User Manual of MPPT Solar
 Charge Controller

50A/60A
Maximum PV Voltage (Voc): DC150V

\triangleImportant safety instructions (Please keep this handbook for future reference. lease read all instructions and precautions in the manual carefully befor
his manual contains all the safety, installation and operation instructions of this series solar charge controller (hereinafter referred to as "controller").

- Install the controller in a well ventiated place. The controller's case temperature may be very high during
operation. Please don't touch the metal shell directly to prevent burns.
- It is recommended to connect fuse or circuit breakers to the input, load and battery terminals to prevent
electric shock hazard during use
- After instalation,check all wiring connections are secure, so as to avoid the danger of heat build-up caused
by virtual connection
If the controller does
and check whether the wisplay properly when first use, please cut off the fuse or circuit breaker immediately the solar system needs to connect the is correct or not.
the load terminal of the controller
- Don't disconnect the battery when the controller is charging. Otherwise, it may damage the DC load Operation fault codes description

Code	Description	Code	Description	Code	Description
001	Battery ver-voltage	010	Battery over-temperature	100	Trigger over-voltage protection
002	PV over-voltage	020	Intermal over-temperature	200	Command mode
004	Overcharging	040	PV under-voltage	400	Battery system unrecognized
008	Over-discharging	080	Battery under-voltage		
Table 1					

System Voltage and Battery Types

1)The controller identifies the system voltage according to the battery voltage at start-up. And the controller will r-identify the system voltage after power-off and restart. Please confirm the system voltage displayed in controller is consistent with the actual voltage. Otherwise, need to recheck the battery pack voltage. Note: Please refer to Table 9 for the battery system detailed system identification voltage.
2) The controller has set 3 kinds of conventional battery charging parameters (Table 2). To charge other types of atteries, please select "USE", then set up by PC software or APP. The controller can identify $12 \mathrm{~V} / 24 \mathrm{~V} / 36 \mathrm{~V} / 48 \mathrm{~V}$ only.

Battery type	Constant voltage $=C^{*} N(V)$	Floating voltage $=F^{*} N(V)$	1. C = Constant charging parameter. $(9 \leqslant \mathrm{~F}<\mathrm{C} \leqslant 15)$ 2. $\mathrm{F}=$ Floating charging parameter. $(9 \leqslant \mathrm{~F}<\mathrm{C} \leqslant 15)$ 3. $N=$ Series number of battery. $(1 \leqslant N \leqslant 4)$ [e.g. $\mathrm{N}=2$, battery system is 24 V] 4. Example :If battery system is 48 V , then $\mathrm{N}=4$; If battery pack's saturation voltage is 58.4 V , then $\mathrm{C}=58.4 / \mathrm{N}=14.6 \mathrm{~V}$.
Flooded(FLD)	14.6 * N	${ }^{13.8 * * ~}$	
Sealed(SEL)	${ }^{4 *} \mathrm{~N}$	${ }^{3.8 * N}$	
Gel(GEL)	$14.2 * \mathrm{~N}$	${ }^{13.8}{ }^{*} \mathrm{~N}$	
User (USE)	N	F*N	

Table 2 (The MPPT controller can not wake up lithium ion batter.)
Strip Indicator Instruction
The controller panel has bar indicator light, user can judge the controller current working status according to the color and flash rule of the light. (Yellow - PV input, Red - Fault, Blue - Charging, Green - DC load)

Strip Indicator Light	Controller Status		
Only Yellow flashing	PV input under-voltage, DC load closed		
Only Red flashing	Fautt mode, DC load closed		
Interval flashing between Yellow and Green	PV input under-voltage, DC load turn on		
Interval flashing between Red and Green	Fautt mode, DC load turn on		
Only Blue flashing	Charging mode, DC load closed		
Interval flashing between Blue and Green	Charging mode, DC load turn on		
Table 3			

. Characteristics

2. Product List

	Description	Quantity
Product	MPPT controller	1 unit
Installation accessories package	Mounting backboard	1 pcs
	Temperature sensing cable	1 pcs
	M4 screws (for mounting backboard)	4 pcs
	plastic expansion particles	4 pcs
Information pack	User manual	1 pcs
Optional	Screwdriver	1 pcs
	RS485-USB cable	1 pcs
	External WIFI communication module	1 unit

Table 4 (If there are any parts missing, please contact dealer.)
. Intallation Instructions. (Please refer to illustration at the end of the manual) 4. Serial connection(string) of PV modules

