.cc/en/reference/board
https://www.arduino.cc/en/reference/board

programs\1_Classical>python led_on_off.py --serial COM5
Opening the serial port...
Done

LED basic on/off program
"LEDON" and "LEDOFF" to turn the LED on and off respectively
To exit the program, use Ctrl+C

Enter command here: ledon
Unknown command
Enter command here: ledon
LED ON!
Enter command here: ledoff
LED OFF!
Enter command here:
Keyboard Interrupt - Exiting...thank you for using the program!

Figure 2.6: Program to switch the IR LED on and off.

The sender circuit consists of an IR LED (TSAL7400), a few resistors, and a transistor
(BC547). The purpose of the transistor is to provide higher current to the IR LED
(∼ 60mA) than the maximum allowable rating of the Arduino pin (40mA). To achieve
this, we can use RB ≈ 1 kΩ as the base resistor and RC ≈ 47Ω as the collector resistor.
To switch on the IR LED via the transistor, we vary the base current using Arduino pin
10.

Warning: Note that the transistor needs to be connected at the correct polarity. An incor-
rect connection may result in damage to the component.

To test whether the circuit works, you can switch on the LED via the Arduino micro-
controller, by executing led_on_off.py, (Fig. 2.6): you should be able to observe the
infrared light using your mobile phone camera.4 In the following example, the Arduino
controller is connected to COM5.

2.4.2 Receiver
Figure 2.7 shows the IR receiver module (TSOP38238). The module consists of an IR
photodiode with a built-in demodulation circuitry.5 The output (OUT) of integrated
circuit / photodiode module can be directly connected to Arduino pin 11. The module
is biased across the Vs and GRD pins by connecting them to the 5V and GRD pins of
the Arduino board, respectively. Warning: The IR receiver module may be damaged if
connected in the wrong polarity.

You may add in an (optional) indicator LED to monitor the output of the IR receiver
module (indicated as dashed components in Figure 2.1). Note that you might need to
use quite a high resistance value (∼ 20 kΩ) as the demodulation circuitry cannot output
more than a few milliamperes. Also, note that the pin logic is inverted, i.e. it turns
OFF (0V pin reading or LED off) when it receives an ON signal from the sender, and

4Certain models will be unable to detect IR light e.g. the iPhone which has an excellent IR filter.
5Whereas the pulse modulation from the sender is implemented on-board the Arduino.

21

Figure 2.7: IR receiving unit. Vs connects to the voltage supply of 5V, to be supplied on
the Arduino board. GND can be assigned to the Arduino ground pin. The OUT pin is
where the measured IR signal is read out using Arduino pin 11.

vice-versa.

2.5 Task 2: Sending messages back and forth between
remote parties

The sending and receiving unit can now be tested by issuing the following commands:

We first prepare the receiver:

programs\1_Classical>python chatting.py --serial COM5
Opening the serial port...
Done

Qcumber ChatBox v1.00
To exit the program, use Ctrl+C

You are now in sending mode.
To change to listening mode, press ENTER.
Write the message you want to send below:

Once the receiver is ready, the sender may send a message e.g. “hello” using the following
commands:

programs\1_Classical>python chatting.py --serial COM5
Opening the serial port...
Done

Qcumber ChatBox v1.00
To exit the program, use Ctrl+C

You are now in sending mode.

22

To change to listening mode, press ENTER.
Write the message you want to send below:
hello
Sending done!

Upon successful receipt of the message, the receiver should observe the following decoded
message:

--- START OF TEXT ---
hello
--- END OF TEXT ---

Both senders and receivers should switch roles in order to test their corresponding sending
and receiving circuits.

2.6 Discussion
1. While binary encoding was used to digitize the transmission, it was not intended to

provide any encryption or authentication. Would implementing either encryption
or authentication or both, on the classical channel, benefit the QKD protocol?

2. The classical channel uses light in the infrared regime, similar to the IR remote
controllers in household electronic devices. Why is infrared light ubiquitously used
for such applications? Why not say, visible or ultraviolet light?

3. Why does the IR light used to establish the classical channel have to be modulated?
Can it function without modulation?

2.7 Further Exploration
1. * Measure the speed (in bytes per seconds) of the classical communication channel!

2. ** Measure the working distance of the classical communication channel. Explore
ways to increase the working distance.

3. *** Measure the output from an IR remote controller when one of its functions is
activated e.g. ON/OFF, volume, etc. With this knowledge, create your own custom
programs and circuits to control the associated devices instead of using the intended
remote controls!

23

Chapter 3

Building and characterising a simulated
quantum channel

Objective: The objective of this part of the experiment is to set up a quantum channel
between Alice and Bob. The quantum channel enables Alice to send a binary sequence,
encoded in the polarization of laser pulses, to Bob. During the QKD protocol, we use
this channel to transmit the raw key. There are two prerequisites to constructing this
channel: First, Alice will have to construct the circuits required to generate laser pulses,
and manipulate their polarization. Bob likewise, have to construct the corresponding
circuits for measuring the polarization of the laser pulses. Second, Alice and Bob have to
agree on the direction of polarization that is to be assigned the label ‘Horizontal’. This
direction serves as a reference for defining the other polarization directions ‘Vertical’,
‘Diagonal’ and ‘Anti-diagonal’. To characterize the quantum channel, we will perform
a visibility experiment which will tell us how distinguishable the polarization states are
from each other.

3.1 Background
In this chapter, we establish a communication channel using polarization-state encoding.
This encoding scheme differs from that for the classical channel, which instead encodes
information using a timed sequence of LED pulses (Fig. 2.2).

The polarization-encoding scheme is as follows:

Basis Alternate name Polarization angle(o) 0 1
Rectilinear(+) Horizontal Vertical (H-V) 0,90 ↔ ↕
Diagonal(×) Diagonal Anti-Diagonal (D-A) +45,-45 ↗↙ ↖↘

Table 3.1: Two non-orthogonal bases for polarization measurments. Measurements in
the rectilinear (diagonal) basis will result in outcomes ↔(↗↙) or ↕(↖↘) which will encode
bits of 0 or 1.

To measure the polarization state, we measure the intensity of the laser pulse after it
passes through a linear polarizer. Note how this measurement scheme differs from that
introduced in Fig. 1.2, where the result of the polarization state measurement is indi-

24

cated by the beamsplitter port at which one of two detectors registers a photodetection
event.

Measuring Polarisation

In this experiment, we will use a linear polarizer to determine the polarisation of light. A
linear polarizer (also called an analyser) is allows only light polarized along its transmission
axis to pass through (see Figure 3.1, left). Polarization orthogonal (90o) to its transmission
axis is completely rejected (see Figure 3.1, right).

Linearly polarized Light

Unpolarized light

Linear polarizerpolarization
axis

Linearly polarized Light

Unpolarized light

Linear polarizerpolarization
axis @ 45o

polarization
axis @ -45o

No light

Figure 3.1: (Left) A linear polarizer allows only light polarized along its transmitting
axis to pass through. (Right) Light oriented 90oto the transmitting axis of the second
polarizer is not allowed to pass through.

Linearly polarized Light

(Intensity = Io)

Linear polarizertransmission
axis

Linearly polarized Light

(Intensity = Iocos2θ)

θ

Figure 3.2: A setup similar to Figure 3.1, except that the linear polarizer (also known as an
analyser) is used to ‘analyse’ how much of the light inpinging on it contains a component
parallel to its transmission axis: the output intensity is a function of the relative angle θ
between the input polarization and the transmission axis.

General Polarisation Measurement Linearly polarized light oriented θ degrees to
the transmission axis will be transmitted with an intensity Io cos2 θ, where Io is the input
intensity.

25

The output intensity I0 cos2 θ is due the following relations:
First, light intensity is proportional to the dot product of its electric field:

Io ∝ E⃗o · E⃗o. (3.1)

Second, the input electric field can be represented as:

E⃗o = Eo

(
cos θ

sin θ

)
(3.2)

where the first row is the component of E⃗o parallel to the transmission axis, and the second
row is the component orthogonal to the transmission axis. Since the analyser only trans-
mits light parallel to its transmission axis, we only consider the first row Eo cos(θ). The
intensity associated with this electric field component is thus proportional to cos2 θ.

Thus, by making a relative comparison between the input and output intensity, we can
infer the relative angle of the analyzer and the incoming light polarization.

Visibility measurement In a real experiment, the detected intensity will instead
be:

I(θ) = (Io + IAC) cos
2 θ + IDC + I ′AC (3.3)

where IDC is the detected light intensity to (i) background light unassociated with the
source that we would like to detect (ii) light orthogonal to the transmission axis leaking
through an imperfect analyzer, (iii) input light not perfectly linear e.g. eliptically polarized
light whose component orthogonal to the transmission axis is small but still appreciable.
Of particular concern is fluctuating noise, which is typically due to (iv) detector noise
(I ′AC), (v) fluctuating energy output of the laser diode generating the incoming light
(IAC), or (vi) fluctuating transmission characteristics of the medium between the sender
or receiver (IAC).

26

Figure 3.3: Visibility curves showing bad (left), and good (right) visibility. Each visibility
curve shows the power (vertical axis) of Alice’s horizontally polarized beam that passes
through Bob’s linear polarizer, at various angles (horizontal axis). The visibility measure-
ments are performed using the setup (Fig. 3.4), controlled via the graphical-user-interface
explained in Tables. 3.3 and 3.4. Notice that when visibility is poor, the signal to noise
ratio is low. This is disadvantageous if we would like to infer the transmitted polarization
state from Alice using intensity measurements. See the main text for tips to improve the
setup in order to obtain a good visibility measurement.

To ensure that the noise level is tolerable enough to distinguish between the four polariza-
tion states used in the experiment, we perform a so-called visibility measurement.

Essentially, the output light intensity I is measured while the analyzer is rotated from
θ = 0o to 180o, so as to reconstruct the relation Eq. 3.3. We would like to observe that
cosine term of the intensity curve is not obscured by intensity noise.

The figure of merit for this measurement is the visibility, which is defined as:

V =
Imax − Imin

Imax + Imin

, (3.4)

where Imax and Imin are the maximum and minimum detected intensities, over the ac-
quired intensity curve I(θ), respectively. In a simple, worse case scenario, V = 0, so that
there is no way to distinguish between any of the polarization states.

When V ∼ 1, the visibility measurement may serve as a tool to indicate when the trans-
mission axis of both Alice and Bob’s polarizers are aligned. This is useful when both
parties would like to agree on a common coordinate system for their polarization states
(Section 3.3).

27

Bob
H D V A

Alice

H 1 0.5 0 0.5
D 0.5 1 0.5 0
V 0 0.5 1 0.5
A 0.5 0 0.5 1

Table 3.2: Expected value of intensity of different polarisation settings between Alice and
Bob, normalised to the maximum transmission.

Intensity matrix A particularly expedient alternative to performing a visibility mea-
surement is to acquire a so-called intensity matrix.

This is the approach used to qualify the quantum channel for operation in this experiment.
The intensity matrix is determined by measuring the intensity after the polarizer, at the
various polarisation settings set by Alice and Bob.

The theoretical values for the intensity matrix is given in Table 3.2. As outlined in the
previous section, due to imperfections of the devices (lasers, quarter wave plates, polar-
izers), the measured intensity matrix deviates from the expected value. We may define
a metric called signal degradation η, which characterises the deviation of the measured
with the ideal intensity matrix, with the following formulas:

First, given a measured intensity matrix whose elements are photodiode voltages dij, we
define the mean of these elements by:

d̄ =

∑
ij dij

N
, (3.5)

where N is the total number of elements in the matrix.

