DV8 Explorer User Guide
4.0

Table of contents

DV8 INSEAllation......iieiiee s ee 3
How to analyze software design using DV8 ..o 6
ANAIYZE SOFIWAIE ... ieeeie it e e e e e e e e e e e e e s 6
Analyze software from @ FEPO0ivie i 7
Analyze software from file INPULSccevniiiiii s 11
Understand the analysis reSUItS........ccouiieiiiiiii e 16
dVB-analySiS-rESUIL........oieeei i e 16
ANEPATEEIN .. 17

(0 0 PP 19

ROESPOL ..t 19

(00) 21
KNOWIEAQGE BASEcevuniiiiiiiiiiii s ieir e s e s s s s e s r e s s e aa s s s aa s e raa e s e anan s 22
Design Structure Matrix and Design Rule Hierarchy..........ccccovvviiviiiiiiiinicennncneeennn, 22
Maintainability MetriCS SUILE.......cuuiiiee e e 24
DesSign ANti-Patternscceuiiieiiiiiii i 26
1o {3 = PPN 26
PACKAGE CYCIE ...iiriiiiiie ettt e s r e s e e e e e e e an e e r s 27
Improper INNEMtANCEcvviieeiiiei i e e e e e e e e ees 27

[\ ToTa (U] =T AV A o] F= o] o I 28
0 77 T P 29
Unstable INTerfaceovvu i 30
DeSIgN HOLSPOLvuiiiiiiii e 31

L o 11 (=0 8 = (o o PP 32

Architecture Debt Quantification.........cccoovuuiiiiiiiii s 34

DVS8 installation

DV8 Download

The user can register and sending DV8 request though archdia.com:

e For education version (valid for 3 years, limited to 2000 files):
https://archdia.com/pages/download-dv8-academy

o an academic email is needed to request

e For standard trial versions (valid for 14 days): https://archdia.com/pages/dv8-standard-free-
trial

e For free DV8 viewer: https://archdia.com/pages/download-dv8-viewer

After that, the user will receive an email from ArchDia <notifications@fetchapp.com> that
contains:

(1) a license key

(2) an Activation code that starts with "acti-".

(3) a link where the installation package can be downloaded. The user can choose a package
based on the OS in use

Supported operating systems
DV8 supports the following OS systems and provide corresponding installation packages:

(1) Linux/unix:
DV8_ standard_unix_linux-amd64.sh

(2) MacOS 10.13 or above
DV8_standard_macOS.dmg

(3) Windows 7 or above
DV8_standard_windows-32.exe
DV8_standard_windows-x64.exe

Installation Process
Executing an installation packages will start an standard installer. It is possible to receive a
warning as follows:

DV8 Explorer User Guide 4.0

Windows protected your PC

ized app from

If so, click the "More info" link:

ed app from

Click the "Run anyway" button, and DV8 installer will start:

4/35

DV8 Explorer User Guide 4.0

DV8 Installer - oy

DV8 Build ks preparing the DVE installer which will guide
you through the rest of the setup process.

The user just needs to follow the prompts to finish the installation process:

Setup - DV Build 4.0.0 - O *
Installing
Please wait while Setup installs DVE Build on your computer.,
—
install4j
Cancel
Setup - DV Build 4.0.0 - O x

Completing the DV8 Build Setup Wizard

Setup has finished instaling DVS Build on your computer. The
application may be launched by selecting the installed icons.

Click Finish to exit Setup.

If the installation is successful, the DV8 icons will show up in the Start menu. Clicking the DV8

5/35

DV8 Explorer User Guide 4.0

icon will start the program.

How to analyze software design using DV8

Once you have installed DV8 Explorer, double click the icon, and the following window will show
up:

Opewn any dependency files

L)SOM or XML formats
gccoeptiole oY DVE, or a PVE
walitrix f’;'.t‘. (.dve-dam)

Ehg DV8 Main Menu \ / X e reated ushng *Awvaluze
L o software.
ALE repo withn revisiow
history, or dependency [F—| % @
files extracted {rom souree \ Analyze Open aDVe Open a Matrix
i L -& Software Project Pe

1. Analyze Software

Clicking this button will start a GUI through which the user can analyze source code design
automatically, including identifying design anti-patterns, hotspots, and quantify design debt in
terms of maintenance costs.

2. Open a DV8 Project
Click this button to open a DV8 project file (.dv8-proj) that was already created by using the
“Analyze Software” function.

3. Open a Matrix
Click this button to open any dependency files following JSON or XML formals acceptable by

DVS8, or a DV8 matrix file (.dv8-dsm) created by using the “Analyze Software" function.

Analyze Software

Following is the GUI for you to enter input information.

6/35

DV8 Explorer User Guide 4.0

% Analyze Software X

From a Repo
From Files

Project name: Pulsar

Repo location: C\OpenSourceData\Pulsar\Repo\pulsar

Qutput location: C:\OpenSourceData\PulsanDVa-Output

Programming Language: | Java ~

ENTER HISTORY INFO R0 o0

In order to analyze software design, DV8 first needs to (1) extract file dependency information

from a folder contain source code or a cloned git repository (use the "From a Repo" tab), or (2)
accept existing files containing dependency information (use the "From Files" tab). These files
can be extracted using a 3rd party tool.

After that, you can choose to start analyzing by clicking the button, or click the

button to the enter evolution history information, either from the git repo, or an

exported git log file.

Analyze software from a repo

Using this interface, the user can enter the following information:

e The name of the project
o DV8 will generate a project file (.dv8-proj) and an architecture analysis report, which
will use this name to refer to the project.

e The input folder that contains the source code, or a cloned git repo
e The output folder that will contain the analysis results
e The programming language used in this project.
o This list includes all the programming languages supported by DV8

7135

DV8 Explorer User Guide 4.0

The bnput folder that contains the

The name of the ?rg}got'\ souvce code, or @ cloned git vepo
—
Bﬁ Analyze Software \ *
From a Repo Project name: Pulsar
From Files Repo location: C:\OpenSourceData\Hulsar\Repo\pulsar

The putput folder that will
/4. contnin the analysis vesults

Output location: C:\OpenSourceData\Pulsar\DV8-Output

Programming Language:

Choose a progravuming language.
"This list contains all the progranuming
Langunges supported by Dve

ANALYZE | ENTER HISTORY INFO Q7.1 (o8

After that, you can choose to start analyzing by clicking the button, or click the

button to the enter evolution to enter revision history information as shown in the
figure below.

g Analyze Software X
From a Repo ® Analyze current snapshot
From Files O Analyze a specific version: [w .14 - 2016-09-07 J

Analyze how files are co-changed and their maintenance costs

O Analyze without revision history
O Analyze all history in the cloned repo

® Analyze a period of history

From; 2019-01-01 To: 2021-01-01

(Optional) File path prefix to be removed:

(Optional) Specify issues you want to focus: <
Enter a list of

Issue IDs of interest
Choose issues

PREVIOUS [LUTARF-8 CANCEL

If the input folder doesn't contain revision history information, or only contains source code,
then only the "Analyze without revision history" option is available to click. All other options

8/35

are disabled. The user can also choose not to analyze the revision history by choosing this
option.
e |[f the folder is a cloned git repo, then the user can
o choose to analyze the latest version, or a previously tagged version
o choose to analyze all revision history, or an evolution period. Please note that for a
system with a very long history, choosing a recent evolution period could save time
and be more useful.
o Specific a file path prefix that need to be removed
= This function is used to match file names in source code and in git repo. For
example, a source file in a local folder may start with "\apache\avro\", while in
the git repo the file may start with "smith\apache\avro". In this case, the user
can enter "\smith\" for this prefix to be removed from the analysis, so that the
system can match source files with their names in the repository.

o In addition, the use can click the Soane issave button to load a csv file that contains

a list of issue IDs (download an example) as part of the input.

= |faissue listis entered, DV8 will analyze the design structure related to the
given list of issues, for example, calculate maintenance hotspots related to
these issues, or the file structures related to a selected set of bugs or features.

= The user needs to collect these issue IDs manually. If this list is not available,
this step can be skipped.

= In order to identify commits that are linked to issues, the user also need to
enter a regular expression indicating an issue ID.

B

From a Repo ® Analyze current snapshot

From Files

O Analyze a specific version: []
Analyze how files are co-changed and their maintenance costs

O Analyze without revision history

O Analyze all history in the cloned repo

® Analyze a period of history

From: 2019-01-01 we | TO: 2021-01-01

The regular expression

(Optional) File path prefix to be removed: LVLD'LGQtLI/L@ awn issue (>

(Optional) Specify issues you want to focus:
Choose Issues / x|

Choose issues
— Analyze all issues matching the following regular expression: PULSAR-[0-9]+

(Optional) Load an issue ID list (.csv): s)OpenSourceProj\10.Pulsar\Fileinput\BuglDFiltered.csv ...

A .csv file

contains a list m CANCEL
of issue IDs

ANALYZE
After all the inputs are specified, the user can click the - button to proceed. If all the
inputs are correct, the analyze will finish as follows:

DV8 Explorer User Guide 4.0

E Analyze Software

From a Repo
From Files

X
LTt I N NI s Ve D A AT LT L IL TV L S 1D TS S 1
[09:47:51.421] parsing C:\OpenSourceData\Pulsar\Repo\pulsaritiered-storage\jcloud\s
[09:47:51.426] parsing C:\OpenSourceData\Pulsar\Repo\pulsaritiered-storage\jcloud\s
[09:47:51.441] all files procceed successfully...
[09:47:51.474] Consumed time: 66.265 s, or 1.1044166 min.
[09:47:52.612] Run core:convert-matrix...
[09:47:57.199] Run core:namespace-cluster...
[09:47:58.917] Run dr-hier:dr-hier...
[09:48:02.621] Run metrics:decoupling-level...
[09:48:05.269] Run metrics:propagation-cost...
[09:48:06.236] Run metrics:independence-level...
[09:48:07.501] Run scm:history:git:convert-matrix...
[09:48:41.684] Run core:merge-matrix...
[09:48:44.735] Run scm:history:git:change-cost...
[09:49:16.293] Run arch-issue:arch-issue...
[09:49:51.282] Run debt:arch-issue-cost...
[09:49:58.578] Run arch-root:arch-root...
[09:51:17.178] Run debt:arch-root-debt...
[09:51:18.966] Run hotspot:hotspot...
[09:51:51.686] Run hotspot:hotspot-cost...
[09:51:54] Run debt:arch-debt-roi...
[09:51:55.635] Run debt:arch-debt-roi...
[09:51:57.876] Clean up temporary data...
[09:51:58.985] Successfully Finished.

