BI-DIRECTIONAL INSERTION METER INSTRUCTION MANUAL # 1 Contents | CONT | PAGE | | | | | | | |------|--|--|-----------------------------------|--|--|--|--| | 1.0 | 1.1
1.2
1.3
1.4 | ODUCTION General arrangement Overview Operating principal Specifications | 2
3
3
3 | | | | | | 2.0 | 2.1
2.2 | ALLATION Meter location Meter installation & orientation | 4 4 | | | | | | | 2.3
2.4
2.5 | Height adjustment Flow direction orientation Hot tap installations | 5
5
6 | | | | | | 3.0 | ELEC
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8 | Standard outputs Voltage Pulse / Hall Effect Optional Hall Effect / Reed switch output Optional Reed switch output Instrument cable installation requirements Pulse output selection (standard outputs) QP Quadrature pulse output option Bi-directional flow using QP option Connection to family instruments | 7
8
8
9
9
10
10 | | | | | | 4.0 | CALIBRATION (K- factor for meter) | | | | | | | | | 4.1
4.2
4.3
4.4 | K-factors for common pipe ID sizes <575mm K-factors for large pipe ID >460mm Calculating K-factors (metric units – litres or M3) Calculating K-factors (US gallons) | 12
12
13
14 | | | | | | 5.0 | INSTA | ALLATION GUIDELINES | 15 / 16 | | | | | ## 1.1 General arrangement Thank you for purchasing this Insertion Meter. It is important that you read this manual to gain a full understanding of the capability and operational aspects of the equipment you are about to install. This information is provided only to assist in the installation of the product and does not diminish your obligation to read the manual. 1. Select a location that meets the requirements as illustrated in the Installation Guideline pages located at the rear of this manual. An ideal installation would provide for 25 diameters of straight pipe upstream from the meter and 10 diameters downstream. You will also need to know the pipe internal diameter (NB) and pipe wall thickness for calculation of the insertion depth. (*refer page 5.*) Non ideal installations may require in-situ calibration (*refer to the factory for details*). - **2.** After screwing the Insertion Meter in place ensure the flow alignment mark located on the top positioning collar of the meter aligns with the flow in the pipe (refer page 5). This ensures the paddle is correctly aligned to the flow. Note. The meter is bi-directional so a flow direction arrow is not provided. - 3. Calculate and adjust the height of the Insertion Meter (refer page 5). - **4.** Electrical Installation depends on the model you have purchased. If the Insertion Meter is fitted or supplied with a receiving instrument such as a totaliser or rate totaliser please refer to the appropriate manual and Page 10 of this manual. For pulse output meters, select the appropriate output and wire to your receiving device. (*refer pages 7 to 9*). - **5.** Calculate the Insertion Meter K *(scale)* factor to suit the installation. For ideal installations refer to page 11 or 12 or 13 of the Insertion Meter Manual. For non ideal installations the K-factor may be calculated by performing an in-situ calibration. Enter the appropriate K-factor into your receiving instrument. #### Introduction #### 1.2 Overview 3 The Insertion Meter provides a cost effective and simple means of measuring the flow of a wide range of low viscosity liquids. Installation is quick and inexpensive for pipe diameters ranging from 40mm to 900mm (1.5-36") and up to 2500mm (100") nominal bore for the Hot tap capable model DP525. The Insertion Meter has a linear measuring range of 0.3~10.0 metres/sec. (1~33 ft/sec.). Minimum detectable flow velocity is 0.15 m/sec. (0.5 ft/sec.). When used in conjunction with the RT12 flow rate totaliser NLC feature the linear flow range is extended down to 0.15 m/sec. (0.5 ft/sec.) with an improved linearity. The Insertion Meter is constructed from 316 L (1.4404) stainless steel enabling use in many applications for metering water and low viscosity chemicals. Two independent pulse outputs are standard & can directly input to a wide range of ancillary instruments, PLC's and computers. Both pulse outputs have a high level of immunity to electrical interference. Options include a reed switch. ## 1.3 Operating principle Flow passes through a pipe causing the rotor to