We may now normalize the intensity matrix:

ηij =
dij
d̄

(3.6)

Note that if we normalize the expected intensity matrix dexpij (Table 3.2) in the same
fashion, we obtain:

ηexpij =
dexpij

d̄exp
= 2dexpij (3.7)

With the same normalization established between the measured and expected intensity
matrix, we may now define the signal degradation as:

η =

∑
ij |ηij − η exp

ij |
N

(3.8)

To interpret the value of η, we can consider the following cases:

1. When the measured intensity matrix follows the expected matrix very closely. In
this case, |dij − d exp

ij | ≈ 0 for all i and j. Thus, the signal degradation is very small:
η ≈ 0.

28

2. When the measured intensity matrix is constant for all cases, i.e. the polariser does
nothing to the light (‘unpolarised’). In this case, dij ≈ 0.5 for all i and j, and thus
η ≈ 0.5.

3. When the measured intensity matrix ‘anti-correlates’ with the expected matrix, i.e.
when there is an offset of 45◦ or 90◦ between Alice and Bob’s H polarisation. In this
case, η ≈ 1.

Thus, η represents, to some extent, the degree of misalignment and the ‘visibility’ of the
signal. In our experiment, ideally we would require η to be as small as possible, but based
on our experience, it is very hard to get η ≤ 0.1. However, the experiment would still
work fine if η ≤ 0.2.

3.2 Task 1: Setup assembly and alignment

5
V

G
N
D

4

5
V

G
N
D

1
1

1
0

9

8

A
0

QWP Polarizer

5V

Polarizer Lens

Photo
Diode

Variable
Resistor

GND

A0... H D H A V D ...

1
1

1
0

9

8

Alice Bob
Lens

GND

5V
LD

Servo

Motor

G
N
D

9
V

Servo

Motor

G
N
D

9
V

ATMega 328

Analog inPower

Digital

ATMega 328

Analog inPower

Digital

Figure 3.4: Schematic of the quantum channel. Alice transmits a series of polarized light
pulses to Bob – created using a laser diode and a motorized polarizer. Bob projects the
incoming states with his motorized polarizer and measures its intensity with a photodetec-
tor. The motors and laser diode are operated via the digital output on the microcontroller
(DIG pins), while the photodiode readout is recorded by the analog-to-digital converter
(ADC) on the microcontroller (A pins). QWP: Quarter-wave plate. GND: Ground con-
nection.

Figure 3.4 illustrates the quantum channel. Alice prepares different polarization states by
sending 650 nm laser diode pulses through a quarter-wave plate (QWP) and a motorized
polarizer: The quarter-wave plate (QWP) converts linear-polarized light from the laser
diode (LD) to circular-polarized light, which is subsequently converted into one of the four
polarization states (H, V, D, A) using a motorized polarizer. To perform a measurement
on incoming polarization states, Bob chooses one of two measurement bases (H/V or
D/A) at random, and implements the basis with a motorized polarizer. Measuring the
transmitted light intensity allows him to infer the polarization state.

Before using the quantum channel, both parties need to agree on a common coordinate
system for their polarization states (Section 3.3). This is performed using a visibility

29

measurement. First, Alice chooses an arbitrary rotation angle for her polarizer and defines
it as the orientation of H-polarization. Then, she transmits a macroscopic beam with this
polarization to Bob as a reference. To deduce Alice’s orientation of H-polarization, Bob
rotates his polarizer and identifies the position that maximises the transmission of the
reference beam.

3.2.1 Polarized laser pulse sending and receiving unit
Sender

Figure 3.4 (Alice) shows the circuit diagram of Alice’s sending unit. The electrical circuit
for the sender consists of two main parts: laser module and polarizer module. The laser
module consists of a 650 nm laser diode. The polarizer module consists of linear polariser
mounted on and rotated by a servo motor 1.

Your task is to construct the circuit required to operate the laser and polarizer module
with the Arduino controller using a breadboard and the components provided. Note the
following descriptors for the wires of laser diode and servo motor. The pin assignments
to Alice’s Arduino are indicated in square braces []:

Laser Diode:

1. Red: Anode (+) [Pin 12]

2. White: Cathode (-) [GND]

Motor:

1. Red: Voltage supply [Vin]

2. Black: Ground [GND]

3. White: Control signal [Pin 8]

4. Yellow: Feedback signal – reports current angle [Pin 9]

Receiver

Figure 3.4 (Bob) shows the circuit diagram of Bob’s receiving unit. The receiver also
consists of two main parts: the polarizer module (similar to the sender) and the detector
module. At the polarizer module, light sent from Alice passes through the linear polarizer
whose orientation, set by Bob’s servo motor, implements the measurement basis. The
incoming beam is focused using a converging lens, through the linear polarizer, and onto
the photodiode in the detector module to reduce alignment sensitivity.

The detector module consists of a photodiode (SFH213) operating in reverse-biased mode,
arranged in a voltage divider configuration in series with a variable resistor. The variable
resistor allows the reverse-bias across the photodiode to be tuned, allowing you to change
its sensitivity. When the photodiode is not saturated during normal operation, the light
intensity on the photodiode is proportional to the voltage at A0.

Your task is to construct the circuit required to operate the detector and polarizer module
with the Arduino controller using a breadboard and the components provided. Note the
descriptors for the wires of the following devices. Their pin assignments to Bob’s Arduino
are indicated in square braces []:

1https://www.pololu.com/product/3432

30

https://www.pololu.com/product/3432

Figure 3.5: Variable resistor

Photodiode:

1. Red: Anode (+) [Pin A0]

2. White: Cathode (-) [5V]

Motor: Same as Alice’s configuration.

Figure 3.5 illustrates the variable resistor. Note that you need only to connect the middle,
and either of the two outer connectors, to the rest of the circuit. One of the connector
leads to the GND pin on the Arduino, and the other connector, to the photodiode anode.
This constructs a voltage divider circuit from which the photodiode signal is read out via
its anode.

Note that a 1 kΩ resistor (not shown in Fig. 3.4) should be inserted in series with the
photodiode and variable resister, in order to prevent the photocurrent from exceeding the
recommended value.

3.3 Task 2: Aligning Alice’s and Bob’s coordinate sys-
tems

In this section, Alice and Bob will have to agree on a common coordinate system, so
that their definition of the four polarization states, {|H⟩ , |V ⟩ , |D⟩ , |A⟩}, used to encode
information in the quantum channel, is the same. i.e. the orientation of horizontally-
polarized light for Alice is the same as Bob.

This alignment/calibration procedure requires Alice to send a polarized laser beam to Bob,
who will perform the visibility measurement. The objective is to find the orientation of
Bob’s polarizer that corresponds to the maximum transmission of Alice’s beam. This
direction is then labeled ‘Horizontal’. Note that this direction does not necessarily need
to be parallel to the floor – it can be defined arbitrarily. However, once set, every other
direction that is labeled ‘Vertical’, ‘Diagonal’ and ‘Antidiagonal’, will be defined with
respect to this commonly agreed ‘Horizontal’ direction.

In the following, we will outline the steps that Alice and Bob performs to measure the
visibility curve used to find this common orientation.

First, Alice will execute the following code to access the graphical interface (GUI) con-
trolling the laser diode and motorised linear polarizer:

programs\2_QuantumKey\AlignmentGUI>python runSender.py

Likewise, Bob will execute the following to access the GUI controlling his polarization
measurement module:

31

Figure 3.6: For Windows users: use the device manager to identify the COM port at
which your Arduino device is located.

programs>python list_arduinos.py
The open ports are: ['COM3', 'COM5', 'COM6', 'COM7', 'COM8', 'COM9']
Identifying ports, please wait...
Ports identified!
['COM3 (Quantum)', 'COM5 (Classical)', 'COM6 (QuantumEve)', 'COM7 (Quantum)',
'COM8 (Classical)', 'COM9 (Classical)']

Figure 3.7: Program which identifies the COM port at which your Arduinos are con-
nected to. Note that in this example, nine devices are connected and listed. For this
workshop, Arduinos controlling the classical and quantum channel have their correspond-
ing names listed in parenthesis. Whereas the Eve’s quantum eavesdropping setup is listed
as QuantumEve.

programs\2_QuantumKey\AlignmentGUI>python runReceiver.py

Each party will follow Steps 1–10 for the calibration procedure. Note that in Steps 1 and
2, Alice and Bob will have to locate the COM port (for Windows users) at which their
Arduino microcontrollers are connected to. One way to do it is via the Windows device
manager (Fig. 3.6). Alternatively, you may run list_arduinos.py to identify the devices
(Fig. 3.7).

32

Alice Bob

Step 1: Select the appropriate de-
vice from the com port assignment
corresponding to Alice’s Arduino.

Step 2: Select the appropriate de-
vice from the com port assignment
corresponding to Bob’s Arduino.

33

Step 3: Click ’Start’, then click ’Tog-
gle Laser’ to turn Alice’s laser diode
on. Set the offset and polarization val-
ues to 0. It is not necessary to set the
value for the absolute angle at this stage.

Step 4: Next, click ‘Start’, then click ’Start
Measure’ to start the intensity measurement.

Step 5: Click ‘Set Angle’ to de-
fine the present transmission axis
angle as 0oi.e. the ‘Horizontal’.

Step 6: Next, set the ’Abs Angle’ to
0oand click ‘Set angle’ to define Bob’s
present transmission axis angle as 0o.
Note that at this stage, Alice and Bob’s
definition of 0ois not yet calibrated.

Table 3.3: Calibration Procedure (Part I) by Alice and Bob

34

Following which, Bob will continue to perform the following steps:

Bob Bob

Step 7: Click ’Scan’ to measure the in-
tensity after the linear polarizer as it ro-
tates through an angular range of 360o.

Step 8: Observe the maximum of the
transmission. In this example, it oc-
curs at approximately −10o. Input this
value in the ‘offset’ field, and click ‘off-
set’. This informs Bob’s Arduino that
the angle corresponding to maximum trans-
mission is on fact, not 0o, but -10o.

35

Step 9: Click ’Scan’ to measure the vis-
ibility curve again. You should observe
that the maximum of the transmission oc-
curs at 0o. i.e. Bob has indeed cali-
brated his coordinate system with Alice’s.

Step 10: Bob may set his polarization
to ‘2’, corresponding to setting the mea-
surement direction to vertical polarization.
He should observe a minimum intensity
since the incoming polarization is horizon-
tal if the calibration was done correctly.

Table 3.4: Calibration Procedure (Part II) by Bob only

Improving visibility

Bob’s ability to distinguish the various polarization states sent by Alice is indicated by the
visibility V that you just measured. From Eqn. 3.4, we observe that (i) from the numerator
Imax − Imin, a large amplitude indicates high visibility, while (ii) from the denominator
Imax + Imin, a low mean position of the visibility curve indicates high visibility.

Guided by these “visual cues”, attempt to improve the visibility with the following steps:

Reduce Ambient Light: Light from the sun, ceiling lights etc. will affect the
readings on the photodetector. To reduce ambient light, reduce these ambient light
sources, and/or use the beam blocker provided (little plastic piece that fits over the
detector module).

Adjust the Quarter-wave Plate: The light entering Alice’s rotating linear po-
larizer (and subsequently Bob’s) should be circularly polarized. This ensures that
linear polarized light generated at any orientation of polarization is generated with
the same intensity. The circularly-polarized light is generated by transmitting the
light emerging from the laser diode, which is at a fixed linear polarization, through
a quarter-wave plate (QWP). The position of the QWP however, might be compro-
mised by the end-user, or during device transportation. To ensure that the light
after the QWP is indeed circularly polarized, first remove Alice’s rotating linear po-

36

larizer from its motor with a M2.5 wrench. Then, on the receiver GUI, simply press
‘Scan’ to get the visibility reading. Ideally, visibility should be zero for perfectly
circular light since intensity is the same in all polarization directions, and the graph
would appear flat relative to detector noise. Rotate the QWP using its rotation
mount and hit ‘Scan’. Repeat until the visibility curve is as flat as possible. The
alignment required is somewhat precise – a 1° rotation is sufficient to affect visi-
bility measurements, use the markings on the QWP holder to keep track of your
adjustments. In our tests, we find a visibility value < 0.1 is more than sufficient
for normal functioning of the QKD Kit. After adjustment, replace Alice’s polarizer
and you’re good to go!