E—

PREVIQUS m SAVE LOG AS

After clicking the m button, the user will have the following options:
View generated DV8 project in DV8 Explorer:

o The analysis will generate a .dv8-proj file that can be used to explore dependencies,
simulate changes, and link to the detailed source code that can be opened using a

DV8 viewer
View generated dependency matrices in DV8 Explorer:

o The user can use this option to open a DSM file that only has dependency information

but does not contain detailed source code information
Open the analysis result folder

o This folder contains all analysis results. Please refer to "Understand the analysis
' section for details.

Analyze a different project: this option will return to the first GUI allowing the user to analyze

results’

another project.

10/ 35

DV8 Explorer User Guide 4.0

=
LV T e LT R SIIY S I YU ST L MG 1S A S S S U SI UY T e
[09:47:51.421] parsing C:\OpenSourceData\Pulsar\Repo\pulsaritiered-storage\jcloud\s
: [09:47:51.426] parsing C:\OpenSourceData\Pulsar\Repo\pulsar\tiered-storage\jcloud\s
. From Files [09:47:51.441] all files procceed successfully...

' [09:47:51.474] Consumed time: 66.265 s, or 1.1044166 min.

[09:47:52.612] Run core:convert-matrix...

[09:47

| From a Repo

[09:47 Finish X Open 6 .d\/se-'prqj file
[09:48 | |generated by the analysis
[09:48; ® view generated DV8 project in DV8 GUI. / :
[09:48 Open a .odvg-dsn file

] | ——— [lgenerated by the analysis
Egg:: O View generated dependency matrices in DV8 GUI. 1 DEHEN Y i o
[09:48
[09:49; O Open the analysis resuit folder. Open the result folder
[09:49 . . Analyze a different project
[09:49] O Analyze a different project. .
[09:51
[09:51 ED cancel
[09:51
[09:51t_,

[09:51:55.635] Run debt:arch-debt-roi...
[09:51:57.876] Clean up temporary data...
[09:51:58.985] Successfully Finished.

PREVIOUS SAVE LOG AS

Analyze software from file inputs

Using this interface, the user can analyze dependency file generated by various 3rd party
tools. Using this function, the user can analyze dependencies among various software artifacts,
such as components, libraries, or test suits, as long as the dependencies among them can be
extracted and represented using the standard JSON (download an example) or XML format
(download an example)

The user can enter the following information:

11/35

DV8 Explorer User Guide 4.0

THE ninee C'_F;_rt‘. T-r'&_icc"')

N

The pathof @ dependency file

BE Analyze Software \ X

From a Repo Project name: Jenkins

From Files Dependency file location: enSourcePro]\5.Jenkins\Filelnputidependency2.236.json ...

.) A file prefix thot needs to be

(Optional) File path prefix mask: —) .

renLoved

QOutput location: ox\DV8 Products\OpenSourceProj\5.Jenkins\DVE-output ...

The output folder that will comtain
the awnalysisresulis

ANALYZE §| ENTER HISTORY INFO gL [+ =N

e The name of the project. DV8 will generate a project (.dv8-proj) file and an architecture
analysis report, which will use this name to refer to the project.

o A dependency file, which can be one of the following formats:
o A .json file, which could be exported by Depends™ or other 3rd party tools (download

an example)
o A .xml file, which could be exported by Depends™ or other 3rd party tools (download an
example)

o A .dv8-dsm file generated by DV8
o A Cytoscape .xml file generated by Understand™
= The user can obtain a Cytoscape dependency file as follows:
1) Load a project into Understand
2) Use the following menu to general a Cytoscape XML report
Reports -> Dependency -> File Dependencies -> Export
Cytoscape XML
o A dependency file generated by Titan
o An Understand™ project file (.udb)
The use can generate dependency information among various artifacts using various tools. As
along as it follows the standard JSON or XML format, it can be opened and analyzed using DV8.

12/ 35

DV8 Explorer User Guide 4.0

From a Repo Project name: Jenkins
From Files Dependency file location: 2nSourceProj\5.Jenkins\Filelnput\dependency2.236.json ...
I
(Optional) File path prefix mask: % Open
Look In: [Filelnput v] ¢« & =m
Output location: ox)\

B dependency2.236.json

A dependency filein)soM {

[wialeh could beex

ted oy Bepends o

other z"*party tools

A dependency file in XML format

dependency2.236.json

JSON Matrix File (* json) v

JSON Matrix File (*.json)
XML Matrix File (*.xml)

A dependency file in Clystoscope ‘_\ ——\— DV8 Matrix File (*.dv8-dsm) -
formaet generoted by Understond

A dependency file aenernted oy DVE

Cytoscape File (*.xml)

Minos Matrix File (*.dsm) Awn Under ;"_Jr.i‘pr:_jr..:i file

[Understand Project File (’.u::’b)/'

A dependency file gewerated by Titaw

ANALYZE § ENTER HISTORY INFO J«LY, [-=8

e The output folder that will contain the analysis results. Please refer to "Understand the
analysis results" section for details.
e The prefix within the file path that needs to be removed.
o This function is used to match file names in source code and in git repo. For example,

a source file in a local folder may start with "c:\opensource\apache\avro\", while in the
git repo the file may start with "\apache\avro". In this case, the user can enter
"c:\opensource\" for this prefix to be removed from the analysis, so that the system
can match source files with their names in the repository.

After the input file is specified, the user can either
ANALYZE
e click the - button to start analyzing, or

e click the e e button to enter evolution history information as follows:

13/35

DV8 Explorer User Guide 4.0

E Analyze Software X
Analyze how files are co-changed and their maintenance costs
From a Repo
From Files Load a glt file ts\OpenSourcePrOJ\S.Jenklns\FHeInput\degltlog.m

O Analyze all history in the cloned repo @ Analyze a period of history

From: 2018-02-05 e | TO: 2021-02-05

(Optional) File path prefix to be removed:

Optional) Specify issues you want to focus: -
©p) Specity y Enter i.Lst(rf

lssue IPs of bnkerest
Choose issues

PREVIOUS |18 #i-8 CANCEL

o This Ul allows the user to load a log file exported from a version control system, which
can be generated as follows:
= the user can use either of the following commands to get records from svn:

svn log ——xml -v repo; //this command will return a xml file without churn
information

svn log ——diff repo; //this command will return a plain text file with churn
information, that is, how many LOC were added, deleted, or changed.

= Or, the user can use following command has to be used to get records from git:

git log ——numstat --date=iso //this command will return a plain text file with
churn information, that is, how many LOC were added, deleted, or changed.

o The user can also choose analyze all the history in the log file, or a period of it.
o In addition, the use can click the iiiodalicinii button to load a csv file that contains
a list of issue IDs (download an example) as part of the input.
= |faissue listis entered, DV8 will analyze the design structure related to the
given list of issues, for example, calculate maintenance hotspots related to
these issues, or the file structures related to a selected set of bugs or features.
= The user needs to collect these issue IDs manually. If this list is not available,
this step can be skipped.

14/ 35

DV8 Explorer User Guide 4.0

|
rAnalyze how files are co-changed and their maintenance costs
From a Repo
From Files Load a git file ts\OpenSourceProj\5.Jenkins\Filelnput\dvBgitlog.txt ...
O Analyze all history in the cloned repc @ Analyze a period of history
From: 2018-02-05 «. To: 20210205
(Optional) File path prefix to be removed:
The regular expression
~7 lindicating an issue >
(Optional) Specify issues you want to focus: / na
ST Choose Issues [K
j Analyze all issues matching the following regular expression: JENKINS-[0-9]+
(Optional) Load an issue ID list (.csv): ts\OpenSourceProj\5.Jenkins\Filelnput\BugldFiltered.csv ...

A esv file

lcontaing a list

lof Lssue Idg led

m _CANCEL_
. e . ANALYZE
After all the inputs are specified, the user can click the button to proceed. If all the
inputs are correct, the analyze will finish as follows:
Bﬂ Analyze Software b4

DVE build version: 4.0-20201228.171227 Standard.
Froma Bepo pepends release: 0.9.6e.
From Files Current time: 2021-02-05T14:50:03.49-05:00.
OS5 version: Windows 10 10.0.
Maximum heap size: 3780640768,
[14:50:03.53] Initializing project...
[14:50:03.636) Generating revision history...
[14:50:03.668] Preparing configurations...
[14:50:04.595] Generating arch report...
[14:50:08.344] Run core:convert-matrix...
[14:50:10.475] Run core:namespace-cluster...
[14:50:11.766] Run dr-hier:dr-hier...
[14:50:16.543] Run metrics:decoupling-level...
[14:50:17.584] Run metrics:propagation-cost...
[14:50:18.639] Run metrics:independence-level...
[14:50:19.588] Run scm:history:gittxt:convert-matrix...
[14:50:21.535] Run core:merge-matrix...
[14:50:23.619] Run scm:history:gittxt:change-cost...
[14:50:24.832] Run arch-issue:arch-issue...

PREVIOUS FINISH STOP

After clicking the m button, the user will be given the following options:

15/35

e View generated DV8 project in DV8 GUI:
o The analysis will generate a .dv8-proj file that can be use to explore dependencies,
simulate changes, and link to the detailed source code info.

e View generated dependency matrices in DV8 GUI:

o The user can use this option to open a DSM file that only has dependency information

but does not contain detailed source code information
e Open the analysis result folder
o This folder contains all analysis results. Please refer to "Understand the analysis
results" section.
e Analyze a different project: this option will return to the first GUI allowing the user to analyze
another project.

®

AT S Up SIS, T UuuTUL VU

:50:03.53] Initializing project...

= [14:50:03.636] Generating revision history...

From Files [14:50:03.668] Preparing configurations...
[14:50:04.595] Generating arch report...
[14:50:08.344] Run core:convert-matrix...
[14:50:10.475] Run core:namespace-cluster...

From a Repo

[14:50:11.766] Run dr-hier:dr-hier... Finish open a .dvg-proj file X

[14:50:16.543] Run metrics:decoupling-level generateo mj the unu[,dg;,;

[14:50:17.584] Run metrics:propagation-cost > - ~
[14:50:18.639] Run metrics:independence-le| © View generated DV8 project in DV8 GUI. Open a ove-dom file
[14:50:19.588] Run scm:history:gittxt:conve genenated by the analysis
[14:50:21.535] Run core:merge-matrix... O View generated dependency matrices in DV8 cu— §

[14:50:23.619] Run scm:history:gittxt:changé
[14:50:24.832] Run arch-issue:arch-issue...
[14:50:37.416] Run debt:arch-issue-cost...
[14:50:46.461] Run arch-root:arch-root...
[14:51:11.926] Run debt:arch-root-debt...
[14:51:13.453] Run hotspot:hotspot... e
[14:51:14.905] Run hotspot:hotspot-cost... m Cancel |
[14:51:15.761] Run debt:arch-debt-roi...