spin. Magnets installed in the rotor pass by pulse sensors within the transducer body & inturn this produces frequency outputs proportional to flow rate. **1.4 Specifications** (subject to change without notice) | 1.4 Specifications | Subject to change without houce) | | | | | |---------------------------------|--|-------------------------|--|--|--| | Model | 490 | 525 | | | | | Suits pipe sizes | 40mm - 900mm | 50mm - 2500mm | | | | | | (1.5 – 36 inches) | (2 – 100 inches) | | | | | Flow range | 0.25 - 6300 litres/sec. | 0.4 - 49000 litres/sec. | | | | | | (4-99600 USGPM) | (6-780000 USGPM) | | | | | Process connections | 1.5" or 2" NPT or BSPT | 2" NPT or BSPT | | | | | Velocity range | 0.3 - 10 metres/sec. (1 - 33 feet/sec.) | | | | | | Linearity | typically ± 1.5% O.R. (1-10m/s) | | | | | | | ± 1.5% F.S. (0.3-1m/s) | | | | | | Repeatability | typically ± 0.5% | | | | | | Pressure (max) | 80 Bar (1200PSI) | | | | | | Temperature range | -40°C to 100°C (-40°F to 212°F) standard | | | | | | | Other temperature ranges available | | | | | | Body material | 316L stainless steel (1.4404) | | | | | | Rotor materials | Carbon Fibre filled PVDF (standard) | | | | | | | or optional PEEK rotor with PEEK-HPV bearing | | | | | | O-Ring material | VITON - options available | | | | | | ELECTRICAL | | | | | | | (a) Square wave (Hall Effect) | 5-24vdc, 3wire NPN open collector (20mA max. current sink) | | | | | | (b) Reed Switch (to 100°C) | 30vdc max. x 20mA max. (output freq. is 1/3 std. K-factor) | | | | | | Output freq. @ max. velocity | (a) outputs 220~240 Hz | (b) output 73~80 Hz | | | | | Transmission distance | 1000 metres (3300 feet) maximum | | | | | | Wiring (standard) | 5 core, screened cable | | | | | | | length 1.5m/5ft (DP490) or 1m/3ft (DP525) | | | | | | Protection class | IP68 submersible (Nema 6X) | | | | | | Conduit entry (terminal box) | M20 x 1.5 | | | | | | Shipping Weight | 1.2 kg (2.7 lbs.) | 1.5 kg (3.3 lbs.) | | | | #### 2.1 Meter location Choose an appropriate section of horizontal or vertical pipe as per the guidelines below. With vertical pipe installations the media should be pumped up through the pipe past the flow sensor so that any entrained air will pass freely. The Insertion Meter requires a fully developed turbulent flow profile to ensure maximum measurement accuracy and repeatability. This can be achieved by installing the Insertion Meter in a straight run of pipe. We recommend at least 10 but ideally 25 straight pipe diameters upstream & at least 5 but ideally 10 pipe diameters downstream of the Insertion Meter. Major obstructions such as pumps, valves or strainers will require longer straight runs before and after the Insertion Meter. #### 2.2 Meter installation & orientation Cut a 40mm diameter hole (1.6") on either the 2, 10 or 12 o'clock positions of the pipe. If there is any likelihood of air entrainment in a horizontal pipe do not locate the flow transducer in the 12 o'clock position. Install a female threaded weld on fitting (threadolet) or service saddle. Wrap the threads of the Insertion Meter with Teflon tape or sealing compound & screw the unit into the installed fitting. ## 2.3 Height adjustment calculation Calculate the adjustment height A for DP490 (or AA for the DP525) as follows: **A** (for DP490) = $$175mm$$ (6.9 ") - (B+C+D) **AA** (for DP525) = $420mm$ (16.5 ") - (B+C+D) #### Where: **B** = Distance between the top of the pipe & the top of the hex adaptor. **C** = Pipe wall thickness \mathbf{D} = Insertion depth (pipe ID \div 8) Examples of insertion depth **D**: Turn the height adjustment nuts (1) as required so that the distance between the top of the hex adaptor (2) and the top of the positioning collar (3) equals your calculated distance A (for DP490) or AA for model DP525. Retighten the height adjustment nuts (1). #### 2.4 Flow direction orientation The unit is bi-directional however the paddle must be aligned with the direction of flow. Using a 2mm hex key (Allen key), unlock the locking screw located on the positioning collar (3) then insert the hex key (as a lever) in the body rotating hole located above the collar, turn the body until the alignment slot is parallel with the direction of pipe. Retighten the locking screw. 