Tune the bias of the photodetector: In the scanning step, if you observe that
the peak of your visibility curve is much less than the saturation point of 5V, the
bias on the photodetector can be adjusted to improve the amplitude of the visibility
curve. First, use Bob’s GUI to set the angle of the polarizer to coincide with peak
transmission through his polarizer. This angle is indicated by the angle on the x-
axis of the visibility curve when its amplitude is maximum. Next, rotate the knob
on Bob’s variable resistor to change its resistance. Do this until a value of about
4-4.5V is measured with Bob’s GUI. Doing so provides the maximum photodetector
signal while avoiding signal saturation, since this value is close to the maximum bias
that can been provided by the 5V Arduino pin (Fig. 3.4).

3.4 Task 3: Pulse synchronization and intensity matrix
calibration

In the previous section, Alice sent a continuous laser beam at a fixed polarization, defined
as ‘Horizontal’, to Bob. Bob rotates his linear polarizer in order to observe the orientation
at which the transmission of Alice’s beam is maximum – this indicates to him Alice’s
‘Horizontal’ direction.

In this section, Alice will send laser pulses of the four different polarization states,
{|H⟩ , |V ⟩ , |D⟩ , |A⟩}, that will be used to encode information in the quantum channel.
For each of these states, Bob will measure the intensity of the transmitted beam four
different orientations of his linear polarizer, corresponding to {|H⟩ , |V ⟩ , |D⟩ , |A⟩}. The
result of this measurement yields 16 intensities.

3.4.1 Synchronizing the transmission and measurement of pulse
sequences

To prepare each polarized laser pulse to transmit each bit of data, the servo motor needs
to move to the correct angle, and the laser (detector) needs to send (receive) each light
pulse. The main timing bottleneck of this process is the rotation time of the servo motor
(of the order of half a second) which depends on the rotation angle. This rotation time
has already been reduced by rotating to the closest angle that reproduces the specified
polarization, while limiting the maximum rotation angle to 90◦.

After each rotation, Alice’s laser produces a pulse for a duration of 0.3 s, while Bob’s detec-
tor is set to measure at the 0.15 s mark (right in the middle of the laser pulse). In practise,
Bob may not be able to measure precisely at the middle of the laser pulse, since his clock
might not be perfectly synchronized with Alice. However, we have found that the above
pulse parameters are sufficient for Bob to perform his measurements with Alice’s pulses in

37

a synchronized manner, given the typical frequency inaccuracies between their clocks, and
the total measurement time for our pulse sequences. In other words, while the frequency
inaccuracies of the clocks may cause Bob to detect the pulses off-center at each pulse, they
are not sufficient to cause Bob to perform the detection outside of each pulse. The total
measurement time for the pulse sequences allows for pulse sequences as long as 256 bits,
but we have set it to 16 bits per pulse sequence for this experiment. These parameters
have been implemented in our setup, and do not require further adjustment.

To start each sequence of bits, Alice sends a synchronisation pulse to Bob (500ms on, 500
,ms off, set to D polarisation). When Bob detects this pulse, he starts his own polarization
measurement sequence. This synchronization procedure has been automated and does not
need to be adjusted by the end-user.

3.4.2 Measuring the intensity matrix
To measure the intensity matrix, first, we prepare to receive the calibration signal. (In
the following code examples, we assume Bob and Alice connect their individual Arduinos
to COM5 of their respective computers.)

Bob:

programs\2_QuantumKey\AlignmentGUI>
python recv_calibrate.py -- serial COM5

Polarisation Calibrator (Receiver)
Uploading sequence to Arduino...
Opening the serial port...
Done

Next, Alice sends the calibration signal to Bob.

Alice:

programs\2_QuantumKey\AlignmentGUI>
python send_calibrate.py -- serial COM5

Polarisation Calibrator (Sender)
Uploading sequence to Arduino...
Opening the serial port...
Done

At the end of the procedure, you should observe an intensity matrix similar to Fig. 3.8.

Note that the matrix is normalized to a range of 0 to 1023, where 1023 corresponds
to the maximum bias across the photodetector, which occurs when it is saturated. We
recommend that the diagonal elements do not exceed 700–800. To achieve this, can
adjust the variable resistor at the receiver unit to reduce the voltage bias across the
photodetector.

Notice that in a practical scenario, the minimum value of the elements in the intensity
matrix are not 0, even though they correspond to orthogonal polarization settings at the
sender and receiver. This is due to polarizer and light source imperfections, in addition
to ambient light impinging on the photodetector.

38

Receiver
| H | D | V | A |

| H | 802 | 634 | 116 | 319 |
Sender | D | 337 | 953 | 576 | 49 |

| V | 60 | 407 | 912 | 512 |
| A | 577 | 46 | 385 | 791 |

The mean is 467.25
Signal degradation is 0.192

Figure 3.8: Measured intensity matrix: the matrix is normalized to the range 0–1023.
The mean value serves as a threshold to distinguish between the detection of orthogonal
polarization states.

You can adjust the experimental setup using the checklist in Section 3.3 in order to reduce
signal degradation. We recommend a signal degradation η ≤ 0.2 to ensure that all the
polarization states can be properly distinguished in the quantum channel.

Record the mean value calculated by the program. This value will be used as an
intensity threshold which will serve to distinguish polarization states in Chapter 4. E.g.
Notice that from the intensity matrix in Fig. 3.8, when H is the receiver’s measurement
setting, the intensities associated with the detection of H is 802, while the intensity
associated with the detection of V is 116. With the intensity threshold 467.25, we may
use the detected intensities to infer the polarization state sent.

3.5 Discussion
1. What are the properties of photons that make them good candidates for distributing

quantum keys?

2. Besides using a rotatable linear polarizer, what other methods can we use to prepare
and measure the polarization states?

3. What is the difference between the photodetectors implemented in this system, and
single-photon detectors?

4. Not all the elements in the intensity matrix are required for determining if polariza-
tion states can be properly distinguished during key distribution. Which are these
elements?

3.6 Further exploration
1. * The laser used in this experiment is a Class 2 laser (< 1 mW). Verify this claim

by measuring the power output of the laser! How does the power vary with respect
to the input voltage? Remember to not exceed 5V input voltage.

2. * Determine the conversion factor between the voltage across the photodiode and
the incident power.

3. * Estimate how much error is introduced to the visibility measurement due to am-
bient light.

4. ** Write your own python program to automate the calibration procedure.

39

Chapter 4

Key distribution, sifting, and usage

Objective: In this chapter, we will use the experimental setup implemented thus far to
perform QKD. We first distribute as many raw keys as required to create a final key of
32-bits1.

The key sifting is first done manually with the aid of the “Key Sifting Worksheet” (in-
cluded at the end of the manual) as an exercise, but will be automated later so that the
QKD system can be used to quickly generate a 32-bit key useful for encrypting secret
messages.

4.1 Task 1: Raw Key distribution
Bob first initiates the key distribution by preparing to receive the key. In this example, he
prepares to receive 16 bits of information from Alice with 16 polarization basis settings, by
initiating the recv_key.py program. These settings are encoded in a 16 bit string2 referred
to as the ‘basis bits’ in the program. Note that recv_key.py takes as input the threshold
value measured in Section 3.4.2. (In the following code examples, we assume Bob and
Alice connect their individual Arduinos to COM5 of their respective computers.)

Bob:

programs\2_QuantumKey>python recv_key.py --serial COM5 --threshold 468
Opening the serial port...
Done

Bob, Are you ready? This is the key receiver program.
Randomising basis bits using Arduino
OK

Arduino says he/she likes to choose the following bits:
('Basis bits (in hex):', '802e')

Now that Bob is ready, Alice sends a 16 bit string, referred to as the ‘value bits’ in the
program. She does so with her own 16 polarization settings as reflected in her own value

1Recall that the final key tends to be shorter than the raw key, since for each bit of the raw key, it is
kept for the final key only when the basis settings of Alice and Bob agree during its transmission.

2The 16 bit strings are represented in hex, to facilitate reading.

40

of the ‘basis bits’.

Alice:

programs\2_QuantumKey>python send_key.py --serial COM5
Opening the serial port...
Done

Alice, Are you ready? This is the key sender program.
Randomising key bits and basis bits using Arduino
OK

Arduino says he/she likes to choose the following bits:
Value bits (in hex): 8eb9
Basis bits (in hex): e151

Running the sequence...
OK

Task done. Please perform key sifting with Bob via public channel.

Once the transmission through the quanum channel is completed, Bob’s measurement
result will automatically show up on the screen:

('Measurement result bits (in hex):', '8e80')

Task done. Please perform key sifting with Bob via public channel.

Note that at this stage, Bob’s measurement results differs from Alice’s measurement result,
since there will be instances where Alice and Bob’s basis settings are different.

We proceed to the next step, key-sifting, which allows Alice and Bob to identify a subset
of their value bits which are sent and received in the same basis.

4.2 Task 2: Key sifting (Manual)
4.2.1 Key Sifting Implementation
We will walk through the key sifting process in a “manual” step-by-step manner, by sifting
as many keys as possible from a 16-bit long raw key. To facilitate learning, Bob will use
a piece of paper to write and ‘transmit’ his basis bit string to Alice, who in turn, will
transmit back the positions of his basis bits that correspond to her basis bit string. Note
that the exercise in this section is done for pedagogical purposes only – in Section 4.4,
where we will use the QKD system to send and receive encrypted messages, a 32-bit long
final key will be distributed, with the key-sifting step done automatically.

Step 1: Bob ‘transmits’ his basis choice to Alice via a piece of paper.

Step 2: Alice receives Bob’s basis choice, and identities when his basis choices
matches hers. By identifying these instances, she is able to ‘sift’ the value bits to
arrive at the final, sifted key.

Step 3: Alice ‘transmits’ a 16 bit (hex encoded) string representing the instances

41

when their basis match. This string is known as the ‘matched basis’ string in the
program. Bob receives the matched basis string, and uses it to sift his measurement
bit string in the same way Alice does (also known as the unsifted key). His final,
sifted key should match Alice’s.

After this process, Alice and Bob should have a symmetrical sifted final key. The key
lesson here is to realize that, at no point during the protocol was the final, sifted key
transmitted – both parties derived this key from the unsifted key by communicating their
basis choices, which contain no information about the final key.

To aid the understanding of these steps, a program is used to (i) exhibit the hex strings in
binary format, so that you may verify the sifting process bit-by-bit, and (ii) perform the
key sifting by a logical AND operation between the unsifted key string, and the matched
basis string. We encourage you to perform the bit-by-bit verification using the “Key
Sifting Worksheet” found at the end of the manual. An example of how the form can be
filled up, is included at the end of the manual as well.

An example of the program execution and output is provided:

Step 1

Bob converts his hex-formatted measurement result and basis bit string to binary format.
He only sends his basis bit string to Alice through a public channel (piece of paper)

programs\2_QuantumKey>python keysift_hint.py
Key sifting simulator for our BB84 QKD Scheme
To exit the program, use Ctrl+C
1. Alice (sender)
2. Bob (receiver)
Your choice: 2

Bob, please input your measurement result (in hex, max 4 hex):
8e80
Binary representation: 1000 1110 1000 0000

Bob, please input your basis choice (in hex, max 4 hex):
802e
Binary representation: 1000 0000 0010 1110

Bob, send your basis choice to Alice through public channel!
Wait for the response from Alice! It contains the matched basis.

Step 2

Likewise, Alice converts her hex-formatted value bit and basis bit string to binary format.
Next, upon receiving Bob’s basis bit string, she inputs it into the program. The program
automatically helps her to identify the bit positions where Bob’s basis bits match her
basis bits.