O Open the analysis result folder

Open the result folder
O Analyze a different project.

[14:51:16.932] Run debt:arch-debt-roi... { | |

[14:51:18.198] Clean up temporary data... : ; 7

[14:51:18.864] Successfully Finished. Awnalyze a different project
PREVIOUS SAVE LOG AS

Understand the analysis results

This folder contains all the analysis results, including the following files and two subfolders:

e A .dv8-projfile:

o This file can be opened using a DV8 GUI. The user can explore dependencies among

files, simulate changes, and explore detailed source code information.
e A depends-output subfolder:
o DV8 Explore integrates Depends™ as a dependency extraction tool. This folder
contains the following files:
= dependency.csv: this file contains the programming languages and LOC of
each source file (download an example)
= dependency.json: this file contains the dependency information among all the
source files that can be opened using DV8 GUI (download an example)
= depends-dv8map.json: this file contains all the dependency types among
source files that will be used internally by DV8 (download an example)
e A dv8-analysis-result subfolder that will be introduced in the next section.

dv8-analysis-result

This folder contains the main DV8 analysis results. These state-of-the-art analysis includes:

Overall modularity measures, including_Decoupling Levels and Propagation Costs
Design anti-pattern detection
Hotspot detection

Root analysis
Debt quantification and return on investment analysis

Please refer to the Knowledge Base section for their detailed definitions.

The result folder contains the following two files and subfolders:

e The analysis-summary.html file:
o This file summarizes all the analysis results and can be opened using a browser
(download an example)
e The file-measure-report.csv file:
o This file contains all the measures for each of the source file (download an example)
e The anti-pattern subfolder:

o Based on recent research, DV8 detects 6 types of design anti-patterns using both
structural information and revision history, summarizes each instance of each pattern,
and their maintenance costs, into spreadsheets, and generates the dependency
matrix of each instance for the user to examine using the DSM viewer. The detailed
and summary information are contained in this folder

e The dsm subfolder: This folder contains the various auto-generated design structure matrices

e The hotspot subfolder: This folder contains the detailed information of hotspots detected by
DV8
e The maintenance-costs subfolder: This folder contains the following two flles:
o The all-file-change-cost.csv file that lists the CommitID, IssuelD, and Churn of each
revision of each source file.
o The target-issue-id-list.csv file that lists all the target issue ID, such as a ID list of bug
issues or feature issues.
e The root subfolder: DV8 automatically calculates a set of correlation matrices covering files
that are error-prone or change-prone. The objective is to reveal design issues that lead to
high maintenance costs.

Studies have shown that 50% to 90% error-prone files will be concentrated in 5 or fewer file
groups.

The more error-prone a file is, the more likely that it is connected with other files, resulting in the
spread of defects in multiple files. We call these file groups that cover most error-prone files as
Root spaces.

anti-pattern

<break time="1s"/>

This folder contains the following two subfolders:
e The anti-pattern-costs folder contains the following files:
o The anti-pattern-cost.csv: This spreadsheet summarizes the maintenance cost for
each type of anti-pattern.

DV8 Explorer User Guide 4.0

file Home nsert Pagelayout Formulas Data Review View Help ACROBAT (% Share = Comments
& cut - 2 - =" < AutoSum ~ A
Boc, . om e T et EEE e
=" Fromaipanes | 2 F U [HI A A BlMereConter - | $ 2% 3 [BB | i e sy | 5 e e | @0 e s
Clipboard & Font 5 Alignment & Number & cells aiting deas | Sensitvty ~
M14 T S
A | B | c | D | B | F G H | | J | K |
1 |IssueType Issue Size #Bug Commits Tot Loc bug changed #Changes Tot Loc changed % #Files % #Bug Commits % Tot Loc bug changed % #Changes % Tot Loc changed
2 Crossing 289 95 1,931 5232 254,818
3 | UnstableInterface 356 101 2,020 6,201 286,556
4 PackageCycle 506 94 2,057 5273 281,809
5 |Clique 609 101 1,776 6,733 354,139
6 Unhealthylnheritance 694 125 2,231 7,916 407,719
7 |ModularityViolation 212 149 2,629 9,014 433,462
8
9 |Project Total 1,304 173 4,541 11,159 568,465
10
sheet1 ®
[Display Settings H H = 1 + 140%

In the above example, the 9th row summarizes the overall project data. In this example, the
project has 1304 files in total.

As recorded in its revision history, there are 173 commits related to bug fixes;

These bug fixing revisions consumed 4541 lines of code.

In total, there are 11,159 commits in the given time period, consuming 568465 line of code,
including both bug related changes and other changes. <break time="1s"/>

Now let look at the first row that summarizes the maintenance costs of the Crossing anti-pattern:
There 289 files involved in this anti-pattern,
which represents 22.2% of all files.

There are 95 bug-related commits on these 289 files,

which represents 54.9% of all bug-related commits.

There are 1931 lines of code changed to fix bugs within these files, which consume 42.5% of the
total.

Similarly, these 289 files are involved in 5,232 commits,

46.9% of the total.

The commits in this one Crossing consumed 254818 lines of code, or 44.8% of the project total.
This 2nd row shows that the Crossing anti-pattern has a a significant impact in the system’s
maintenance costs.

o Other csv files summarized the maintenance costs of other types of anti-patterns in a

similar way

18/35

File m Insert Page Layout Formulas Data Review View Help ACROBAT 13 Share 7 Comments

‘L‘[*:l A Calibri ~|In General ~ | [EConditional Formatting ~ | EH Insert ~ ol %

=~ || BT U~ AR ~ | $ % 9 | EEFormatas Table~ B2 Delete ~ -

Paste B = Editing | |deas

- v O A <19 T Cell Styles ~ [Format ~ -

Clipboard & Font [F] Alignment 5% Number (F] Styles Cells Ideas Sensitivity ~

c3 Y fe 48 v
A B C D E F H | 2

1 IssueType Issue Size #Bug Commits Tot Loc bug changed #Changes Tot Loc changed

2 Crossingl 59 29 593 1461 73257

3 Crossing2 36 48 1061 908 38464

4 Crossing3 30 25 535 885 51826

5 |Crossings 27 14 299 743 30330

6 Crossing5 26 4 40 526 23720

7 Crossingb 25 12 283 699 26829

8 Crossing7 aly 21 387 437 28424

9 Crossing8 22 36 803 552 24201

10 Crossing9 20 30 747 604 23851

11 Crossing10 20 12 171 472 25856

12 Crossingll 18 7 129 531 27385

13 Crossing12 18 9 82 608 26822

14 Crossingl3 17 52 1081 692 32633

15 Crossingl4 17, 6 114 185 12780

16 |Crossingl5 17 21 399 360 26549

17 Crossingl6 17 6 86 452 22386

18 Crossingl7 16 21 387 275 24398

19 |Crossingl8 16 34 816 702 33463

20 [Crnssing1Q 14 . s 132 420 17A96 i

Crossing-cost ®] »
[@ Display Settings H m -] + 120%

For example, the above spreadsheet summarizes the costs of each Crossing instance, sorted by
the “Issue Size”, that is, the number of files involved in the instance. The first instance involves 59
files, but it has fewer bug commits than the second crossing. The user can sort the spreadsheet
using different measures, and can open the DSM of each instance.

e The anti-pattern-instances folder: this folder contains the dsms of each instances of each
type, which can be opened using the DV8 GUI.

dsm

This folder contains the following design structure matrices:

e A matrix containing only structural dependencies

e A matrix containing only the co-change relationships between file pairs
e And a combined structural and co-change matrix

This directory also contains two clustering files. One file is clustering according to the package
structure. The other is the design rule hierarchy clustering. Users can use DV8's matrix viewer to
open any dependency matrix, and each matrix can be clustered in various ways.

hotspot

If the user does not provide a target issue id list, then the “seed” spreadsheets contain
information about all files changed by more than two different commits.

In DV eight, hotspots are defined as groups of files that are frequently modified or bug-prone
within a given time period. DV8 extracts the design relationship between these files, so that users
can analyze whether the high maintenance cost of these files is caused by design defects.

After executing the "Analysis Software" function, or the ark-report command in the DV eight
console, DV eight stores all analysis results in the "Hotspot" folder. The user can also use
“hotspot” and “hotspot cost” from the DV eight console to detect active hotspots and their
associated maintenance costs within a specified period of time.

Now we elaborate on the hotspot analysis results.

The seed-group folder contains a list of files that have been modified for various reasons. If the
user's input contains a list of issue IDs, such as bug ticket IDs, this file lists the file groups that
have been modified by multiple bugs; If the user's input does not include a target ID list, this file
lists the file groups that have been modified by multiple different commits. By default, DV8
considers files that have been modified because of two or more bug issues as seed files. The
user can modify this threshold using DV 8 console commands. In this sample project, 7 files were
modified due to multiple bug fixes. We call these files “seeds” because they usually violate the
single responsibility principle and are core files with design flaws. These seed files frequently
propagate errors to multiple other files.

The seed-hotspot folder contain the DSMs composed of these core files only. In the sample
project shown below, DV8 found only one hotspot, indicating that these 7 files are related in
design. This phenomenon is consistent with our research results: the more error-prone or
change-prone a file is, the more likely it relates to other files in the architecture.

View
a0 » Architecture-analysis-result * hotspot » seedHotspot » O v O
o Marne Date modified Ty
[| O-hdsm.dvE-dsm 6/8/2020 3:45 PM Dy
| D-merge.dvB-dsm £/8/2020 3 D
| O-sdsm.dv8-dsm 6/8/2020 3:45 P DV

For each hotspot, Dv eight automatically generates three matrices: a matrix that contains only
structural information (*-sdsm.dv8-dsm), a matrix that contains only co-change information (*-
hdsm.dv8-dsm), and a matrix that combines the two (*-mergedv8-dsm). Users can open these
files with the DV8 viewer and observe their relationships.

In order to analyze the impact of these core files on other files, DV eight also generated a set of
Change Hotspots, including all files that have design relations with the core files. In this sample
project, there are 361 other files that are connected with these 7 core files.We can open this
matrix and analyze the design anti-patterns within it. These 361 files exhibit all six anti-patterns.