7 # 3.0 ELECTRICAL CONNECTIONS (see page 10 for QP outputs) # 3.1 Standard outputs - NPN Hall Effect + Voltage Pulse outputs # 3.2 Optional - NPN Hall Effect + Reed Switch outputs # Conductor color coding also applies to the Non-magnetic REED SWITCH OUTPUT # 3.3 Optional - Reed switch only #### **HAZARDOUS AREAS** The REED SWITCH output is classed as a "simple apparatus" as defined in the CENELEC standard EN50020 & recognized IEC & ATEX directive. It can be connected to an approved I.S. secondary instrument with both being located in the hazardous area. The Reed Switch may also be connected through an approved I.S. barrier. Note: The Reed switch produces 1/3rd the normal pulse output value (eg. 1/3 the standard K-factor) ## 3.4 Instrument cable installation requirements Use twisted multi-core low capacitance shielded instrument cable (22 AWG \sim 7x 0.3 stranded) for electrical connection between the Insertion Meter and the remote instrumentation. The screen should be earthed at the readout instrument end only to protect the transmitted signal from mutual inductive interference. The cable should **not** be run in a common conduit or parallel with power and high inductive load carrying cables as power surges may induce erroneous noise transients onto the transmitted pulse signal. Run the cable in separate conduit or with other low energy instrument cables. ## 3.5 Pulse output selection (standard outputs) The standard Insertion Meter has two independent pulse output signals that are linearly proportional to volumetric flow rate. Pulse transmission can be up to 1000 metres (3300 ft). An optional intrinsically safe (I.S.) Reed Switch only output is available (see page 7). ## Voltage pulse (pulse wire) output A self-generating pulse output which produces a strong 1.5 volt voltage spike of approximately 10 micro/second duration with no dependence on rotor speed. Square Wave Pulse (Hall sensor) (also applies to non-magnetic & QP Hall outputs) An NPN open collector transistor pulse output produced by a solid state Hall Effect device. This three wire device requires 5~24vdc and produces an NPN square wave output (20mA max. sink), pulse width is 2~75 mSec. The Hall output requires a pull up resistor, these are generally incorporated in most receiving instruments. For (QP) Quadrature pulse output refer details page 10. Screen ## Reed Switch output The Reed Switch has a fast response capable of frequencies in excess of 80hz. Receiving instruments should have the ability to suppress reed switch bounce (0.01µf capacitor) and a 1 meg pull up resistor would be typical. ## 3.6 Quadrature outputs Insertion Meters supplied with the QP option produce two NPN open collector pulse outputs from two Hall Effect sensors. The outputs are "phase offset" in their timing so that external electronics are able to differentiate. These outputs may be used to assure output signal integrity or to measure bi-directional flow. #### 3.7 Bi-directional flow The Insertion Meter is capable of accurately measuring flow in both directions without modification. Meters fitted with the QP output option (quadrature pulse output) may be interfaced with the Pulse Discriminator Module (PD2). The PD2 accepts the Quadrature pulse inputs & from these will discriminate between forward & reverse flow. Two individual & proportional pulse outputs can then be sent to appropriate totalising registers or an add and subtract flow rate totaliser. It is **important to note** that the Quadrature Pulse option has the same pulse resolution (pulses/unit volume) as a standard Insertion Meter for both forward & reverse outputs. #### Flowmeter with QP outputs # 3.8 Voltage Pulse Connection to family instruments ## **4.0 K – FACTORS** (calibration factors for meter) The K-factor (pulses / litre, gallon etc.) will vary in relation to the bore size of the pipe in which the Insertion Meter is installed. The K-factors and formula shown are a result of factory testing using smooth bore piping under ideal conditions. Variations to the given K-factors may occur when using rough bore piping or inadequate flow conditioning on either side of the Insertion Meter (refer clause 2.1). In these instances on site calibration may be used to determine the K-factor. 