While the input is hex-formatted, its binary format helps students to match the basis
manually by comparing both Alice and Bob’s basis bit string, one bit at a time. This is
faciliated by the “Key Sifting Worksheet” found at the end of the manual.

42

s15_Qcamp2022\programs\2_QuantumKey>python keysift_hint.py
programs\2_QuantumKey\keysift_hint.py

Key sifting simulator for our BB84 QKD Scheme
To exit the program, use Ctrl+C
1. Alice (sender)
2. Bob (receiver)
Your choice: 1

Alice, please input your value bits / unsifted key (in hex, max 4 hex):
8eb9
Binary representation: 1000 1110 1011 1001

Alice, please input your basis choice (in hex, max 4 hex):
e151
Binary representation: 1110 0001 0101 0001

Bob should have sent you something through public channel.

Alice, please input Bob's basis choice (in hex, max 4 hex):
802e

Once Alice inputs Bob’s basis bit string into the program, it returns the string in binary
format, and identifies the position where the basis bits match. ‘Sifting’ only her value
bits at these matched basis bit positions, she obtains the sifted key bits.

Binary representation: 1000 0000 0010 1110

The matched basis is given below. Send this to Bob!
Hex representation: 9e80
Binary representation: 1001 1110 1000 0000

Matched key bits: 1XX0 111X 1XXX XXXX

Congrats! You obtain 6 bits key.
Sifted key bits: 0000 0000 0010 1111
Hex representation: 002f

Step 3

Alice’s program automatically sends the matched key bits to Bob, and Bob’s program
sift only his measurement bits at the matched key positions, producing the following
output:

Matched key bits: 1XX0 111X 1XXX XXXX

Congrats! You obtain 6 bits key.
Sifted key bits: 0000 0000 0010 1111
Hex representation: 002f

43

In the above example, 6 bits of final key was sifted from a 16 bit raw key. Due to the
random nature of basis choice by both Alice and Bob, the number of final key that can
be sifted from the raw key is also random.

In the subsequent section, we will (i) use the IR classical channel for key sifting and (ii)
repeat and automate the above process such that we accumulate 32 bits of final key.

This 32 bit final key is then used to encrypt a secret message that will be transmitted via
the IR classical channel.

44

4.3 Task 2: Automated key distribution and 32-bit key
generation

In this section, we will generate a 32 bit final key between Alice and Bob, by automating
the process outlined in Section 4.2.1. This key will be used to encrypt secret messages in
the next section.

First, we prepare Bob to listen to Alice’s messages sent through the IR classical public
channel, by running recv_32bitQKD.py. Once Bob is ready, Alice will send a test message
through the classical channel using send_32bitQKD.py. Once she receives an automatic
acknowledgement from Bob that he receives her transmission, Alice commences sending
raw key bits over the quantum channel.

An partial example output from both parties is as follows. Note that, in the steps below,
we describe Bob on the left column since he first initiates the process by being ready
to receive. (In the following code examples, we assume Bob and Alice connect their
individual Arduinos to COM5 (Arduino associated with the classical channel) and COM8
(Arduino associated with the quantum channel) of their respective computers.)

Bob (receiver) Alice (sender)
programs\3_QKDComm>
python recv_32bitQKD.py
--Cserial COM5 --Qserial COM8
--threshold 428

Opening the serial port...
Done

Hi Bob, are you ready?
Let's make the key!

Testing the public channel...
hex_string: 7070741
state: 0
hex_string: 54657374
state: 1
Test
Alice sends Test
You reply --OK!!--
OK!!

Public channel seems okay...
Sending the quantum keys...

Attempt 1
Generating random basis choices...
OK

programs\3_QKDComm>
python send_32bitQKD.py
--Cserial COM5 --Qserial COM8

Opening the serial port...
Done

Hi Alice, are you ready?
Let's make the key!

Testing the public channel...
You send --Test--
Test
hex_string: 7070742
state: 0
hex_string: 4F4B2121
state: 1
OK!!
Bob replies OK!!

Public channel seems okay...
Sending the quantum keys...

Attempt 1
Generating random polarisation
sequence...
OK

45

As described in Section 4.2.1, several rounds (attempts) is needed to accumulate 32-bit
of final key. Once the procedure is completed, both parties should be presented with a
final key:

DONE. The task is completed.
The 32 bit secret key is (in hex): 2237797c

4.4 Task 3: Secret message encryption and transmis-
sion

Encryption We implement an encryption method that belongs to a class of symmetric-
key algorithm known as stream cipher (https://en.wikipedia.org/wiki/Stream_cipher).
For the stream cipher method, the message is combined with a pseudo-random cipher,
one at a time, typically with a bit-wise XOR operation. The pseudo-random cipher is
generated from a random seed value supplied, in our case with the QKD key. This allows
us to “expand” the shorter QKD key, into the longer pseudo-random cipher useful for
encrypting longer messages.

However, since we used a small initial key length (seed value) for the stream cipher, is
not cryptographically secure. Nonetheless, we chose this implementation as the focus of
this educational workshop was to provide a demonstration of BB84, and not on secure
implementation of the stream cipher method. An example of a stream cipher that is much
more cryptographically secure is Salsa20 or ChaCha (https://en.wikipedia.org/wiki/
Salsa20), which require at least 128 bits of key length. One of the most widely-used
symmetric-key algorithm is AES, which is a block cipher, and require at least 128 bits of
key length as well.

Decryption

To decrypt the message, we perform a bit-wise XOR between the “expanded key” and
the encrypted text (represented in binaries). This process is basically identical to the
encryption process (in the binary representation). This is because performing an XOR
operation twice on a message gives back the message.

4.4.1 Encryption Implementation and Transmission
We first prepare Bob to receive any encrypted messages through the classical public
channel using chatting.py:

programs\3_QKDComm>python chatting.py --serial COM5
Opening the serial port...
Done

Qcumber ChatBox v1.00
To exit the program, use Ctrl+C

You are now in sending mode. To change to listening mode, press ENTER.
Write the message you want to send below:

46

https://en.wikipedia.org/wiki/Stream_cipher
https://en.wikipedia.org/wiki/Salsa20
https://en.wikipedia.org/wiki/Salsa20

You are now in listening mode.
Waiting to receive the message...

Once Bob is ready, Alice first uses the 32-bit key generated in Section 4.3 to encrypt a
desired secret message. The encryption process is executed using encrypt.py:

programs\3_QKDComm>python encrypt.py

Welcome to encrypt! Please enter the secure key (in 32 bit hex):
2237797c

Please write down the message to encrypt below:
I have the high ground

The encrypted message is:
8224f2c9901f6c4e1b8828a1dc7f67a520f60b53f60e

Task completed. Thank you for using the program!

Alice then transmits the encrypted message through the classical channel using chatting.py:

programs\3_QKDComm>python chatting.py --serial COM5
Opening the serial port...
Done

Qcumber ChatBox v1.00
To exit the program, use Ctrl+C

You are now in sending mode. To change to listening mode, press ENTER.
Write the message you want to send below:
8224f2c9901f6c4e1b8828a1dc7f67a520f60b53f60e
Sending done!

4.4.2 Decrypting Implementation
With Bob in the listening mode (see previous section), he would receive the encrypted
message once Alice transmit it over the classical channel:

You are now in listening mode.
Waiting to receive the message...

--- START OF TEXT ---
8224f2c9901f6c4e1b8828a1dc7f67a520f60b53f60e
--- END OF TEXT ---

You are now in sending mode. To change to listening mode, press ENTER.
Write the message you want to send below:

Thank you for using the program!

To decrypt the message, he inputs the encrypted message and his copy of the 32-bit final

47

key into decrypt.py, which returns the decrypted message.

programs\3_QKDComm>python decrypt.py

Welcome to decrypt! Please enter the encrypted text:
8224f2c9901f6c4e1b8828a1dc7f67a520f60b53f60e

Now, please enter the key (in 32 bit hex):
2237797c

The decrypted message is:
I have the high ground

Congratulations! Thank you for using the program!

4.5 Discussion
1. The 16-bit raw key, basis choices, and measurement results are presented in the

program as 4 hexadecimal characters. Why do you think we presented them in this
way, and are there other alternatives?

2. In this implementation, after the "quantum" channel transmission, Bob sends his
basis choices to Alice, and Alice replies with the matched bases. Are there any
implications if Alice replies with her basis choices instead?

3. Will QKD security be compromised if an adversary listens in on the classical chan-
nel?

4. In our setup, we generate approximately 8 bits of final key from 16 bits of raw key
in every cycle. We repeat the cycles approximately four times to obtain a 32-bit
key. Is it better to generate the 32-bit final key in a single cycle?

5. A common method for encrypting messages with a quantum key is the one-time
pad. How does the method introduced in our setup differ with the one-time pad?

6. What role does a pseudo-random number generator play in message encryption?
What are the possible drawbacks with this encryption method?

4.6 Further exploration
1. ** Use a random number generator testing suite to explore how random the basis

settings are.

2. ** Estimate and measure the key generation rate of the setup! What are the limiting
factors in our setup? Compare this with the other QKD systems!

3. *** Implement an error correction algorithm to correct for any errors in transmitting
the raw key.

4. **** In our setup, we skip the information reconciliation and privacy amplification
steps, as we have focused on the key distribution aspect of the QKD protocol. Design
and implement a basic form of information reconciliation and privacy amplification
in our setup!

48

Chapter 5

Eavesdropping of a weak quantum
cryptography setup

Objective: In this chapter, we describe the setup used by Eve to eavesdrop on quan-
tum channel, and listen in to the classical channel during the key distribution process.
(Technically, the classical channel is public, so Eve is not really eavesdropping on the
channel.) The objective of Eve is to be able to deduce the distributed key, and use that to
decipher secret messages transmitted over the classical channel after the key distribution
procedure.

Alice Bob

Figure 5.1: Side channel attack (SCA): Using a beam splitter (BS), Eve intercepts and
measures some of Alice’s photons in two different bases simultaneously. As Eve’s basis
choice is a priori not aligned to Alice and Bob’s, she may not be able to distinguish
between polarization states optimally. However, by measuring in more than one basis
choice simultaneously, she improves her ability to identify distinct polarization states
even in the presence of laser intensity noise. She also intercepts the matched bases and
encrypted message using her IR receiver from the classical channel.

Figure 5.1 shows the overall setup which involves Alice and Bob executing the BB84 proto-
col using both the classical and quantum channels, and also Eve’s attempt at intercepting
both channels.

49

To intercept the basis choice sequence transmitted over the classical channel, Eve simply
constructs the IR receiver already described in Chapter 2.

To eavesdrop on the quantum channel, Eve performs a so-called side-channel-attack
(SCA), where she samples some of the photons from the quatum channel and attempts
to measure the polarization state transmitted from Alice to Bob using a beam splitter
(BS).

Eve performs the polarization state measurement simultaneously using two bases: first,
by splitting the beam equally with a 50:50 beam-splitter, then by measuring the trans-
mitted intensities through two linear polarizers, each oriented at different angles, using
two photodiodes.

The reason why it is advantageous for Eve to perform her measurement in two different
bases, instead of one, is that it allows Eve to associate a pair of intensity measurements
to every polarization state she intercepts.

Recall that Eve did not participate in the polarization calibration that Alice and Bob did
in Section 3.3. i.e. Eve’s polarizers will not be optimally orientated to distinguish between
the four polarization states used to encode the distributed key. Consequently, the signal-
to-noise ratio of her measurements could compromise her ability to assign a polarization
state to her intensity measurements accurately, especially if she relies on only a single
linear polarizer and detector.

Automatically identifying clusters of measurements

0.0 0.2 0.4 0.6

Photodiode 1 (V)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
h
o
to

d
io

d
e
 2

 (
V

)

A

B

C

D

Figure 5.2: Four identified clusters of signal voltages measured by Eve’s dual photodiodes.
Each cluster represents a polarization state intercepted in the quantum channel and are
arbitrarily assigned A, B, C, D. Each polarization state represents H, V, D or A sent from
Alice to Bob. By assigning the correct polarization state through trial and error, Eve
is able to derive the transmitted key. This is done via obtaining intelligible messages by
decoding the ciphers transmitted through the classical channel.