These index files list the basic information of hotspots and their maintenance costs. The following
form displays the information of this hotspot with 361 files.

AutoSave -

13 Share 4 Cor

File Home Insert Pagelayout Formuls Data Review

Ko Jr Jxw | ==E e |8 | B B s 2 o O
paste LBCoPY ~ BI U~ HieldeAe| === == - . .05 9| &) Condtionsl Fomatas Cel | Insert Delete Format D Sort& Find& | Ideas
v <F Format Painter 2l o St v 2 = formatting v Table v Styles v - - - © Clear - Filter ~ Select =

Clipboard 1] Font 51 Number i Styles Cells Editing Ideas Sensitivity
c2 - fe || 0.0193505817174515

A | B c D | E F G H | 1 J K t | M
1 |Hotspotindex Size Coverage Coveragelpto #Bug Commits Tot Loc bug changed #Changes Tot Loc changed % #File % #Bug Commits % Tot Loc bug changed % #Changes % Tot Loc changed
2 0 361 0.02_ i 88 2720 4044 306,181 27.7 715 54.3 51.5 8.4
3
4
5
6
7
8
a
changeHotspotindex @
(@ Display Settings B B [- 1

The data in column C is the proportion of files with high bug rates in this file group. Among these
361 files, about 2% of the files showed high bug rates.

The data in column D is the proportion of all the project’s buggy files covered by the file group.
Cell D2 is 100%, indicating that all files in the system that are bug-prone are contained in this file

group.

Columns E, F, G, and H respectively list the number of bugs, the number of lines of code
modified for bug-fixes, the number of modifications, and the lines of modified code in this file

group.
Columns |, J, K, L, M show the proportions of these values to the total maintenance cost.

These data show that although this hotspot only involves about 28% of the files in the system, it is
responsible for about 72% of all bug-related changes, and 54.3% of all bug-related lines of code.

Analyzing these two hotspots as design debt, these two ROI spreadsheets quantify their debt,
and calculate the expected return on investment after refactoring.

root

DV8 automatically calculates a set of correlation matrices covering files that are error-prone or
change-prone. The objective is to reveal design issues that lead to high maintenance costs.
Studies have shown that 50% to 90% error-prone files will be concentrated in 5 or fewer file
groups. The more error-prone a file is, the more likely that it is connected with other files, resulting
in the spread of defects in multiple files. We call these file groups that cover most error-prone files
as Root spaces.

The root folder generated by DV8 a root-spaces subfolder containing all root file groups. Taking
these file groups as design debt, the root-roi.csv file quantifies their debt and calculates the return
on investment (ROI).

The root folder contains the design structure matrix of each file group, which can be opened with
the DV8 viewer, so that the user can check the design anti-pattern within it.

The root-index.csv file summarizes the information and error-prone, or change-prone coverage of
each file group. If the user's input contains a list of target issue ticket IDs, such as bug ticket IDs,
these automatically generated file groups covers 80% of error-prone files; If the user's input does
not include a target ID list, these file groups covers 80% of change-prone files. By default, DV8
considers files that are changed twice or more for bug-fixing as error-prone. The user can change
these thresholds using the “arch-root” command line.

DV8 Explorer User Guide 4.0

The following sample spreadsheet contains the information of 8 root file groups, sorted by the number of
files. The largest file group contains 119 files.

AutoSave @) [Eﬂ '9" root-index -~ 2 Search Cai,Yuanfang
File m Insert Page Layout Formulas Data Review View Help ACROBAT 15 Share I Comments
L‘Qﬁ[' & Calibri I FPR ? == General « | [El Conditional Farmatting ~ H Insert ~ v O~ g
O~ ~ $ ~ 9% 9 | [HFormatas Table~ B Delete ~ | v O~
Paste B .F el e A 2 |deas
e = e e E = .] 57 Cell Styles ~ [Format v | &7~
Clipboard N Font N Alignment 5] Mumber 1] Styles Cells Editing Ideas Sensitivity ~
E16 . b3 ~
A B € D E -
1 Rootindex "LeadingFile .Size"Coverage. CoverUpto
2 root1 pdfbox/src/main/javaforg/apache/pdfbox/pdmodel/common/PDRectangle.java 119 0.084034 0.277778
3 |root2 pdfbox/src/main/javaforg/apache/pdfbox/iofIOUtils java 73 0.123288 0.444444 \e
4 root 3 pdfbox/src/main/java/org/apache/pdfbox/pdmodel/common/COSObjectable.java 113 0.044248 0.527778
5 |root4 pdfbox/src/main/java/org/apache/pdfbox/pdmodel/graphics/color/PDColor.java 74 0.081081 0.611111
6 |root5s pdfbox/src/main/javaforg/apache/pdfbox/pdmodel/font/Standard14Fonts.java 6 0.333333 0.666667
7 root6 preflight/src/main/java/org/apache/pdfbox/preflight/annotation/AnnotationValidatorFactory.java 5 0.4 0.722222
8 |root7 xmpbox/src/main/java/org/apache/xmpbox/schema/XMPSchemaFactory.java 6 0.333333 0777778
9 root 8 pdfbox/src/main/java/org/apache/pdfbox/pdmodel/encryption/SecurityProvider.java 9 0.111111 0.805556
10
11 |
12
13
14 | . | T
root-index O] ‘ :
[Display Settings B L] + 110%

The file in column B is the core file of the group, which means that other files directly or indirectly depend
onit.

The data in column D is the proportion of files that are either error-prone, or change-prone. For example, in
the first file group, about 8% of the files appear to be error-prone.

The data in column E is the proportion of error-prone or change-prone files covered by multiple file groups.

For example, the first file group covers 28% error-prone files; The first and second file groups together
cover 44% of all error-prone files; The first three file groups cover more than 80% of error-prone files.

The user can also open a root file in a DV8 viewer, detect the anti-patterns within a root, and further
analyze the design problems that lead to high bug rate and high change rate.

Knowledge Base

In this section, we introduce the key concepts and the unique research advances that form the foundation
of DV8, including:

e Design Structure Matrix (DSM) and Design Rule Hierarchy (DRH)

Maintainability Metrics Suite

Architecture Anti-patterns

Architecture Roots

Architecture Debt Quantification

Design Structure Matrix and Design Rule Hierarchy

The architectural analysis techniques provided in DV8 are mainly based on the theoretical foundations
provided in Baldwin and Clark’s Design Rule Theory [1]. In their book they state that software should be
structured by design rules and independent modules. In a software system, design rules are often
manifested as the important design decisions, which decouple the rest of the system into independent
modules. A design rule is typically manifested as an interface or abstract class. For example, if an Observer
Pattern [2] is used in a code base, then there must exist an observer interface that decouples the subject
and concrete observers into independent modules. As long as the interface is stable, addition, removal, or
changes to concrete observers should not influence the subject. In this case, the observer interface is

22 /35

considered to be a design rule, decoupling the subject and concrete observers into two independent
modules. Consider another example: if a Strategy Pattern [2] is implemented, then the strategy interface is
considered as the design rule which decouples the context and concrete strategies into independent
modules.

Design Rule Hierarchy (DRH). To automatically identify the design rules and the files that they influenced,
our prior work introduced a clustering algorithm— Design Rule Hierarchy (DRH) [3], [4], [5], which clusters
the files of a system into a hierarchical structure. Within such a hierarchy, files in layer 7.; should only
depend on files in the higher layers, L:-; to L., and files in the top layer, L1, should not depend on files in
the lower layers, ;.1 to L.. Hence files in the top layer, 11, should contain the most influential interfaces or
abstract classes, which do not depend on files in other layers. In addition, files in the same layer should be
decoupled into a set of modules that are mutually independent from each other. Thus the changes,
addition, even replacement to a module will not influence other modules within the same layer. Thus, the
independent modules in the bottom layer of a design rule hierarchy are the most valuable, from an
evolutionary perspective, because changes to these modules will not affect the rest of the system.

Design Structure Matrix (DSM). In DV8, the basic model to represent and visualize relationships between
files is the Design Structure Matrix (DSM). A DSM is a square matrix, in which rows and columns are
labeled with names of important system entities—in our case file names—in the same order. An annotation
in the cell in row %, column y, cell (ry , cy), indicates that there is a dependency relation between file x
and file y: file x either structurally depends on file y, or file x and file y were changed together as recorded
in the project's revision history.

The DSM in Fig. 1 presents a design rule hierarchy (DRH) with 3 layers: L. : (rci - rc2), Lz: (rcs -
rci1), Ls:(rciz - rcsz). Thefirstlayer, 1, contains the most influential design rules that should
remain stable. Files in L, only depend on files in L,. Similarly, files in L; only depend on files in the first two
layers. Within each layer, files are grouped into mutually independent modules. Taking the bottom layer 1.5
as an example: it is grouped into 8 mutually independent modules: M;: (rci2) , Mz: (rciz — rcig),

Ms: (rci; — rcis), etc. We can observe, from the absence of annotations in the cells shared by these
modules, that there are no dependencies between them. The text in a cell is used to indicate specific types
of dependencies between the files. For example, cell (rs, c1) in Fig 1 is marked with "dp", which means
ExpressionBuilder. java "depends on" (calls methods from) ExpressionDefinition.java.

