ALGEBRA TILES: GETTING STARTED

Introduction

Algebra tiles consist of 3 different size tiles.
One size of the tile is coloured and the reverse is red. The red sides are the additive inverses for their pieces; we can think of them as representing their negative values.

Variable \square $=x$
 $=-x$
(It is not possible to arrange the 1 tiles to create the x tile.)

Variable squared
 $=x^{2}$

(These squares have side length x)

Pupils need to understand that pairing the + side and - side of tile results in zero. They need plenty of practise with the tiles to get the idea of this.

Starting Activities: Algebraic Substitution

E.g. 1: Find $3 x+1$ if $\mathbf{x}=\mathbf{2}$

STEP 1: Model the expression $\mathbf{3 x + 1}$ with the tiles \square

ALGEBRA TILES: GETTING STARTED

STEP 2: Using the information $x=2$, substitute each x tile for two 1 tiles .

Now it is easy to see that if $\mathbf{x}=\mathbf{2}$ then $\mathbf{3 x + 1} \mathbf{= 7}$

E.g. 2: Find $2 x-3$ if $x=5$

STEP 1: Model the expression $2 \mathrm{x}-\mathbf{3}$ with the tiles

STEP 2: Using the information $x=5$, substitute each x tile for five 1 tiles .

STEP 3: Each red tile cancels out a yellow tile because they are additive inverses.
So if $\mathbf{x}=\mathbf{5}$ then $\mathbf{2 x} \mathbf{- 3}=\mathbf{7}$

ALGEBRA TILES: GETTING STARTED

Moving On: Solving Equations

E.g. 1: $x+4=7$

STEP 1: Model the equation using the tiles. You will need a defined space for each side of the equation.

STEP 2: We need to isolate the variable tiles (x) to find their value.
To do this we create additive inverse pairs. Each of the four ' +1 ' tiles from the left can be paired with the four ' -1 ' tiles to create 0 pairs, thus removing them from the calculation. Both sides of the equation maintain equality.

ALGEBRA TILES: GETTING STARTED

E.g. 2: $2 x-4=10$

STEP 1: Model the equation using the tiles. You will need a defined space for each side of the equation.

STEP 2: We need to isolate the variable tiles (x) to find their value.
To do this we create additive inverse pairs. To remove the four '-1' tiles from the left pair them with 4 ' +1 ' tiles, thus removing them from the calculation, then add four ' +1 ' tiles to the right to maintain equality.