Figure 5.2 shows the graph titled “Signal: Height Clusters”, which plots the potential
difference across the two photodiodes, Photodiode 1 and Photodiode 2. We notice that
the intensity distribution (plotted along the marginals of Fig. 5.2) of Photodiode 1 does

50

not allow the four polarization states to be fully distinguishable, whereas the intensity
distribution of Photodiode 2 happens to allow good distinguishability.

To identify four clusters associated with the four polarization states in this 2-dimensional
space, we use a K-means clustering algorithm to identify four distinct groups. The clus-
tering algorithm essentially identifies four distinct clusters that correspond to the four
polarization states intercepted. The algorithm iteratively computes the location of the
four clusters in order to minimize the distance between each datapoint, and the average
position of its assigned cluster [19].

The output of the clustering algorithm arbitrarily assigns a label A, B, C, D to the
clusters, which serve as placeholders for the actual polarization states H, V, D, A. By
permuting through the possible identities of A, B, C and D, we result in different po-
larization sequences associated with the sequence of 2-dimensional intensity values. The
correct permutation results in a sequence of bits that, when sifted with the basis sequence
communicated over the classical channel, results in a final key that deciphers secret mes-
sages into legibles messages.

The following sections describe Eve’s circuit used for performing polarization state mea-
surements on the intercepted transmission from the quantum channel (Task 1), and using
the measured intensities to correctly decipher encrypted messages from the classical chan-
nel (Task 2) using the ideas discussed so far. Let’s begin!

5.1 Task 1: Assembling the eavesdropping setup
Figure 5.3 illustrates Eve’s dual polarization-state measurement units. Similar to Bob’s
measurement unit, each of Eve’s measurement unit comprises of a detector module and
polarizer module. Both modules are controlled by a single Arduino controller board.
Please refer to Sections 2.3.1 and 2.3.2 for more details on the Arduino board and solderless
breadboard.

Your task is to construct the circuit required to operate the polarization measurement unit
with the Arduino controller using a breadboard and the components provided. For the
servo motors in the polarizer modules, the control and feedback wires are to be assigned
to the following Arduino board pins:

Motor 1:

1. Red: Voltage supply [Vin]

2. Black: Ground [GND]

3. White: Control signal [Pin 8]

4. Yellow: Feedback signal – reports current angle [Pin 9]

Motor 2:

1. Red: Voltage supply [Vin]

2. Black: Ground [GND]

3. White: Control signal [Pin 4]

4. Yellow: Feedback signal – reports current angle [Pin 5]

51

5V GN
D

 1
1

 1
0

9

8

A0

5V

Polarizer Lens

Photo
Diode

Variable
Resistor

GND

A0... H D H A V D ...
Servo
Motor

G
N

D
9V

ATMega 328

Analog inPower

Digital

Se
rv

o
M

ot
or

Photo
Diode

Variable
Resistor

5VGRD A1

A1
5 4

50:50
BS

Intercepted
Pulses from
Quantum Channel

Figure 5.3: Schematic of Eve’s unit for measuring the polarization state of the intercepted
laser pulses from the quantum channel. A 50:50 beamsplitter(BS) allows Eve to measure
the polarization of the laser pulses in two bases simulataneously.

52

whereas the output of photodiodes 1 and 2 in the detector modules, are to be connected
to Arduino board pins A0 and A1, respectively.

5.2 Task 2: Eavesdropping on the channels, and recon-
structing encrypted messages

5.2.1 Eavesdropping the classical channel for the matched basis
string

Eve begins by listening, as soon as possible, for matched basis transmissions over the
classical channel:

programs\4_HackTools\Classical_Listener>python listener.py
Opening the serial port...
Done

IR Listener for Qcumbers
To exit the program, use Ctrl+C
Waiting for data ...

Incoming message from Alice:
Test
Incoming message from Bob:
OK!!
Incoming message from Alice:
RDY!

Once Alice and Bob initiates their automated key distribution procedure, you will find
that the programme returns the messages in their classical channel. The following ex-
change begins with several cycles of raw key distribution and key-sifting to accumulate
a 32-bit final key, and ends with the use of this final key in transmitting an encrypted
message:

Incoming message from Alice:
RDY!
Incoming message from Bob:
7075
Incoming message from Alice:
fcef
Incoming message from Alice:
RDY!
Incoming message from Bob:
b717
Incoming message from Alice:
8c4c
Incoming message from Alice:
RDY!
Incoming message from Bob:
33f8
Incoming message from Alice:

53

5c38
Incoming message from Alice:
RDY!
Incoming message from Bob:
e956
Incoming message from Alice:
6ae9
(...)
--- START OF TEXT ---
c31f015f5c9104af7adb244359fc382c93899d11347c1ebc42f
9b01f86da8766c34db2ce799d3a
--- END OF TEXT ---

The elipses (...) above indicate that some time has traversed after the key-sifting step has
concluded. The header — START OF TEXT — indicates that Alice has begun transmitting
encrypted messages over the classical channel using the final key constructed using the
raw key (intercepted in the next section), and masking it with the incoming messages
from Alice (matched basis string).

Note that, since the 32-bit key is constructed in multiple steps, involving multiple trans-
missions from Alice on what the matched basis string should be, the resulting matched ba-
sis string (hex) from all of these steps in this example is therefore: fcef8c4c5c386ae9.

5.2.2 Eavesdropping the quantum channel for the raw key string
Once the IR receivers has been set to listen in on the classical channel, Eve now eavesdrops
on the quantum channel using key_logger.py, which records the signals registered by her
two photodiodes. (In the following code examples, we assume Eve connects her Arduino
to COM5 of her computer.)

programs\4_HackTools\Quantum_Listener\key_logger>
python key_logger.py --serial COM5
Eavesdropping... will record any voltages into a file
To exit the program, use Ctrl+C

Ready!

182456.dat
Logging the voltages into: 182456.dat
0.0020880699157714844 242 217 ←- these go to log file!!
0.06286954879760742 243 219

In Section 5.2.4, Eve uses runInterceptor.py to identify cluster of voltages that corre-
spond to the four polarization states. This allows her to associate each pair of photodiode
signals to a possible polarization state. The correct assignment allows her to translate the
sequence of photodiode signals to a corresponding sequence of polarization states, which
can be used to derive the correct final key. To determine if the correct key is obtained,
we test the keys by decrypting secret messages collected in Section 5.2.3, and see if they
result in intelligible messages.

54

5.2.3 Eavesdropping the classical channel during encrypted mes-
sage transmission

Once Alice and Bob finishes distributing their key. They will use it to encrypt and transmit
secret messages. If Eve is monitoring the transmission over the public channel using
listener.py (Section 5.2.1), she will detect these messages. To facilitate the identification
of the start and end of these messages in our educational kit, we have left the header
–START OF TEXT– and footer –END OF TEXT– of the classical channel unencrypted.

--- START OF TEXT ---
c31f015f5c9104af7adb244359fc382c93899d11347c1ebc42f
9b01f86da8766c34db2ce799d3a
--- END OF TEXT ---
Thank you for using the program!

5.2.4 Guessing the final key and decrypting encrypted messages

Figure 5.4: Guessing the sifted key by guessing the polarization states that correspond to
the voltages, Signal1 and Signal2, recorded by Eve’s photodiode pair. Left: Signal graph
that plots the two photodiode signals over time. Right: XY-plot of Signal1 and Signal2
depicting five voltage clusters. The program assigns an arbitrary label A to E, which are
assigned the four polarization states and to noise – the assignment is by trial-and-error.
Use of the GUI is described in the main text.

To process the photodiode voltage sequences recorded in Section 5.2.2, we have provided a
graphical user interface (GUI) (Fig. 5.4). To start the GUI, run runInterceptor.py.

The GUI automatically identifies clusters of photodiode signals, and allows you to as-
sign a guess to the polarization state that each cluster represents1. This guess is then
used to calculate the resulting sifted key using the intercepted matched basis bit string
(Section 4.2.1) that is publicly available in the classical channel.

1The KMeans algorithm is implemented using Python’s Sklearn library [20].

55

The use of the GUI is described in the following steps:

1. First, select the filename that records the photodiode signals performed in Sec-
tion 5.2.2.

2. Click “Start”. This plots the signals from the two photodiodes, and organizes the
datapoints to five clusters arbitrarily labelled A to E. Note that Fig. 5.4 shows
five, instead of four voltage clusters, since in a practical implementation, one of the
voltage clusters correspond to electrical noise.

3. Assign cluster names to polarization: make an initial guess to what the group labels
A to E might mean: assign them to the four possible polarization states, and to
noise.

4. Click “Decode!”, which labels the signal sequences with the corresponding polariza-
tion identities. The resulting “polarization” string is displayed in numerical format,
where the polarizations H, V, D, A are represented by 0, 2, 1, 3, respectively. As each
polarization state represents a binary bit, this polarization string can be translated
into an assiociated raw key string.

5. The intercepted matched basis string sequence obtained in Section 5.2.1 is input
under the field “Mask(Hex)” in hexadecimal form.

6. Clicking “Apply” applies the matched basis string sequence to the raw key, producing
the final “Masked Key”.

Next, execute decrypt.py to use the “Masked key” to decipher secret messages obtained
in Section 5.2.1:

programs\4_HackTools>python decrypt.py

Welcome to decrypt! Please enter the encrypted text:
c31f015f5c9104af7adb244359fc382c93899d11347c1ebc42f
9b01f86da8766c34db2ce799d3a

Now, please enter the key (in 32 bit hex):
82ed7c19

The decrypted message is:
When does the Sun rise on the East Coat

Congratulations! Thank you for using the program!

Note that if the sifted key happens to be incorrect, due to incorrect assignment of polar-
ization states to the clusters (see example Fig. 5.5), we would obtain an illegible message
(see example Fig. 5.6). We then continue to guess the other possible permutations for
this assignment using the GUI, and repeat the process with decrypt.py until we obtain
an intelligible message.

56

Figure 5.5: An incorrect guess of the assignment of polarization statees corresponding to
the photodiode voltages, leading to an incorrect guess of the final key, and subsequently,
an illegible decrypted message in Fig. 5.6.

programs\4_HackTools>python decrypt.py

Welcome to decrypt! Please enter the encrypted text:
c31f015f5c9104af7adb244359fc382c93899d11347c1ebc42f
9b01f86da8766c34db2ce799d3a

Now, please enter the key (in 32 bit hex):
7d1283e6

The decrypted message is:

Congratulations! Thank you for using the program!

Figure 5.6: An illegible decrypted message due to incorrectly guessing the final key.

57

5.3 Discussion
1. In our setup, Eve uses two photodetectors to reconstruct the polarization of Al-

ice’s photons. Is it possible to just use one photodetector? Would using a third
photodetector help?

2. The number of photons in a single laser pulse is enormous compared with a single
photon required for QKD. How many photons are there in a single laser pulse?

3. While the quantum bit transmission is one-directional, the classical channel sup-
porting the protocol requires a two-way communication. Is it necessary for an
eavesdropper to listen to both Alice and Bob in the classical channel?

4. Without prior calibration, Eve would have to guess the polarization of each cluster,
resulting in a few key combinations. How many plausible combinations are there?

5. Discuss why the QKD setup was vulnerable to hacking.

5.4 Further exploration
1. **** As the QKD key used to seed the longer expanded key is relatively short, the

space of possible keys remains small (see Section 4.4). Consequently, the encrypted
message is prone to a brute-force attack. Repeat the QKD protocol, eavesdrop again
on the classical channel. This time, attempt to decrypt the secret message using a
brute-force attack.