1 2 3 45 6 7 8 95 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 ExpressionDefinition_java (1)
2 XMLTokenExpressionlterator_java

3 MethodNotFoundException_java

4 ExpressionBuilder_java

5 Beanlnfo_java

6 BeanProcessor_java

7 RuntimeB. ionE ion_java

8 BeanExpression_java

s MethodCallExpression_java
10 MockEndpoint_java (10) dp,im
11 AssertionClause_java dp dp '(11]
12 XMLTokenExpressioniteratorTest_java dp (12)
13 BeanDefinition_java dp dp dp (13)

14 ExpressionNode_java dp '(14) ex,dp

15 ProcessorDefinition_java dp dp dp dp '(15]

16 XmlGraphGenerator_java dp '(15]
17 MyDummyBean_java (17)

18 BeanExplicitMethodAmbiguousTest_java dp '(18]
13 BuilderSupport_java dp (19) dp

20 Builder_java dp '(zo)

21 SplitTokenizerTest_java dp dp ’[21]
22 XMLTokenizerExpression_java dp (22) dp
23 XMLTokenizelanguage_java dp 'tza)
24 JsonPathTransformTest_java dp (24)

25 XMLTokenizelanguageTest_java dp '(zsl

26 XMLTokenizeWraplanguageTest_java dp '(zs)
27 Tokenizelanguage_java dp (27)

28 TokenizerExpression_java ex dp '(23]
29 XQueryExpression_java dp (29)

30 XPathExpression_java dp 't:w]

31 SimpleExpression_java ex,dp '(31)

32 JsonPathExpression_java ex,dp 'tsz]

Fig. 1: An example of DRH exhibiting structural relations among files
ex: Extend; im: Implement dp: Depend

As we mentioned before, a DSM can also represent evolutionary coupling between files, i.e., the number of
times two files were changed together. In Fig 2, a cell with just a number means that there is no structural
relation between these two files, but they have been co-committed. For example, cell (rs, c3) is only
marked with “4”, which means that there is no structural relation between the files
BeanExpression.java and MethodNotFoundException.java, but they have been changed and
committed together 4 times, according to the project’s revision history. A cell with both a textual annotation
and a number means that the two files have both structural and evolutionary coupling relations. For
example, cell (ry,, c1) is marked with "dp; 3", which means that XMLTokenizerExpression.java
depends on ExpressionDefinition.java, and they were changed together 3 times.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1s 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 ExpressionDefinition_java (1) ‘ 2 2 2 A A4 3 2 A4 5 3 .2
2 XMLT i or_java li2) 3 6 3 3 3 3

3 MethodNotFoundException_java (3) g2 |2 |4 a 2 202

4 ExpressionBuilder_java dp dp,3 '(4) ,10 4 dp |5 2 ,16 ,15 B3 3 2 2 4 5

5 Beanlnfo_java dp,7 dp,10 '(5) A6 (4 (7 3 |2 4 2 4 5 3 2

6 BeanProcessor_java 2 dp,16 '(6) 3 |7 3 3 3 2 3

7 i i ion_java 2 A 3 @ |5 2 2 2 2 2

8 BeanExpression_java 4 4 7 dp,7 dp,5((8) ,6 S 2 2 2

3 MethodCallExpression_java ex,dp,2 dp4 dp3 3 2 |dp6 't9) b 2 2 2 2 03 2 5 6 4

10 MockEndpoint_java 2 5 2 (10) dp,im,6 2 3

11 AssertionClause_java dp,2 dp,6 '(11)

12 XMLTokenExpressionlteratorTest_java dp,6 2 (12) 2 2 4 3

13 BeanDefinition_java dp,4 dp,4 dp3 2 5 6 (13) E] 2,3

14 ExpressionNode_java dp,4 2 '(14] ex,dp,8 2,3

15 ProcessorDefinition_java dp,4 2 d 2 3 2 2 2 2 dp,8 dp,8 '(15] 2 3

16 XmlGraphGenerator_java dp '(16]

17 MyDummyBean_java 2 a 2 2 2 2 2 2 (17) 4

18 lici hodAmbiguousTest_java 2 ,5 B 2 2 2 3 3 dp,4 '(131

19 BuilderSupport_java 16 3 dp,3 3 (19) dp,19 2

20 Builder_java dp,15 ,2 ,19 '(201

21 SplitTokenizerTest_java dp dp '(21)

22 XMLTokenizerExpression_java dp,3 3 3 ,2 (22) dp,4 2 2 2 2

23 XMLTokenizelLanguage_java 3 dp,3 2 K3 '(25) 2 2

24 JsonPathTransformTest_java dp (24)

25 XMLTokenizeLanguageTest_java 3 2 dp 4 2 2 '(25) 3

26 XMLTokenizeWrapLanguageTest_java 3 2 dp 3 2 2 3 '(zs)

27 Tokenizelanguage_java dp,4 (27) ,6

28 TokenizerExpression_java ex,2 5 2 dp,6 izs] 2 2

23 XQueryExpression_java dp,4 5 2 2 2 |(29) 11 3

30 XPathExpression_java dp,5 6 3 2 2 (11 '(ao) 52
31 SimpleExpression_java ex,dp,3 4 2 3 5 '(31) 2
32 JsonPathExpression_java ex,dp,2 2 2 '(32]

Fig. 2: An example of DRH exhibiting structural relations and evolutionary coupling among files
ex: Extend; im: Implement dp: Depend

[11 C. Y. Baldwin and K. B. Clark, Design Rules, Vol. 1: The Power of Modularity. MI/T Press, 2000.

[2] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[3]Y. Cai and K. J. Sullivan, Modularity analysis of logical design models, in Proc. 21st IEEE/ACM
International Conference on AutomatedSoftware Engineering, Sep. 2006, pp. 91-102.

[4] S.Wong, Y. Cai, G. Valetto, G. Simeonov, and K. Sethi, Design rule hierarchies and parallelism in
software development tasks, in Proc. 24th IEEE/ACM International Conference on Automated Software
Engineering, Nov. 2009, pp. 197-208.

[5]1Y. Cai, H. Wang, S. Wong, and L. Wang, Leveraging design rules to improve software architecture
recovery, in Proc. 9th International ACM Sigsoft Conference on the Quality of Software Architectures, Jun.
2013, pp. 133-142.

Maintainability Metrics Suite

DV8 provides a state-of-the-art maintainability metrics suite, including the following metrics:

Decoupling Level (DL) [1] measures how well an architecture is decoupled into modules base on the
Design Rule Hierarchy (DRH) clustering. If a module influences all other files directly or indirectly in lower
layers, its DL is 0—this is the worst case where a system’s files are fully connected. And if a system’s files
had no dependencies on each other its DL would be 1. All real systems fall somewhere within this range.
The more files a given file influences in lower layers, the lower its DL. In addition, the larger a module, the
more likely it will influence more files in the lower layers, and hence the lower its DL. Conversely, the more
that files in a lower layer are independent from files in upper layers, the higher the DL.

Propagation Cost (PC) [3] was defined by MacCormack et al. PC is calculated based on a DSM
representation of a system’s dependencies and aims to measure how tightly coupled a system is. Given a

DSM of a project’s files and their dependencies, the algorithm first calculates its transitive closure to add
indirect dependencies to the DSM until no more can be added. Given the final DSM with all direct and
indirect dependencies, PC is calculated as the number of non-empty cells divided by the total number of
cells. For example, the PCs of the three DSMs in Figure 1 are 25%, 37%, and 51% respectively. The lower
the PC, the less coupled the system.

The limitation of PC is that it is sensitive to the size of the DSM: the greater the number of files, the smaller
the PC. For example, from the 46 open source projects with more than 1000 files, 70% of them have PCs
lower than 20%. For the other 62 projects with less than 1000 files, however, about 48% of them have PCs
lowers than 20%. More importantly, an architecture can change drastically without significantly changing its
PC.

Independence level [IL] [4] proposed in our prior work. Based on design rule theory [5], the more
independent modules there are in a system, the higher its option value. In our prior work [4], we proposed a
metric called Independence Level (IL) to measure the portion of a system that can be decoupled into
independent modules within the last layer of its DRH. For example, the IL in the DSM of Figure 1ais 0.75
because 12 out of the 16 files are in the last layer. The Decoupling Level metric we propose here improves
on the IL metric.

The limitation with IL is that it doesn’t consider the modules in the top layers of a DRH, nor does it consider
the size of a module. It is observed that there are cases where the lowest layer contained very large
modules. In these cases, even through the IL appeared to be high, the system was not well modularized. In
other cases, we observed that even though the number of files decoupled in the last layer were not large,
the modules in upper layers had few dependents. In this case, a system may not experience maintenance
problems, despite its low IL.

1 1 3 4 8678 8 W N B AW _Be 1 2 145 678 s UuBUUUNBE YN
LU

u m t |
2 Question x @

2 Answer TH @ T iy |
& . 1 ESsayQuasnion = |3
1 Question o U W N e
4 Survey T @ Fo Sy
s SaveLoadFile .0] & Grader x e 123458783 @M
& TextFileUl ExTCl | m #Test % «x i 1 Answar m
7 CommandLinelll Ex ‘ n & MatchingQuestion =S CI— 2 MultipleChoiceAnswer 't
8 Latters [m MulchingQuastionFactery |x % x x o] 3 MulipleChoiceQuestion
3 Match e TM EEl | a®m roc 0 RankingGustion I | & RankingAnswer x
1 MatchingAnswer TGl ELTT len T.epm 12 RenkingthmstionFactory x x " L= = £ 1 RankingQuestion
11 ChoiceAnswer [T.01 ExTT ‘ Iy T.elcy “5“’“"""”‘;"“";“'“" | e | & Question x
12 Chaic Te O Eol | tetie 5 b ooy % e * EssayAnswer b
11 EssayAnswer TCl ETT 1 (CRET o itipdetikationsiin H] | 8 EssayQuestion rxfm |
14 Written TE TM ExCl | TEipa 15 MulipleC x x x| « (o9 "J ¢ Form | xxxxzxxm@m |
15 Test TU TU Excl] 17 TrusFalseQuestion x | i 12 Survey x oy
" | ELUI'"J 18 TrusFal X x 1 Test x xx| jm
(a) Submission 1: DL = 82%:; PC = 25%; IL = (b) Submission 2: DL = 78%:; PC = 37%; IL = (c) Submission 3: DL = 18%; PC
5% T8% = 51%; IL = 18%

Figure 1: Design Rule Hierarchy Samples. T:Typed; Cl:Call; Ex: Extend; Ct:Cast, U:Use, x: any dependency

Please refer to the Measure Modularity section that explains how to use DV8 to assess a software using
this metrics suite.

[1]1 Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao, Qiong Feng: Decoupling level: a new metric for
architectural maintenance complexity. In Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Page 499-510.

[2] S. Wong, Y. Cai, G. Valetto, G. Simeonov, and K. Sethi. Design rule hierarchies and parallelism in
software development tasks. In Proceedings 24th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2009, pages 197-208, Nov. 2009.

[3] A. MacCormack, J. Rusnak, and C. Y. Baldwin. Exploring the structure of complex software
designs: An empirical study of open source and proprietary code. Management Science, 52(7):1015—
1030, July 2006.

[4] K. Sethi, Y. Cai, S. Wong, A. Garcia, and C. Sant’Anna. From retrospect to prospect: Assessing
modularity and stability from software architecture. /n Proceedings of the 8th Working IEEE/IFIP
International Conference on Software Architecture, WICSA 2009, Sept. 2009.

[5] C. Y. Baldwin and K. B. Clark. Design Rules, Vol. 1: The Power of Modularity. MIT Press, 2000.

Design Anti-patterns

Using DV8, you can detect 6 types of architecture anti-patterns as defined in [1]. (Note that, in DV8, they
are also referred to as architecture issues.) These anti-patterns were defined based on Baldwin and Clark's
design rule theory [2] and violation of prevailing design principles, such as the famous SOLID principle.