4.1 Insertion Meter K- factors for common pipe sizes | Pipe | detail | K-factors (standard K-factors for square wave output only) | | | | | | | |--------|---------|--|-------|-----------|------------------|-------|-----------|--| | NB | pipe ID | Schedule 40 pipe | | | Schedule 80 pipe | | | | | inches | mm | p / litre | p/m3 | p / USgal | p / litre | p/m3 | p / USgal | | | 1.5" | 40.9 | 18.678 | 18678 | 70.695 | 21.524 | 21524 | 81.468 | | | 2" | 52.6 | 11.238 | 11238 | 42.534 | 12.818 | 12818 | 48.517 | | | 2.5" | 62.7 | 7.880 | 7880 | 29.824 | 8.899 | 8899 | 33.682 | | | 3" | 78.0 | 5.062 | 5062 | 19.161 | 5.676 | 5676 | 21.485 | | | 3.5" | 90.2 | 3.768 | 3768 | 14.263 | 4.200 | 4200 | 15.896 | | | 4" | 102.4 | 2.912 | 2912 | 11.021 | 3.233 | 3233 | 12.237 | | | 5" | 128.3 | 1.839 | 1839 | 6.959 | 2.025 | 2025 | 7.665 | | | 6" | 153.9 | 1.268 | 1268 | 4.798 | 1.402 | 1402 | 5.307 | | | 8" | 203 | 0.719 | 719.0 | 2.721 | 0.787 | 787.2 | 2.980 | | | 10" | 255 | 0.450 | 450.3 | 1.705 | 0.496 | 495.9 | 1.877 | | | 12" | 303 | 0.316 | 316.0 | 1.196 | 0.347 | 347.4 | 1.315 | | | 14" | 333 | 0.261 | 260.5 | 0.986 | 0.286 | 285.7 | 1.081 | | | 16" | 381 | 0.198 | 198.0 | 0.750 | 0.217 | 217.0 | 0.821 | | | 18" | 429 | 0.156 | 155.8 | 0.590 | 0.171 | 170.6 | 0.646 | | | 20" | 478 | 0.125 | 125.4 | 0.475 | 0.138 | 137.8 | 0.521 | | | 24" | 575 | 0.087 | 86.64 | 0.328 | 0.095 | 95.39 | 0.361 | | For other pipe sizes below 610mm (24") not listed above, use the graphs and apply the formula on the following pages (12 & 13). # 4.2 K-factors for large pipes 460mm ID (18") and above use: ``` Pulses per litre= 28647 \div pipe ID2 (mm)Pulses per M3= 28647000 \div pipe ID2 (mm)Pulses per US gallon= 168.14 \div pipe ID2 (inches)Pulses per Imp. gallon= 201.94 \div pipe ID2 (inches) ``` **NOTE**: K-factors for Reed Switch output are 1/3 the standard factors of the square wave pulse output ## 4.3 Calculating K-factors (litres or m³) Calculate K-factor (pulses / litre) using the above graph and the metric constant of 1273.2 as follows: Pulses / litre = $$\frac{1273.2 \text{ x (A) from graph}}{\text{pipe ID}^2 \text{ (mm)}}$$ Example 'a': K-factor for 100mm pipe: 1) from graph 100mm ID (A) = 24.0 <u>K-factor for m^3 </u>: multiply by 1000 eg. $K = 3056 \text{ p/m}^3$ K-factor for megalitres : multiply by 1000000 eg. K = 3056000 p/megalitre **NOTE**: K-factors for Reed Switch output option are 1/3 the standard factors of voltage pulse output. Calculate K-factor (pulses / gallon) using the above graph and the volumetric constant of 24.51 as follows: Pulses / US gal. = $$\underline{24.51 \times (A) \text{ from graph}}$$ pipe ID² (inches) Example 'b': K-factor for 10" pipe: 1) from graph 10" ID (A) = 7.01 **2)** pulses/gal. = $$\frac{24.51 \times 7.01}{100}$$ = $\frac{1.718}{100}$ p/gal **NOTE**: K-factors for Reed Switch output option are 1/3 the factors of the square wave pulse output. #### 5.0 INSTALLATION GUIDELINES #### 1. **GENERAL** The flow profile must be uniform at the point where the Insertion Meter is to be installed, otherwise inaccurate and unstable readings will result. British Standard: BS 1042 gives a full insight into flow conditioning for inferential flow devices The general rule is to have a minimum of 10 diameters of straight pipe runs before the flowmeter (upstream) and 5 diameters after (downstream). These straight runs must not contain any other items such as Valves, Bends, Tees, Probes, or Reducers etc. Any Valves immediately outside the straight runs require doubling of the straight pipe run lengths. #### 2. #### 3. PRECAUTIONS FOR AVOIDING NON-UNIFORM FLOW B/ INSTALLATION OF FLOWMETER PRIOR TO CAUSE OF NON-UNIFORM #### 4. RECOMMENDED LENGHTS OF STRAIGHT PIPE FOR TYPICAL CASES DEPENDING ON THE MAGNITUDE OF THE DISRUPTION TO FLOW RECOMENDATIONS ARE AS FOLLOWS: A/VALVES AND FILTERS: MINUMUM OF 10 DIAMETERS OF STRAIGHT PIPE PRIOR TO FLOWMETER B/ELBOWS: MINUMUM OF 6 DIAMETERS OF STRAIGHT PIPE PRIOR TO FLOWMETER C/INCREASES IN LINE SIZE: 4 - 8 DIAMETERS OF STRAIGHT PIPE DEPENDING ON INCREASE OF LINE SIZE D/CONCENTRIC DECREASES IN LINE SIZE: MINIMUM 4 DIAMETERS OF STRAIGHT PIPE PRIOR TO FLOWMETER (AS SHOWN IN 5. BELOW) #### 5. RECOMMENDED SOLUTIONS FOR RESTRICTED CASES # **NOTES:** # **NOTES:**