58

K
ey

Si
ft

in
g

W
or

ks
he

et

A
lic

e
B

o
b

P
u
b

lic
 C

h
a
n
n

e
l

M
ea

su
re

m
en

t r
es

ul
t:

 0
x

B
as

is
 c

ho
ic

e:
 0

x

0b 0b M
at

ch
ed

 b
a

si
s:

 0
x

0b

S
te

p
1:

 B
ob

 s
ha

re
s

hi
s

ba
si

s
ch

oi
ce

s

B
as

is
 c

ho
ic

e:
 0

x

U
ns

ift
ed

 k
ey

:
0x

B
as

is
 c

ho
ic

e:
 0

x

0b 0b B
ob

's
 b

a
si

s
ch

oi
ce

:
0x

0b M
at

ch
ed

 b
a

si
s:

 0
x

0b
S

te
p

2:
A

lic
e

sh
a

re
s

th
e

m
at

ch
ed

 b
as

is

B
as

is
 c

ho
ic

e:
 0

x

S
te

p
3:

 E
st

ab
lis

h
se

cu
re

 k
ey

0b S
ec

ur
e

K
ey

:
0x

0bM
at

ch
ed

 K
ey

 B
its

:

S
ift

ed
 K

ey
 B

its
:

0b S
ec

ur
e

K
ey

:
0x

0bM
at

ch
ed

 K
ey

 B
its

:

S
ift

ed
 K

ey
 B

its
:

59

K
ey

Si
ft

in
g

W
or

ks
he

et
(S

am
pl

e
A

ns
w

er
)

A
lic

e
B

o
b

P
u
b
lic

 C
h
a
n
n
e
l

M
ea

su
re

m
en

t r
es

ul
t:

 0
x

B
as

is
 c

ho
ic

e:
 0

x

0b 0b M
at

ch
ed

 b
as

is
:

0x

0b

S
te

p
1:

 B
ob

 s
ha

re
s

hi
s

ba
si

s
ch

oi
ce

s

B
as

is
 c

ho
ic

e:
 0

x

U
ns

ift
ed

 k
ey

:
0x

B
as

is
 c

ho
ic

e:
 0

x

0b 0b B
ob

's
 b

a
si

s
ch

oi
ce

:
0x

0b M
at

ch
ed

 b
as

is
:

0x

0b
S

te
p

2:
A

lic
e

sh
ar

es
 th

e
m

at
ch

ed
 b

as
is

B
as

is
 c

ho
ic

e:
 0

x

S
te

p
3:

 E
st

ab
lis

h
se

cu
re

 k
ey

0b S
ec

ur
e

K
ey

:
0x

0bM
at

ch
ed

 K
ey

 B
its

:

S
ift

ed
 K

ey
 B

its
:

0b S
ec

ur
e

K
ey

:
0x

0bM
at

ch
ed

 K
ey

 B
its

:

S
ift

ed
 K

ey
 B

its
:

60

Bibliography

[1] Valerio Scarani, Chua Lynn, and Shiyang Liu. Six quantum pieces: A first course in
quantum physics. World Scientific, 2010 (page 1).

[2] Berthold-Georg Englert. Lectures on Quantum Mechanics. World Scientific Publish-
ing Company, 2006. doi: 10.1142/6093-vol1. eprint: https://www.worldscientific.
com/doi/pdf/10.1142/6093-vol1. url: https://www.worldscientific.com/doi/
abs/10.1142/6093-vol1 (pages 1, 9).

[3] Charles H Bennett and Gilles Brassard. Proceedings of the IEEE International Con-
ference on Computers, Systems and Signal Processing. 1984 (pages 1, 7, 9).

[4] Industry Specification Group (ISG) on Quantum Key Distribution for Users (QKD).
European Telecommunication Standard Institute. url: https://www.etsi.org/
committee/qkd (page 1).

[5] Quantum Key Distribution (QKD); QKD Module Security Specification. Vol. 2. Eu-
ropean Telecommunication Standard Institute. 2019 (page 1).

[6] Quantum Key Distribution (QKD); Device and Communication Channel Parame-
ters for QKD Deployment. Vol. 2. European Telecommunication Standard Institute.
2019. url: https://www.etsi.org/deliver/etsi_gs/QKD/001_099/012/01.01.
01_60/gs_QKD012v010101p.pdf (page 1).

[7] Valerio Scarani and Christian Kurtsiefer. “The black paper of quantum cryptogra-
phy: real implementation problems”. In: Theoretical Computer Science 560 (2014),
pp. 27–32 (page 1).

[8] Adrian Nugraha Utama, Jianwei Lee, and Mathias Alexander Seidler. “A hands-on
quantum cryptography workshop for pre-university students”. In: American Journal
of Physics 88.12 (2020), pp. 1094–1102 (page 1).

[9] National Environment Agency. Frequently Asked Questions on Lasers. https://
www.nea.gov.sg/our-services/radiation-safety/lasers/frequently-asked-
questions-on-lasers. [Online; accessed 5-Mar-2022]. 2022 (page 2).

[10] Hoi-Kwong Lo, Xiongfeng Ma, and Kai Chen. “Decoy State Quantum Key Distribu-
tion”. In: Phys. Rev. Lett. 94 (23 June 2005), p. 230504. doi: 10.1103/PhysRevLett.
94.230504. url: https://link.aps.org/doi/10.1103/PhysRevLett.94.230504
(page 6).

[11] Tomohiro Sugimoto and Kouichi Yamazaki. “A study on secret key reconcilia-
tion protocol "cascade"”. In: IEICE Trans. Fundamentals E83-A.10 (Oct. 2000),
pp. 1987–1991 (page 8).

[12] Gilles Brassard and L Salvail. “Advances in cryptology eurocrypt’93”. In: Lecture
Notes in Computer Science 765 (1994), pp. 410–423 (page 8).

[13] Peter W. Shor and John Preskill. “Simple Proof of Security of the BB84 Quantum
Key Distribution Protocol”. In: Phys. Rev. Lett. 85 (2 July 2000), pp. 441–444. doi:

61

https://doi.org/10.1142/6093-vol1
https://www.worldscientific.com/doi/pdf/10.1142/6093-vol1
https://www.worldscientific.com/doi/pdf/10.1142/6093-vol1
https://www.worldscientific.com/doi/abs/10.1142/6093-vol1
https://www.worldscientific.com/doi/abs/10.1142/6093-vol1
https://www.etsi.org/committee/qkd
https://www.etsi.org/committee/qkd
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/012/01.01.01_60/gs_QKD012v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/012/01.01.01_60/gs_QKD012v010101p.pdf
https://www.nea.gov.sg/our-services/radiation-safety/lasers/frequently-asked-questions-on-lasers
https://www.nea.gov.sg/our-services/radiation-safety/lasers/frequently-asked-questions-on-lasers
https://www.nea.gov.sg/our-services/radiation-safety/lasers/frequently-asked-questions-on-lasers
https://doi.org/10.1103/PhysRevLett.94.230504
https://doi.org/10.1103/PhysRevLett.94.230504
https://link.aps.org/doi/10.1103/PhysRevLett.94.230504

10.1103/PhysRevLett.85.441. url: https://link.aps.org/doi/10.1103/
PhysRevLett.85.441 (page 8).

[14] Stephen Wiesner. “Conjugate coding”. In: ACM Sigact News 15.1 (1983), pp. 78–88
(page 9).

[15] Alexander Ling, Kee Pang Soh, AntÍa Lamas-Linares, and Christian Kurtsiefer. “An
optimal photon counting polarimeter”. In: Journal of Modern Optics 53.10 (2006),
pp. 1523–1528 (page 10).

[16] GE Jellison. “Four-channel polarimeter for time-resolved ellipsometry”. In: Optics
letters 12.10 (1987), pp. 766–768 (page 10).

[17] San Bergmans. NEC Protocol. https://www.sbprojects.net/knowledge/ir/nec.
php. [Online; accessed 19-Feb-2022]. 2021 (pages 17, 18).

[18] Arduino.cc. Introduction to the Arduino Board. https://www.arduino.cc/en/
reference/board. [Online; accessed 10-Mar-2022]. 2022 (page 19).

[19] Richard O Duda, Peter E Hart, et al. Pattern classification. John Wiley & Sons,
2006 (page 51).

[20] scikit-learn developers. sklearn.cluster.KMeans. https : / / scikit - learn . org /
stable/modules/generated/sklearn.cluster.KMeans.html. [Online; accessed
19-Mar-2022]. 2022 (page 55).

62

https://doi.org/10.1103/PhysRevLett.85.441
https://link.aps.org/doi/10.1103/PhysRevLett.85.441
https://link.aps.org/doi/10.1103/PhysRevLett.85.441
https://www.sbprojects.net/knowledge/ir/nec.php
https://www.sbprojects.net/knowledge/ir/nec.php
https://www.arduino.cc/en/reference/board
https://www.arduino.cc/en/reference/board
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

©2002 Fairchild Semiconductor Corporation Rev. A2, August 2002

B
C

546/547/548/549/550

NPN Epitaxial Silicon Transistor
Absolute Maximum Ratings Ta=25°C unless otherwise noted

Electrical Characteristics Ta=25°C unless otherwise noted

hFE Classification

Symbol Parameter Value Units
VCBO Collector-Base Voltage : BC546

: BC547/550
: BC548/549

80
50
30

V
V
V

VCEO Collector-Emitter Voltage : BC546
: BC547/550
: BC548/549

65
45
30

V
V
V

VEBO Emitter-Base Voltage : BC546/547
: BC548/549/550

6
5

V
V

IC Collector Current (DC) 100 mA
PC Collector Power Dissipation 500 mW
TJ Junction Temperature 150 °C
TSTG Storage Temperature -65 ~ 150 °C

Symbol Parameter Test Condition Min. Typ. Max. Units
ICBO Collector Cut-off Current VCB=30V, IE=0 15 nA
hFE DC Current Gain VCE=5V, IC=2mA 110 800
VCE (sat) Collector-Emitter Saturation Voltage IC=10mA, IB=0.5mA

IC=100mA, IB=5mA
90

200
250
600

mV
mV

VBE (sat) Base-Emitter Saturation Voltage IC=10mA, IB=0.5mA
IC=100mA, IB=5mA

700
900

mV
mV

VBE (on) Base-Emitter On Voltage VCE=5V, IC=2mA
VCE=5V, IC=10mA

580 660 700
720

mV
mV

fT Current Gain Bandwidth Product VCE=5V, IC=10mA, f=100MHz 300 MHz
Cob Output Capacitance VCB=10V, IE=0, f=1MHz 3.5 6 pF
Cib Input Capacitance VEB=0.5V, IC=0, f=1MHz 9 pF
NF Noise Figure : BC546/547/548

: BC549/550
: BC549
: BC550

VCE=5V, IC=200µA
f=1KHz, RG=2KΩ
VCE=5V, IC=200µA
RG=2KΩ, f=30~15000MHz

2
1.2
1.4
1.4

10
4
4
3

dB
dB
dB
dB

Classification A B C
hFE 110 ~ 220 200 ~ 450 420 ~ 800

BC546/547/548/549/550

Switching and Applications
• High Voltage: BC546, VCEO=65V
• Low Noise: BC549, BC550
• Complement to BC556 ... BC560

1. Collector 2. Base 3. Emitter

TO-921

©2002 Fairchild Semiconductor Corporation Rev. A2, August 2002

B
C

546/547/548/549/550

Typical Characteristics

Figure 1. Static Characteristic Figure 2. Transfer Characteristic

Figure 3. DC current Gain Figure 4. Base-Emitter Saturation Voltage
Collector-Emitter Saturation Voltage

Figure 5. Output Capacitance Figure 6. Current Gain Bandwidth Product

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

IB = 50µA

IB = 100µA

IB = 150µA

IB = 200µA

IB = 250µA

IB = 300µA
IB = 350µA

IB = 400µA

I C
[m

A]
, C

O
LL

EC
TO

R
 C

U
R

R
EN

T

VCE[V], COLLECTOR-EMITTER VOLTAGE

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.1

1

10

100

VCE = 5V

I C
[m

A]
, C

O
LL

EC
TO

R
 C

U
R

R
EN

T

VBE[V], BASE-EMITTER VOLTAGE

1 10 100 1000
1

10

100

1000

VCE = 5V

h F
E,

D
C

 C
U

R
R

EN
T

G
AI

N

IC[mA], COLLECTOR CURRENT

1 10 100 1000
10

100

1000

10000

IC = 10 IB

VCE(sat)

VBE(sat)

V B
E(

sa
t),

 V
C

E(
sa

t)[
m

V]
, S

AT
U

R
AT

IO
N

 V
O

LT
AG

E

IC[A], COLLECTOR CURRENT

1 10 100 1000
0.1

1

10

100

f=1MHz
IE = 0

C
ob

[p
F]

, C
AP

A
C

IT
AN

C
E

VCB[V], COLLECTOR-BASE VOLTAGE

0.1 1 10 100
1

10

100

1000

VCE = 5V

f T,
 C

U
R

R
E

N
T

G
AI

N
-B

A
N

D
W

ID
TH

 P
R

O
D

U
C

T

IC[mA], COLLECTOR CURRENT

Package Dimensions

B
C

546/547/548/549/550

0.46 ±0.10

1.27TYP

(R2.29)

3.
86

M
A

X

[1.27 ±0.20]

1.27TYP

[1.27 ±0.20]

3.60 ±0.20

14
.4

7
±0

.4
0

1.
02

 ±
0.