The Table 5 is the number(N) of PV modules in series, for reference only

Voc * $\mathrm{N}=\mathrm{PV}_{\text {input }}<\mathrm{DC150V}^{\text {d }}$												
System Voltage	Voc<23V		Voc<31V		Voc<34V		Voc<38V		Voc<46V		Voc<62V	
	Max.	Best										
12 V	6	2	4	1	4	1	3	1	3	1	2	1
24 V	6	3	4	2	4	2	3	2	3	2	2	1
36 V	6	4	4	3	4	3	3	3	3	2	2	1
48 V	6	5	4	4	4	3	3	3	3	2	2	2

5. DC Load Output Voltage and Max. Discharge Current

The controller has DC LOAD output function, and its output voltage range is the same as battery pack or example, if the battery's voltage is 48.6 V , the instant DC output voltage is 48.6 V , too. It can continue power supply in rated DC load current. When the load current is greater than the rated value and less han 120% of the rated value, the DC load will be disconnected in about 5 minutes. When the DC load current is greater than 120% of rated value, the DC load will be disconnected immediately
6. Communication port description

The communication port of the controller is compatible with RS485-USB communication cable for real-time monitoring by PC software and Wi-Fi module to have remote cloud monitoring by APP. The communication port is a standard 8 pin RJ45 interface, and the pins are defined as oriows(Table 6):

Table 6

(Figure 2)

When the Load output is off due to the triggering protection mechanism, the dry contact output interface is ON (low impedance). Otherwise, it is OFF (high impedance).
The controller has dual RS485 communication ports. It can be used for parallel connection. If need to monitor multiple controllers centrally, please set the device address order ($1 \sim 254$) of the ontrollers accordingly. For example, 5 controllers in parallel connection and monitor centrally, set ontrollers' address order as $1,2,3,4,5$
want to monitor the multiple controllers in Master-Slave communication, set the host device address to 55. For example, 5 controllers in parallel connection, just need to set the MASTER controller address order as 255 .

7. Operation

7.1 LCD displayarea description

(1) PV input information and data display 2. Battery information and data display (3) DC Load output information and data display (4) Charging dynamic display
(6) Date and Fault code display

Original State (State 1)	PV/select	Touch to read the information of PV Voltage /PV Current/PV Power	Note: In order to avoid failures and damages, please reset parameters when the controller stops charging.
	BAT/up	Touch to read the information of BAT Voltage / Charging Current / Charging Power	
	DC/down	Touch to read the information of Load Voltage /Load Current/Load Power	
	s	Touch to jump to the next state (State 2)	
State 2	PV/select	Touch to read the information of Daily / Monthly Power Generation	
	BAT/up	Touch to read the information of System Voltage / Battery Percentage	
	DC/down	Touch to read the information of Daily / Monthly Electricity Consumption	
	s	Touch to jump to the next state (State 3)	
State 3	PV/select	Touch to set Battery Type / Temperature Display Unit / Device Address	
	BAT/up	Touch to select in sequence or increase the flashing parameter	
	DC/down	Touch to select in backward sequence or reduce the flashing parameter	
	s	Touch to jump to the next state (State 4)	
State 4	PV/select	Touch to jump to original state (State 1)	
	BAT/up	Touch to select Load output modes in sequence	
	DC/down	Touch to select Load output mode in backward sequence	
	s	Touch to jump to original state (State 1)	

8. Common fault and trouble shooting. (Table

Common Problems	Possible Reasons	Solution
Controller cannot start up, screen can not be on	Batery positive and negative reverse connected	Check the wiring sequence of power line connector plug and recoonnect in the right oter
Controller not charging, PV voltage undetectable	PV Input positive and negative reverse connected	Che
Charging and standby keeps circulating	Number of solar panels is too less in series and PV voltage is low	PV Vmpp voltage must be greater than Vbat. Please refer to the proposed series-parallel scheme(Table 5)
	It may ocur in cloudy weather or in early morning and at dusk	Normal phenomenon
	Unreasonable configuration of solar panels	Based on sufficient power, please refer to the proposed series-paralle scheme (Table
Controller is on and PV voltage is normal, but not charging	The controller can not recognize battery system voltage (The "System" in LCD flashes)	Check whether battery voltage in LCD is in the range of controller system recognnition
The battery is in a low energy state or emptying for a long time	Solar panels number are too less to generate enough energy	Increase solar panels quantity
	Battery capacity is too small to Store enough energy	Increase batter capacity

. Parameters

Second Installation Method:
(1)Drill four $\varphi 6 m m$ holes on
of $\mathrm{L} 1 / \mathrm{L} 2$ and insert plastic expansion particles. (2) Align the holes of mounting backboard to the holes
in the wall, fix it with M4 screws. (3Make sure that the
controller which
connected with the cable

 hanging board.
 (2) (O)