The following anti-patterns can be detected using structural information only:

e Clique: a group files that are interconnected, forming a strongly connected “component” but not
belonging to a single module.

e Package Cycle: a group of packages that depend on each other in a cyclic relation
Improper Inheritance: an inheritance hierarchy that violates the Liskov Substitution Principle.

The following three anti-patterns can only be detected with both structural relation and co-change

information:

e Unstable Interface: file(s) that have a large number of dependents and change frequently with these
dependents.

e Crossing: a file with both high fan-in and high fan-out and which changes frequently with all of its
relationships—the set of files it depends on and the set of files that depend on it.

e Modularity Violation: a group of files that do not have structural relationships, but which change
frequently with each other.

The rationale, description, and visualization of these anti-patterns are elaborated in the following
subsections.

Please refer to the Detect Architecture Anti-pattens section that explains how to use DV8 to detect these
anti-patterns.

[1] Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao: Hotspot Patterns: The Formal Definition and
Automatic Detection of Architecture Smells. In Proceedings of 12th Working IEEE/IFIP Conference on
Software Architecture, WICSA 2015: 51-60

[2] C. Y. Baldwin and K. B. Clark. Design Rules, Vol. 1: The Power of Modularity. MIT Press, 2000.

Clique

Rationale: Itis widely accepted that cyclic dependencies should be avoided. To reduce the number of
instances you have to examine, we define Clique as a set of files whose structural relations form a strongly
connected graph, so that changes to any files can be propagated to any other files within the group.

Description: If there is a subset of files that form a strongly connected component based on their
structural relations, this file group is identified as a Clique instance.

Visualization:In a DSM, the dependencies that form cycles can be shown as symmetric, non-empty
cells, as shown below:

1 ActivityRules java (1) |[.5 2.3 .3 A0 20 2 2 dpd dp,3 3
2 Processinstance_java dp,5[(2) .3 Jd1(4 4 68 6 2,3] A
3 ProcessRules_java 312 3) |.2 3 20,2 2,3 2 2
4 ActivityState_java dp,3 A1(,2 [{4) 3 3 7,6 21,3 7 2
5 JpaBamProcessorSupport_java |dp,3 4 dp .3 5) |4 .2 2 2 .3 6 7
6 JpaBamProcessor_java dpd dp4 dp,3 dp,3 dpa|(e) [.3 3 dp,2 4,3 5
7 TimeExpression_java dp,2 dp6 [,2 |7 20,3 (7)) |dp.8 .2 3,7 2
8 ActivityBuilder_java dp,2 .6 2 G 2 3) 8) 2 .3 10|,2
9 ProcessContext_java dp,2 dp,2 ,2 2,2 2 2 2 9) [.2 3 2
10 TemporalRule_java A 3 3 dp3 1,3 A 3 dp3 |2 (10} [.3 A
11 ProcessBuilder_java 3 dp8 dp2|,7 .G dp,3 7 10| .3 3 (11) |dp,5
12 ActivityMonitorEngine java 3 A dp,2 dp,2 [,7 .5 20,2 2 4 .5 (12)

Fig.: An example of Clique: the highlighted cells are symmetric.
dp: depend

The figure above shows an instance of Clique. Files in this example are highly coupled with each other
through multiple dependency cycles, such as, ActivityRules.java <-> Process-Rules.java,
ActivityRules.java -> TimeExpression java -> TemporalRule.java ->
ActivityRules. java, etc.

If you detect Clique anti-patterns using DV8, you can visualize each instance using DV8 Explorer: Select
"Analysis-> Load Issue File", and choose a ".dv8-issue" file. For a Clique issue, DV8 will
automatically arrange the files so that dependencies that form cycles are arranged into symmetric cells, as
shown above.

Package Cycle

Rationale: ldeally, the package structure of a software system should form a hierarchical structure. As
with the Clique anti-pattern, a cycle among packages reduces the understandability and maintainability of a
system.

Description: Given two packages Pa, Pb, there exists afile f1 in Pa and afile £2 in Pb. Given
another file £5in Pb and fi in Pa, if £1 depends on £7, and £2 depends on f£i, then we consider that
these two packages create a Package Cycle.

Visualization: In a DSM, the dependencies that form cycles among packages can be shown as
symmetric, non-empty cells between packages as shown below:

1 2 3 4
1 mapred.AvroOutputFormat java 'fl] dp
2 mapred.Fslnput_java 12]
3 file.SortedKeyValueFile java dp T3]
4 file.HadoopCodecFactory java ,{.4]

Fig.: An example of Package Cycle: the two files causes the two packages to form cyclical dependencies.
dp: depend

The above figure presents shows an instance of Package Cycle, in which AvroOutputFormat . java in package
mapred depends on HadoopCodecFactory. java in package file, and SortedKeyValueFile. javain
package £ile depends on FsInput.java in package mapred, forming a dependency cycle between package
mapred and package file.

If you detect Package Cycle anti-patterns using DV8, you can visualize each instance using DV8 Explorer:
Select "Analysis-> Load Issue File", and choose a".dv8-issue" file. For a Package Cycle
instance, DV8 will automatically cluster the system based on namespaces, and arrange the packages so
that file dependencies that form package cycles are manifested, as shown above. .

Improper Inheritance

Improper Inheritance Anti-pattern:

Rationale: According to our research, there are two most frequently observed problems in the
implementation of inheritance hierarchy are: (1) a parent class depends on one of its children;
and (2) a client class of the hierarchy depends on both the base class and its children.

Both cases violates Liskov Substitution principle [], since the parent class can no longer be a
placeholder substitutable by any of its children. They also violates the Design Rule Theory []
because the parent class cannot be a decoupling design rule. They violate the Dependency
Inversion Principle [18] since a client should depend on abstractions, not on concretions.

Description: DV8 detects an inheritance hierarchy to be problematic if it falls into one of the
following two cases:

1) Given an inheritance hierarchy containing one parent file, £ p, and there exists a child file £ ¢
in which £ p depends on £ _c;

2) Given an inheritance hierarchy containing one parent file, £ p , with one or more childern,
there exists a client £ client of the hierarchy, that depends on both the parent and one or more
of its children.

Visualization:
1 2 3 4 5 6 7 8 9
1 ProcessorDefinition_java (1) [dp.B 2,2 B .3
2 AggregateDefinition_java ex,8 [(2)
3 JmsEndpoint_java (3) |dp,10 2 2 2
4 ImsQueueEndpoint_java ex,10({4)
5 ManagedPerformanceCounter_java 2 is) [,3 4 .5
6 ManagedProcessor_java dp,2 2 ex,3((6)|,7 .9
7 ManagedCamelContext_java 2 exd .7 [{7) |21 ,2
8 ManagedRoute _java Nl 2 ex,s ,9 .21 ((8)
9 DefaultManagementObjectStrategy java |,3 dp dp dp.2 dp [(9)

Fig.: Instances of Unhealthy Inheritance Hierarchy architecture
dp: depend, ex: extend

The figure above presents several instances of Unhealthy Inheritance Hierarchy: 1) the parent file,
ProcessorDefinition.java depends on its child file AggregateDefinition.java; 2) the parent
file, ImsEndpoint.java depends on its child file JmsQueueEndpoint.java; 3) the client file
DefaultManagementObjectStrategy.java depends on the parent file
ManagedPerformanceCounter.java and all of its children.

You can detect and visualize each instance of Improper Inheritance using DV8 Explorer: Click
"Analysis-> Load Issue File", and select a".dv8-issue" file. For a Improper Inheritance issue, DV8
will automatically arrange the files so that the inheritance hierarchy is arrange at the top of the DSM, and
the clients depend on both the parent and children were highlight, as shown below:

Modularity Violation
Modularity Violation Anti-pattern:
Rationale:

Baldwin and Clark’s Design Rule theory [17] proposed that independent modules can be changed or even
replaced without influencing each other. Wong et al. introduced the term Modularity Violation [26], which
describes two structurally independent modules that change together

frequently, meaning that they are not truly independent. The more often two structurally unrelated files
change together, the more likely that there are implicit dependencies between them [26], [27]. In this paper,
we calculate the minimal number of file groups with modularity violations.

Description:

A Modularity Violation Group (MVG) contains a set of modularity violation files. We calculate the minimal
number of MVGs so that their union covers all violated file pairs (two files without structural relations but
changed together) in a project. In a Modularity Violation Group, there

exists a core file, fcore, which all other files are not structurally related to, but have frequently changed
together with. To identify a Modularity Violation Group (MVG), our tool first generates all filesets by
considering each file in a project as a core file, then greedily searches a fileset that

covers most violated file pairs as a MVG, until the union of all the MVGs covers all violated file pairs in a
project.

Visualization:

1 2 3 4 5 © 7 8 9 10 11 12 13 14 15
1 DroplndexStatement_java (1) 14 13 12 10 &8 7 6 6 5 5 5 5 5 5
2 CreatelndexStatement_java 14 '{2] 16 11 10 8 7 6 6 12 7 4 5 6
3 AlterTableStatement_java 13 16 '{3] 12 9 7 8 6 6 12 9 3 6 5 9
4 CreateKeyspaceStatement_java 12 11 12 '{41 12 7 10 5 5 4 4 3 5 6
5 DropKeyspaceStatement_java 10 10 9 12 'I[Sj 4 7 5 5 3 3 3 5 5

6 CassandraServer_java 8 8 7 7 4’{6) 21 24 43
7 AlterKeyspaceStatement_java 7 7 8 10 7 '{7] 5 5 3 3 5 5
8 DropTriggerStatement_java 6 6 6 5 5 5 '{8] 12 4 5 5
9 CreateTriggerStatement_java 6 6 6 5 5 5 12 ’{9] 4 5 5
10 SelectStatement_java 512 12 4 3 21 '{1[]] 48 8 3
11 ModificationStatement_java 5 7 9 4 3 24 48 '{11] 3

12 StorageService_java 5 3 43 3 8 0 '{12]
13 AlterTypeStatement_java 5 4 6 3 3 3 4 4 '{13] 3 4
14 DropTableStatement_java 5 5 5 5 5 5 5 5 3 '{14] 5
15 CreateTableStatement_java 5 6 9 6 5 5 5 5 3 3 4 5 '{15)

Fig. : An example instance of Modularity Violation Group
Each number indicates the co-changes between two files

The above figure presents an instance of MVG detected in Apache Cassandra. There are no structural dependencies
between DropIndexStatement. java and the other files. However, the cells annotated with a number in the DSM
reveal that all other files changed together at least 3 times with DropIndexStatement. java, the core file.