10

(0
.2

5)
4.

58
 ±

0.
20

4.58
+0.25
–0.15

0.38
+0.10
–0.05

0.
38

+0
.1

0
–0

.0
5

TO-92

Dimensions in Millimeters

©2002 Fairchild Semiconductor Corporation Rev. A2, August 2002

©2002 Fairchild Semiconductor Corporation Rev. I1

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not
intended to be an exhaustive list of all such trademarks.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR
CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, or (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to
result in significant injury to the user.

2. A critical component is any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification Product Status Definition

Advance Information Formative or In
Design

This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.

Preliminary First Production This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.

No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.

Obsolete Not In Production This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.

FACT™
FACT Quiet series™
FAST®

FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
I2C™

ImpliedDisconnect™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC®

OPTOPLANAR™

PACMAN™
POP™
Power247™
PowerTrench®

QFET™
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
RapidConnect™
SILENT SWITCHER®

SMART START™

SPM™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation™
UHC™
UltraFET®

VCX™

ACEx™
ActiveArray™
Bottomless™
CoolFET™
CROSSVOLT™
DOME™
EcoSPARK™
E2CMOS™
EnSigna™
Across the board. Around the world.™
The Power Franchise™
Programmable Active Droop™

TSOP382.., TSOP384..
www.vishay.com Vishay Semiconductors

Rev. 1.4, 11-Nov-15 1 Document Number: 82491

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

IR Receiver Modules for Remote Control Systems

MECHANICAL DATA
Pinning for TSOP382.., TSOP384..:

1 = OUT, 2 = GND, 3 = VS

FEATURES
• Very low supply current

• Photo detector and preamplifier in one package

• Internal filter for PCM frequency

• Supply voltage: 2.5 V to 5.5 V

• Improved immunity against ambient light

• Insensitive to supply voltage ripple and noise

• Material categorization:
for definitions of compliance please see
www.vishay.com/doc?99912

DESCRIPTION
These products are miniaturized IR receiver modules for
infrared remote control systems. A PIN diode and a
preamplifier are assembled on a leadframe, the epoxy
package contains an IR filter.

The demodulated output signal can be directly connected to
a microprocessor for decoding.

The TSOP384.. series devices are optimized to suppress
almost all spurious pulses from energy saving lamps like
CFLs. The AGC4 used in the TSOP384.. may suppress
some data signals. The TSOP382.. series are provided
primarily for compatibility with old AGC2 designs. New
designs should prefer the TSOP384.. series containing the
newer AGC4.

These components have not been qualified according to
automotive specifications.

19026

PARTS TABLE

AGC LEGACY, FOR LONG BURST REMOTE
CONTROLS (AGC2)

RECOMMENDED FOR LONG
BURST CODES (AGC4)

Carrier frequency

30 kHz TSOP38230 TSOP38430

33 kHz TSOP38233 TSOP38433

36 kHz TSOP38236 TSOP38436 (1)(2)(3)

38 kHz TSOP38238 TSOP38438 (4)(5)

40 kHz TSOP38240 TSOP38440

56 kHz TSOP38256 TSOP38456 (6)(7)

Package Minicast

Pinning 1 = OUT, 2 = GND, 3 = VS

Dimensions (mm) 5.0 W x 6.95 H x 4.8 D

Mounting Leaded

Application Remote control

Best remote control code (1) RC-5 (2) RC-6 (3) Panasonic (4) NEC (5) Sharp (6) r-step (7) Thomson RCA

TSOP382.., TSOP384..
www.vishay.com Vishay Semiconductors

Rev. 1.4, 11-Nov-15 2 Document Number: 82491

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

BLOCK DIAGRAM APPLICATION CIRCUIT

Note
• Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only

and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability.

TYPICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)

Fig. 1 - Output Active Low Fig. 2 - Pulse Length and Sensitivity in Dark Ambient

30 kΩ

2

3

1

Demo-
passAGCInput

PIN

Band
dulator

Control circuit

16833-13

C1

IR receiver

GND

C
irc

ui
t

µC

R1

+ VS

GND

Transmitter
with

TSALxxxx
VS

VO

17170_5

OUT

R1 and C1 are recommended for protection against EOS.
Components should be in the range of 33 Ω < R1 < 1 kΩ,
C1 > 0.1 µF.

ABSOLUTE MAXIMUM RATINGS
PARAMETER TEST CONDITION SYMBOL VALUE UNIT
Supply voltage VS -0.3 to +6 V
Supply current IS 3 mA
Output voltage VO -0.3 to (VS + 0.3) V
Output current IO 5 mA
Junction temperature Tj 100 °C
Storage temperature range Tstg -25 to +85 °C
Operating temperature range Tamb -25 to +85 °C
Power consumption Tamb ≤ 85 °C Ptot 10 mW
Soldering temperature t ≤ 10 s, 1 mm from case Tsd 260 °C

ELECTRICAL AND OPTICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)
PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT

Supply current
Ev = 0, VS = 3.3 V ISD 0.27 0.35 0.45 mA

Ev = 40 klx, sunlight ISH - 0.45 - mA
Supply voltage VS 2.5 - 5.5 V

Transmission distance Ev = 0, test signal see fig. 1,
IR diode TSAL6200, IF = 200 mA d - 45 - m

Output voltage low IOSL = 0.5 mA, Ee = 0.7 mW/m2, test signal see fig. 1 VOSL - - 100 mV

Minimum irradiance Pulse width tolerance:
tpi - 5/fo < tpo < tpi + 6/fo, test signal see fig. 1 Ee min. - 0.12 0.25 mW/m2

Maximum irradiance tpi - 5/fo < tpo < tpi + 6/fo, test signal see fig. 1 Ee max. 30 - - W/m2

Directivity Angle of half transmission distance ϕ1/2 - ± 45 - deg

16110

Ee

T

tpi *

t

* tpi 10/f0 is recommended for optimal function

VO

VOH

VOL
t

Optical Test Signal
(IR diode TSAL6200, IF = 0.4 A, 30 pulses, f = f0, t = 10 ms)

Output Signal

td 1) tpo
2)

1) 7/f0 < td < 15/f0
2) tpi - 5/f0 < tpo < tpi + 6/f0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 1 10 102 103 104 105

Ee - Irradiance (mW/m2)

t p
o

-
O

ut
pu

t P
ul

se
 W

id
th

 (
m

s)

20752

Input burst length

λ = 950 nm,
optical test signal, fig. 1

Output pulse width

TSOP382.., TSOP384..
www.vishay.com Vishay Semiconductors

Rev. 1.4, 11-Nov-15 3 Document Number: 82491

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Fig. 3 - Output Function

Fig. 4 - Output Pulse Diagram

Fig. 5 - Frequency Dependence of Responsivity

Fig. 6 - Sensitivity in Bright Ambient

Fig. 7 - Sensitivity vs. Supply Voltage Disturbances

Fig. 8 - Max. Envelope Duty Cycle vs. Burst Length

Ee

t

VO

VOH

VOL
t

600 µs 600 µs

t = 60 ms

ton toff

94 8134

Optical Test Signal

Output Signal, (see fig. 4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 1 10 100 1000 10 000

Ee - Irradiance (mW/m2)

t o
n,

 t o
ff

 -
 O

ut
pu

t P
ul

se
 W

id
th

 (
m

s)

20759

λ = 950 nm,
optical test signal, fig. 3

ton

toff

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.7 0.9 1.1 1.3

f/f0 - Relative Frequency16925

f = f0 ± 5 %

Δf(3 dB) = f0/10

E
e

m
in

./E
e

-
 R

el
at

iv
e

R
es

po
ns

iv
ity

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.01 0.1 1 10 100

Ee - Ambient DC Irradiance (W/m2)

E
e

m
in

. -
 T

hr
es

ho
ld

 Ir
ra

di
an

ce
 (

m
W

/m
2) Correlation with ambient light sources:

10 W/m2 = 1.4 klx (std. illum. A, T = 2855 K)
10 W/m2 = 8.2 klx (daylight, T = 5900 K)

Wavelength of ambient
illumination: λ = 950 nm

20757

0

0.5

1.0

1.5

2.0

2.5

3.0

1 10 100 1000 E
e

m
in

. -
 T

hr
es

ho
ld

 Ir
ra

d
ia

nc
e

(m
W

/m
2)

ΔVS RMS - AC Voltage on DC Supply Voltage (mV)

f = f0
f = 30 kHz
f = 10 kHz
f = 100 Hz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100 120

Burst Length (number of cycles/burst)

M
ax

. E
nv

el
op

e
D

ut
y

C
yc

le

f = 38 kHz, Ee = 2 mW/m²

TSOP382..

TSOP384..

TSOP382.., TSOP384..
www.vishay.com Vishay Semiconductors

Rev. 1.4, 11-Nov-15 4 Document Number: 82491

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Fig. 9 - Sensitivity vs. Ambient Temperature

Fig. 10 - Relative Spectral Sensitivity vs. Wavelength

Fig. 11 - Horizontal Directivity

Fig. 12 - Vertical Directivity

Fig. 13 - Sensitivity vs. Supply Voltage

0

0.05

0.10

0.15

0.20

0.25

0.30

-30 -10 10 30 50 70 90E
e

m
in

. -
 T

hr
es

ho
ld

 Ir
ra

d
ia

nc
e

(m
W

/m
2)

Tamb - Ambient Temperature (°C)

750 850 950 1050
0

0.2

0.4

0.6

0.8

1.2

S
 (
λ)

re
l -

 R
el

at
iv

e
S

pe
ct

ra
l S

en
si

tiv
ity

λ - Wavelength (nm)

1150

94 8408

1.0

19258

0.4 0.2 00.6

0.9

0°
30°

10° 20°

40°

50°

60°

70°

80°

1.0

0.8

0.7

drel - Relative Transmission Distance

19259

0.4 0.2 00.6

0.9

0°
30°

10° 20°

40°

50°

60°

70°

80°

1.0

0.8

0.7

drel - Relative Transmission Distance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5

E
e

m
in

. -
 S

en
si

tiv
ity

 (m
W

/m
2)

VS - Supply Voltage (V)

TSOP382.., TSOP384..
www.vishay.com Vishay Semiconductors

Rev. 1.4, 11-Nov-15 5 Document Number: 82491

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

SUITABLE DATA FORMAT
This series is designed to suppress spurious output pulses
due to noise or disturbance signals. The devices can
distinguish data signals from noise due to differences in
frequency, burst length, and envelope duty cycle. The data
signal should be close to the device’s band-pass center
frequency (e.g. 38 kHz) and fulfill the conditions in the table
below.