You can detect and visualize each instance of Modularity Violation using DV8 Explorer: Click
"Analysis-> Load Issue File", and select a ".dv8-issue" file. For a Modularity Violation issue, DV8
will automatically arrange the files so that the core files is arrange at the top of the DSM,

Crossing

Crossing Anti-pattern:

Rationale:

If a file has both a large number of dependents and depends on a large number of other files, i.e., with both
high fan-in and high fan-out, it is unlikely that this file follows Single Responsibility Principle [18]. We
observe that if such a file also changes frequently with its dependents and the files it dependents on, it is
often the center of error- and change-proneness.

Description:

If a file is changed frequently with its dependents and the files that it depends on, then we consider these
files to follow a Crossing anti-pattern (CRS).

Visualization:

12 3 4 5 6 7 8 9% 10 11 12 13 14 15 16 17 18

1 ErrorHandlerBuilderRef_java (1) [.2 6 X7 x4 3 %9

2 BuilderSupport_java 2 ((2) %,10 X2 S %2

3 AsyncEndpointRedeliveryErrorHandlerNonBlockedDelayTest_java x[(3) ;2 %2 2 30,2 .3
4 DeadLetterChannelBuilder_java 6 10 (4) A1 x5 2 %14 8 %10 x,8

5 RedeliveryErrorHandlerNonBlockedDelayTest_java X .2 (5) %2 2 20 2 2
6 DefaultErrorHandler_java A1 (6) .2 ,10 5 X

7 ErrorHandlerBuilderSupport_java 7 3 (7) 4 2 x,10

8 RedeliveryErrorHandlerNoRedeliveryOnShutdownTest_java X (8) %2 2

9 CamelErrorHandlerFactoryBean_java 2 2 (9) |x,2 X X

10 DefaultErrorHandlerBuilder_java A4 2,2 ,04 2 x10x4,2 ,2 ((10)|,2 ,6 x13x4 ,2 ,2 ,2 2
11 TransactionalClientDataSourceRedeliveryTest_java b %2 [(11)

12 TransactionErrorHandlerBuilder_java 3 8 S %2 x,6 (12}|,2 .3

13 RedeliveryPolicy_java S5 0,2 ,10 2 2 L13 .20 [(13) [.2 20,2 2
14 ErrorHandlerBuilder_java 9,2 8 10 ! A0 .2 [(14)

15 OnExceptionRouteWithDefaultErrorHandlerTest_java X %2 (15)

16 AsyncEndpointRedeliveryErrorHandlerNonBlockedDelay3Test_java x ,3 2 x,2 2 (18)|,2 .3
17 RedeliveryErrorHandlerBlockedDelayTest_java X .2 2 *%2 2 2 |(17) |2
18 AsyncEndpointRedeliveryErrorHandlerNonBlockedDelay2Test_java X .3 2 %,2 2 3.2 [(18)

Fig. : An example of Crossing
x indicates structural dependencies, such as extend, depend, etc.

The above figure presents an instance of Crossing. We can see that the center file,
DefaultErrorHandlerBuilder. java, was changed frequently with its dependents and the files it depends on
in the revision history.

You can detect and visualize each instance of Crossing using DV8 Explorer: Click "Analysis-> Load
Issue File", and select a ".dv8-issue" file. For a Crossing issue, DV8 will automatically arrange the files
so that center is arrange in the middle of the DSM, and the violation files are highlighted.

Unstable Interface
Unstable Interface Anti-pattern:

Rationale:

According to the design rule theory [17] and design principles [18], important and influential abstractions
(design rules) should be stable. Otherwise their bugs and changes can be propagated to multiple files. We
have observed that unstable or poorly-designed abstractions are

often related to high-maintenance, and deserve special attention.

Description:

If a highly influential file (files with a large number of dependents) is changed frequently with other files as
shown in the revision history, then we call it an Unstable Interface (UIF).

Visualization:

You can visualize each instance of Unstable Interface using DV8 Explorer: Click "Analysis-> Load
Issue File", and select a ".dv8-issue" file. For a Unstable Interface issue, DV8 will automatically
arrange the files so that the interface files are arrange at the top of the DSM, and the violations are
highlighted

1 2 3 4 5 6 7 8 9% 10 11 12 13 14 15 16 17 18
. . L L L L Ld L L4 L4 L4 L L L L4 L4

1 StreamSession_java (1) xwfx84 2 4 (2 3 7 2 3 2 2 2 3 8 2 2
2 ConnectionHandler_java x,10 Ir|[2]- 2 %3 ERG a
3 StreamTransferTask_java X, 8) (3) i x4 FECEE s
4 StreamMessage_java x4 I'3 I'3 Ir|[4]- X X2 '2 I'2 I'3 I'2 I'2
5 ReceivedMessage_java X,2 % [(5)
6 OutgoingFileMessage_java x,4 1 %2 '{6]- FI] 203
7 Sessioninfo_java X,2] g 20N
8 StreamCoordinator_java X3 3 g (8) a 2 3

r r r r r r r
9 StreamPlan_java x7 5 2 2 x4 (9) 5 2 2
10 LegacySSTableTest_java x,2 2 g x (10) g
11 StreamReader java x,3 ERE! g (11) a s
12 CompressedStreamReader_java|x,2 2" x4 '{12} 2
13 StreamEvent_java X,2 x |2 (13}
14 StreamStateStoreTest_java X,2 X '{14}
15 StreamReceiveTask_java x,3 2 £l 5 ~2 (15)

r r r r r r r r r r
16 StreamTransferTaskTest java |x8 4 %5 2 3 2 |3 5 2 (18)|2 2
17 SessioninfoCompositeData_javax,2 X2 g) (17))
18 SessioninfoTest_java x,2 x2| 2 22 T

Fig.: An example of Unstable Interface
x indicates structural dependencies, such as extend, depend, etc.

The above figure depicts an instance of Unstable Interface in the Cassandra project. An "x" in a cell indicates a
structural dependency between the file on the row and the file on the column; a number represents the historical
co-change frequency of these two files. We can see that multiple files structurally depend on

StreamSession. java and that these files have changed together frequently with it as evidenced by the
project's revision history.

You can detect and visualize each instance of Unstable Interface using DV8 Explorer: Click "Analysis->
Load Issue File", and select a".dv8-issue" file. For an Unstable Interface issue, DV8 will automatically
arrange the files so that interface file is arrange at the top of the DSM, and the influenced files are
highlighted.

Design Hotspot

In DV8, hotspots are defined as groups of files that are frequently modified or bug-prone within a
given time period. DV8 extracts the design relationship between these files, so that users can
analyze whether the high maintenance cost of these files is caused by design defects.

e |[f the user's input does not include a target ID list, DV8 will detect a set of files have been
modified by multiple different commits, and calculate a Change Hotspot.

e |[f the user's input contains a list of issue IDs, such as bug ticket IDs,

o DVB8 first detects a set of files that have been modified by multiple bugs, and name
these files as a Seed file group. These given issue IDs are defined as Target issues.
By default, DV8 considers files that have been modified because of two or more bug
issues as seed files. The user can modify this threshold using DV8 console
commands.

o DV8 will calculate a Seed Hotspot that contain the DSMs composed of these seed
files only. In order to analyze the impact of these core files on other files, DV eight also
generated a set of Change Hotspots, including all files that have design relations with
the seed files.

Research shows that 65% of code modifications are usually concentrated in fewer than 3
hotspots. The members of active hotspots may change during system evolution, but major
hotspots will exist for a long time; an average of 24.6 months If there are design anti-patterns in
active hotspots, they usually reflect real design debt. Continuous tracking and detection of the
occurrence and growth of hot spots can reveal early design issues and can help prevent severe

architecture decay. Fixing design issues in hotspots can avoid many defects in multiple files.

Architecture Roots

Using DV8, you can detect a small group of architecturally related files involved in a selected set of issues,
such as bug issues, or refactoring issues, which can be provided as a target list (sample) file. This file lists
the number of times each file is changed for a particular type of issues. This function will enable you to
examine the architecture relations among files with similar properties, such as error-proneness. We call the
detected file groups as architecture roots. If the target issues are bug issues, you could call them bug roots;
if the target issues include all change activities, you can call them change roots.

Our research [1] has shown that just five bug roots typically cover 50% to 90% of the most error-prone
files in a system. This observation has been validated over dozens of industrial and open source software
systems. The implication is that most error-prone files are architecturally connected; the more error-prone
the files are, the more likely that they are architecturally connected and that errors propagate through the
connections.

Here file error-proneness is determined by the number of times a file is involved in bug fixes. The more
often a file is changed to fix bugs, the more error-prone it is. Using DV8, the user can specify a threshold
for a file to be considered as error-prone when executing related commands. In our research, we used a
threshold of 2 for error-proneness, that is, files that were changed for bug fixes two or more times are
considered as error-prone.

(1) A sample root: capturing most change-prone files and their architecture flaws. The following
figure presents an example of one detected change root in an industrial project [2]. In this figure, the "CF"
column lists change frequency of each file; and the "Top" column lists the percentage ranking in terms of
change-proneness of each file. For example, the file "p4.F3" in row 26 was changed 361 times, and it
ranked the most change-prone (top 0.1%ile) among all 2,403 changed files in Proj_SS. 84% of the files in
this root ranked in the top 10th percentile most change prone, and six out of the 31 files ranked in the top
1st percentile, which indicates that the root is a true maintenance hotspot. Files in this root are clustered
into three design rules hierarchy layers: L. : (rci-rcz7), Loz (rces) and Ls: (rcze-rcsi) . Filesin
each layer are recursively clustered into independent modules. For example, files 10 - 26 are grouped into
5 modules, and these modules are structurally independent from each other.

From each root, you can detect architecture anti-patterns within it that may be responsible for the
propagation of bugs. For example, in the figure below: 1) p1.F1, an unstable interface, is depended upon
by most of the files, and most of these dependents have changed together with it frequently; 2) Multiple
dependency cycles are identified, such as, p1.F 5 <p2.F 2, and p2.F 2 -p2.F 1 —-p1.F 6 —-p1.F 5 —» p2.F
2; 3) p1.F1 depends on its child, which is Unhealthy Inheritance; 4) Many modularity violations are
highlighted in red: structurally independent modules that have changed together frequently.

CF Top 1 2 3 4 5 67 8 910 1112 1314 15 16 # 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1[piFl] 17 3%[(1) 6 g] . 8 23 32 2 3 8|22 72,72
2 pl.F2|\ 8 5%|i6 '{2) I Unhealthy Inheﬂtance 3 2 2 4

3 pL.F3| 16 3%|i,6 d3(3)| |2 2 3 2 3 3 3 22 2 3 4|32 3
4 pLFal 2\ 24% (4) 2

5 pl.F5| 45 \1%|d4 3 2 Dependency Cycles , 2 3 4 4 12 6 5 3 A
6 pl.F6| 22 2%|d2 2 2 10 2 2 33 3 6 6,3 2

7 pLF7| 1 43%|i,

8 p2.F1| 18 3%|d 5 2 2 8 |4 2
9 p2.F2| 6 6%|d 2 2 |2 2
10 p2.F3| 10 4%li,6'd,2 ,3 Moz] 2 5 2 2 2 .2 .2 |6 2

11 p2.Fa| 5 8%|d4d i,3 (11) 4 . . . 5

12 p2.Fs| 2 24% 2) Modularity Violation 2

13 p2.F6| 30 2%|d2 2 d T13) 2 ,2 3 .4 .4 .8 |11]3

14 p2.F7| 1 43% (14)

15 p2.F8| 40 1%|d8 3 3 d7 2 5,4 2 |d Tas]a .4 2 3,3 4 (|30/6 3 3 4
16 p3.F1| 11 4%|d 3 2 A4 [(16) 3 305 13 2 3
17 p3.F2| 2 24%li,2 T17)

18 p3.F3| 15 3%|d3 3 3 2 2 2 43 s 2.2 .3 30812 .2 2 3
19 p3.F4| 41 1%|d, 2 (19) 20,8 2 2 26 38|3

20 p3.F5| 4 9% (20) A

21 p3.F6| 82 0.3%|d, d2qd '(21),2 2 16 593

22 p3.F7| 28 2%|d, 2 dg 2 (2206 |2 6 |.25|5 2
23 p3.F8| 10 4%|d3 2 2 3 .3 2 3 2 2 |dz2 i6 (23,2 5 [10]3

24 paF1| 14 3%|d2 2 d4 3 2 4 3 2 |2 d2|2 2 [(2a]7 |8 |2

25 paF2| 59 1%|d2 2 d da 3 2 2 A 3 3 |26 dide 5 7 [(25).42]5

26 p4.F3(361 0.1%|d,3,2 3 d2d,12 2 2 8 A 3,3 |d38d4d591,251,10d,8 dad(2s)21]2 2 3

27 p4.F4|114 0.2%|d,9 d,4d4 d2 @ dg8 d2d6 d5 2 di1 d3cd5d d8 3 d3 5 3 4 5 d21(27)14,8 6 5
28 pa.Fs| 29 2%|d2d d3 d6 | dad2d d 3 d6 d3 2 d, 2 did(zs14 2 7
20 pa.F6| 21 2%|d2 2 ds 2 d 3 2 2 2 8 dif{z9)2 7
30 pd.F7| 10 4%|d2 3 2 3 2 2 3 de 2 |2 [(30]2
31 pa.Fs| 12 4%|dz2 3 A 2 2 A 33 5 d7/7 2 [(31)

Figure: DRH-Clustered Architecture Root
d: depend; 1i: inherit; CF: Change Frequency; Top: percentile rank

(2) Cumulative effects of roots: a few roots capture most bugs or changes. The advantage of root
detection is that you don't need to examine a large number of files or instances to figure out which
architecture problems contribute most to error-proneness and/or change-proneness. Instead, you just need
to examine a few, usually fewer than 5, file groups to figure out which architecture problems are most
severe.

A file may participate in more than one root; that is, roots overlap with each other. DV8 also calculates their
cumulative data, as shown in the following table (from [2]): In this table, “Size" means the number of
distinct files in the first n roots, where,n = 1, 2, ..., 4.The “%Size" column presents the percentage
of the root size compared with the total number of files in the project. For example, "222" in the second row
means that root1 and root2 (the first 2 Roots) contain 222 distinct files, which cover 14% of all files in
the project. The “Coverage" column presents the cumulative coverage of change-prone or bug-prone files
by these roots. The fourth row of this table indicates all these 4 roots contain only 24% of all the files in this
project, but cover 55% of all change-prone files and 65% of all bug-prone files. Files in each root are
architecturally connected, hence change-proneness or bug-proneness may be propagated among these
files.

Coverage
Root Size % Size Change Bug
rootl 147 10% 24% 29%
root2 222 14% 38% 52%
root3 263 17% 47% 57%
root4 364 24% 55% 65%

Table: Cumulative Data of Architecture Roots

Please refer to the Detect Architecture Roots section that explains how to use DV8 to detect architecture
roots.

[1] Lu Xiao, Yuanfang Cai, Rick Kazman: Design rule spaces: a new form of architecture
insight. In Proceedings of the 36th International Conference on Software Engineering (ICSE
2014). Pages 967-977

[2] Ran Mo, Will Snipes, Yuanfang Cai, Srini Ramaswamy, Rick Kazman, Martin

Naedele: Experiences Applying Automated Architecture Analysis Tool Suites. In
proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE 2018). Pages 779-789

Architecture Debt Quantification

Architecture roots, as well as, anti-patterns, can be considered as architecture debt, a type of technical
debt (TD). The rationale is that, if these architecture problems are not fixed, they may continue to generate
additional maintenance costs, the same way that a monatery debt accumulates interest. In DV8, you can
calculate (1) the added maintenance costs due to each instance of each anti-pattern, and (2) the added
maintenance costs of each architecture root.

(1) The maintenance costs of each instance of anti-patterns and roots: As an example, the following
tables summarizes the anti-patterns detected in a real industrial project [1], their scopes and maintenance
costs. The first line shows that there are 322 files (21% of all the files) involved in 26 Clique instances.
These files were changed 1,790 times involving 26,294 LOC, 41% of all the LOC changed for the entire
project. 643 of the changes are for bug fixing, involving 16,557 LOC, which is 45% of all the LOC spent for
bug fixing. This table shows that Cliques are very expensive to maintain in this project. The table below
shows that Clique1 involves 99 files and incurred the most maintenance costs, definitely worth attention.
Cliqueb, although it contains just 16 files, also appears to be very costly.

Using this table, you can prioritize which flaws need to be addressed in which order. By comparing with
system average bug and change rates, we can see that files involved in these flaws are causing high
maintenance difficulty.

Table: Architecture anti-patterns
Pt. : Percentage; Flaw CF - BC : maintenance costs, quantified by CF, CC, BF and BC, of the files in each flaw

#Instances | #Files Pt. Flaw CF Pt. Flaw CC Pt. Flaw BF Pt. Flaw BC Pt.
Clique 26 322 21% 1,790 28% 26,204 41% 643 34% 16,557 45%
Crossing a1 368 24% 3,146 50% 40,247 63% 1,051 55% 25177 6GB%
ModularityViclation 667 588 8% 4,538 72% 46,224 T2% 1,438 75% 27,648 74%
PackageCycle 175 409 32% 2417 38% 20,006 47% 778 41% 18,889 51%
Unstablelnterface [ile 21% 1,669 26% 19,898 1% 388 20% 11,457 3%
UnhealthyInheritance 72 257 17% 1,528 24% 22,007 4% 480 25% 13,481 36%

Table: Maintenance costs of Clique instances

Instance Mame Size Tot. CF Tot. CC Tot. BE Tot. BC
Cliguel o9 226 7,847 112 4,673
Clique2 78 181 431 7 212
Clique3 28 181 1,686 49 897
Cliqued 18 246 3,130 30 1,427
Clique5s 16 168 3,553 &0 2,662

We can similarly calculate the maintenance costs incurred on each root, as exemplified in the following
table. The first row shows that the first root involves 147 files. These files were changed 1,109 times,
consuming 13,487 LOC. Of these changes, 414 were bug fixes involving 9,347 LOC. As we can see from
the table, even though a Root only covers a small portion of the system, it is a hotspot where much
maintenance effort was spent.

Table: Maintenance costs of each root
%: percentage; Rt. CF - BC: the total CF - BC of all files in each root

Size (%) | RLCF(%) | RLCC(%) | RLBF(%) | Rt BC (%)
rootl | 147 (10%) | 1,100 (18%) | 13,487 (21%) | 414 (22%) | 9,347 (25%)
root2 | 93(6%) | 1,050(17%) | 11,486 (18%) | 452(24%) | 6,696 (18%)
rootd | 79 (5%) 601 (10%) 5453 (9%) | 183 (10%) | 3,821 (10%)
rootd | 104 (7%) 486 (B%) | 10,794 (17%) | 166 (9%) | 6,236 (17%)

(2) Extra maintenance costs of architecture roots: Considering each architecture root as a debt, DV8
provides a debt calculator to compute the penalty incurred by these roots. This penalty is calculated as the
difference between the actual maintenance effort spent on the roots, and the expected maintenance effort
spent on them. We use the average change/bug rate of all the files in a project as its expected
maintenance effort [2]. The expected effort columns "ExtraCF "- "ExtraBC" represent the cumulative
maintenance penalty from the roots. For example,"615" in the second row of “ExtraBF " column indicates
that the 222 files in root1 and root2 are involved in bug fixes 615 times more often than average files.
The "Percentage" row presents the percentage of the extra maintenance effort as compared with project
averages. The last row indicates that, 28% of all the changes, 41% of all the LOC spent, 40% of bug-fixing
changes, and 47% of bug-fixing LOC spent on the entire project are incurred by these roots.

Table: Extra maintenance costs ofl architecture ropts.

Penalty of Architecture Roots
Extra CF | Extra CC | Extra BF | Extra BC
rootl 612 8,450 263 6,418
root2 1,332 16,601 615 11,175
root3 1,687 19,570 724 13,552
root4 1,754 26,110 763 17,314
Percentage 28% 41% 40% 47%

Please refer to the Quantify Architecture Debt section that explains how to use DV8 to quantify architecture
debts, in the form of anti-patterns or roots.

[11 Ran Mo, Will Snipes, Yuanfang Cai, Srini Ramaswamy, Rick Kazman, Martin

Naedele: Experiences Applying Automated Architecture Analysis Tool Suites. In
proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE 2018). Pages 779-789

[2] Rick Kazman, Yuanfang Cai, Ran Mo, Qiong Feng, Lu Xiao, Serge Haziyev, Volodymyr
Fedak, Andriy Shapochka: A Case Study in Locating the Architectural Roots of
Technical Debt. In Proceedings of the 37th International Conference on Software
Engineering (ICSE 2015). Page 179-188