When a data signal is applied to the product in the
presence of a disturbance, the sensitivity of the receiver is
automatically reduced by the AGC to insure that no spurious
pulses are present at the receiver’s output.

Some examples which are suppressed are:

• DC light (e.g. from tungsten bulbs sunlight)

• Continuous signals at any frequency

• Strongly or weakly modulated patterns from fluorescent
lamps with electronic ballasts (see fig. 14 or fig. 15).

Fig. 14 - IR Disturbance from Fluorescent Lamp
with Low Modulation

Fig. 15 - IR Disturbance from Fluorescent Lamp
with High Modulation

Notes
• For data formats with short bursts please see the datasheet for TSOP383.., TSOP385..
• For Sony 12, 15, and 20 bit IR codes please see the datasheet of TSOP38S40

0 10 15 20

Time (ms)16920

IR
 S

ig
na

l

5

0 10 15 20

Time (ms)16921

IR
 S

ig
na

l

5

TSOP382.. TSOP384..

Minimum burst length 10 cycles/burst 10 cycles/burst

After each burst of length
a minimum gap time is required of

10 to 70 cycles
≥ 10 cycles

10 to 35 cycles
≥ 10 cycles

For bursts greater than
a minimum gap time in the data stream is needed of

70 cycles
> 4 x burst length

35 cycles
> 10 x burst length

Maximum number of continuous short bursts/second 1800 1500

NEC code Yes Preferred

RC5/RC6 code Yes Preferred

Thomson 56 kHz code Yes Preferred

Sharp code Yes Preferred

Suppression of interference from fluorescent lamps
Mild disturbance patterns
are suppressed (example:
signal pattern of fig. 14)

Complex and critical disturbance patterns
are suppressed (example: signal pattern of

fig. 15 or highly dimmed LCDs)

TSOP382.., TSOP384..
www.vishay.com Vishay Semiconductors

Rev. 1.4, 11-Nov-15 6 Document Number: 82491

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

PACKAGE DIMENSIONS in millimeters

1.2 ± 0.2

30
.5

 ±
 0

.5

5
6.

95
 ±

 0
.3

(5
.5

5)8.
25

 ±
 0

.3

0.85 max.

(1.54)

0.
9

1.
1

(4)

4.8

2.8

Drawing-No.: 6.550-5263.01-4

Issue: 12; 16.04.10

2.54 nom.

2.54 nom.

0.5 max.0.7 max.

specifications
according to DIN
technical drawings

Not indicated to lerances ± 0.2

Marking area

R 2

R 219009

Legal Disclaimer Notice
www.vishay.com Vishay

Revision: 02-Oct-12 1 Document Number: 91000

Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.

TSAL7400

Document Number 81014

Rev. 1.6, 28-Nov-06

Vishay Semiconductors

www.vishay.com

1

94 8389

High Power Infrared Emitting Diode, 950 nm, GaAlAs/GaAs

Description
TSAL7400 is a high efficiency infrared emitting diode
in GaAlAs on GaAs technology, molded in clear plas-
tic packages.
In comparison with the standard GaAs on GaAs tech-
nology these emitters achieve more than 100 % radi-
ant power improvement at a similar wavelength.
The forward voltages at low current and at high pulse
current roughly correspond to the low values of the
standard technology. Therefore these emitters are
ideally suitable as high performance replacements of
standard emitters.

Features
 • Extra high radiant power and radiant

intensity
 • High reliability
 • Low forward voltage
 • Suitable for high pulse current operation
 • Standard T-1¾ (∅ 5 mm) package
 • Angle of half intensity ϕ = ± 25°
 • Peak wavelength λp = 940 nm
 • Good spectral matching to Si photodetectors
 • Lead (Pb)-free component
 • Component in accordance to RoHS 2002/95/EC

and WEEE 2002/96/EC

Applications
 • Infrared remote control units with high power

requirements
 • Free air transmission systems
 • Infrared source for optical counters and card

readers
 • IR source for smoke detectors

Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified

e2

Parameter Test condition Symbol Value Unit

Reverse voltage VR 5 V

Forward current IF 100 mA

Peak forward current tp/T = 0.5, tp = 100 µs IFM 200 mA

Surge forward current tp = 100 µs IFSM 1.5 A

Power dissipation PV 210 mW

Junction temperature Tj 100 °C

Operating temperature range Tamb - 55 to + 100 °C

Storage temperature range Tstg - 55 to + 100 °C

Soldering temperature t ≤ 5 sec, 2 mm from case Tsd 260 °C

Thermal resistance junction/
ambient

RthJA 350 K/W

www.vishay.com

2

Document Number 81014

Rev. 1.6, 28-Nov-06

TSAL7400
Vishay Semiconductors

Electrical Characteristics
Tamb = 25 °C, unless otherwise specified

Optical Characteristics
Tamb = 25 °C, unless otherwise specified

Typical Characteristics
Tamb = 25 °C, unless otherwise specified

Parameter Test condition Symbol Min Typ. Max Unit

Forward voltage IF = 100 mA, tp = 20 ms VF 1.35 1.6 V

IF = 1 A, tp = 100 µs VF 2.6 3 V

Temp. coefficient of VF IF = 100 mA TKVF - 1.3 mV/K

Reverse current VR = 5 V IR 10 µA

Junction capacitance VR = 0 V, f = 1 MHz, E = 0 Cj 25 pF

Parameter Test condition Symbol Min Typ. Max Unit

Radiant intensity IF = 100 mA, tp = 20 ms Ie 25 40 125 mW/sr

IF = 1.0 A, tp = 100 µs Ie 220 310 mW/sr

Radiant power IF = 100 mA, tp = 20 ms φe 35 mW

Temp. coefficient of φe IF = 20 mA TKφe - 0.6 %/K

Angle of half intensity ϕ ± 25 deg

Peak wavelength IF = 100 mA λp 940 nm

Spectral bandwidth IF = 100 mA Δλ 50 nm

Temp. coefficient of λp IF = 100 mA TKλp 0.2 nm/K

Rise time IF = 100 mA tr 800 ns

Fall time IF = 100 mA tf 800 ns

Virtual source diameter method: 63 % encircled energy ∅ 2.2 mm

Figure 1. Power Dissipation vs. Ambient Temperature

0

50

100

150

200

250

P

-
P

ow
er

 D
is

si
pa

tio
n

(M
W

)
V

T amb - Ambient Temperature (°C)94 7957

R thJA

20 40 60 80 100 0

Figure 2. Forward Current vs. Ambient Temperature

0 2 0 4 0 6 0 8 0
0

50

100

150

200

250

I
-

F
or

w
ar

d
C

ur
re

nt
 (

m
A

)
F

T amb - Ambient Temperature (°C)

100

96 11986

R thJA

TSAL7400

Document Number 81014

Rev. 1.6, 28-Nov-06

Vishay Semiconductors

www.vishay.com

3

Figure 3. Pulse Forward Current vs. Pulse Duration

Figure 4. Forward Current vs. Forward Voltage

Figure 5. Relative Forward Voltage vs. Ambient Temperature

tp - Pulse Duration (ms) 96 11987

10 0

101

10 1

10 -1

10-1 100 10210-2

I
-

F
or

w
ar

d
C

ur
re

nt
 (

A
)

F

tp/T = 0.01

IFSM = 1 A (Single Pulse)

0.05

0.1

0.5

1.0

VF - Forward Voltage (V)13600

101

100

102

103

104

tP = 100 µs
tP/T = 0.001

0

I F
 -

 F
or

w
ar

d
C

ur
re

nt
 (

m
A

)

4321

0.7

0.8

0.9

1.0

1.1

1.2

V
-

R
el

at
iv

e
F

or
w

ar
d

V
ol

ta
ge

 (
V

)
F

re
l

94 7990 T amb - Ambient Temperature (°C)

100806040200

IF = 10 mA

Figure 6. Radiant Intensity vs. Forward Current

Figure 7. Radiant Power vs. Forward Current

Figure 8. Rel. Radiant Intensity/Power vs. Ambient Temperature

96 12154

103101 102 104100

0.1

1

10

1000

100

IF - Forward Current (mA)

I
-

R
ad

ia
nt

 In
te

ns
ity

 (
m

W
/s

r)
e

-
R

ad
ia

nt
 P

ow
er

 (
m

W
)

e

IF - Forward Current (mA)13602

10 310 1 10 2 10 410 0
0.1

1

10

1000

100

Φ

- 10 10 50 0 100
0

0.4

0.8

1.2

1.6

I
;

e

re
l

e
re

l

140

94 7993

IF = 20 mA

Φ

T amb - Ambient Temperature (°C)

www.vishay.com

4

Document Number 81014

Rev. 1.6, 28-Nov-06

TSAL7400
Vishay Semiconductors

Package Dimensions in mm

Figure 9. Relative Radiant Power vs. Wavelength

890
0

0.25

0.5

0.75

1.0

1.25

- Wavelength (nm)14291

-
R

el
at

iv
e

R
ad

ia
nt

 P
ow

er
e

re
l

Φ

IF = 100 mA

λ

990940

Figure 10. Relative Radiant Intensity vs. Angular Displacement

14330

0.4 0.2 0 0.2 0.4 0.60.6

0.9

0°
30°

10° 20°

40°

50°

60°

70°

80°

1.0

0.8

0.7

I
-

R
el

at
iv

e
R

ad
ia

nt
 In

te
ns

ity
e

re
l

14340

TSAL7400

Document Number 81014

Rev. 1.6, 28-Nov-06

Vishay Semiconductors

www.vishay.com

5

Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to

1. Meet all present and future national and international statutory requirements.

2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as
their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.

1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively

2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA

3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.

We reserve the right to make changes to improve technical design
 and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all

claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

Document Number: 91000 www.vishay.com
Revision: 18-Jul-08 1

Disclaimer

Legal Disclaimer Notice
Vishay

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

	Theoretical Foundations & Experiment Overview
	Basics of QKD
	BB84 Protocol
	Theoretical foundations of BB84
	Coding in different, randomly selected bases
	No-cloning theorem

	Simplified BB84 implementation overview
	Software
	Installation
	Summary of programs

	Building a classical channel
	Background
	Experimental Setup
	Arduino Microcontroller & Breadboard
	Arduino Microcontroller
	Solderless Breadboard

	Task 1: Assembling the IR sending and receiving unit
	Sender
	Receiver

	Task 2: Sending messages back and forth between remote parties
	Discussion
	Further Exploration

	Building and characterising a simulated quantum channel
	Background
	Task 1: Setup assembly and alignment
	Polarized laser pulse sending and receiving unit

	Task 2: Aligning Alice's and Bob's coordinate systems
	Task 3: Pulse synchronization and intensity matrix calibration
	Synchronizing the transmission and measurement of pulse sequences
	Measuring the intensity matrix

	Discussion
	Further exploration

	Key distribution, sifting, and usage
	Task 1: Raw Key distribution
	Task 2: Key sifting (Manual)
	Key Sifting Implementation

	Task 2: Automated key distribution and 32-bit key generation
	Task 3: Secret message encryption and transmission
	Encryption Implementation and Transmission
	Decrypting Implementation

	Discussion
	Further exploration

	Eavesdropping of a weak quantum cryptography setup
	Task 1: Assembling the eavesdropping setup
	Task 2: Eavesdropping on the channels, and reconstructing encrypted messages
	Eavesdropping the classical channel for the matched basis string
	Eavesdropping the quantum channel for the raw key string
	Eavesdropping the classical channel during encrypted message transmission
	Guessing the final key and decrypting encrypted messages

	Discussion
	Further exploration

