Contents

1 DISCLAIMER 4

2 Quick Start 5

3 Applications 9

4 Autodesk Eagle CAD Part for VINA-D51 10

5 Notable On-Board Features 11

6 Pinout Diagram 14

7 Mechanical Diagram 17

8 Power 18

9 RESET Switch 20

10 USB 20

11 RS485 21
 11.1 RS485 Bus Termination 21
 11.2 RS485 Bus Power 22

12 I2C 22
 12.1 I2C Pull Ups 23
 12.2 I2C Bus Power 23

13 AUX Socket and Expandable Versatility 23

14 ARM Cortex SWD Debug Header 25
 14.1 Segger J-Link 25
 14.2 Using the Segger J-Link Command-Line and VINA-D51 26
 14.3 Source Level Debugging using the Segger J-Link and VINA-D51 28

List of Figures

Figure 1 code.py simple LED pattern generator executing 5
Figure 2 MacOS Desktop with CIRCUITPY flash storage drive 6
Figure 3 code.py simple LED pattern generator source code 7
Figure 4 Autodesk Eagle CAD Part for VINA-D51 (board) 10
Figure 5 Autodesk Eagle CAD Part for VINA-D51 (schematic symbol) 11
Figure 6 VINA-D51 Pinout Assignments 14
Figure 7 VINA-D51 Mechanical Layout 17
Figure 8 VINA-D51 External Power Connector 18
Figure 9 VINA-D51 PWR_SEL Jumper for USB or External Power Selection 19
Figure 10 VINA-D51 Reset Switch Location 20
Figure 11 VINA-D51 USB Connector 20
Figure 12 VINA-D51 RS485 Connector and Bus Termination Jumper 21
Figure 13 VINA-D51 I2C Connector 22
Figure 14 VINA-D51 AUX Socket Header 24
List of Figures

Figure 15 VINA-D51 AUX Socket Header With ATW-01 and ESP-01S WiFi Modules Installed . 24
Figure 16 VINA-D51 Debug Header ... 26
Figure 17 Segger J-Link Command-Line Tool with VINA-D51 28
Figure 18 Segger J-Link GDB Server Settings for VINA-D51 ... 29
Figure 19 Segger J-Link GDB Server Waiting for Connection from GDB 30
Figure 20 GNU GDB Source Level Debugging with the Segger J-Link Command-Line Tool and VINA-D51 .. 31

List of Tables

Table 1 VINA-D51 Pinout Table .. 15
Table 2 VINA-D51 Pinout Table .. 16
Table 3 VINA-D51 Power and Ground Pin Connection .. 19
Table 4 VINA-D51 AUX Socket Pinout Detail .. 25
1 DISCLAIMER

BDMICRO, LLC products are designed and assembled with care and all assembled products must pass functional testing to ensure quality before they are shipped. However, our products are not rated for use in medical, life support, or systems where failure could result in the loss of life or have serious life threatening or economic impact.

BDMICRO, LLC does not warrant merchantability for any purpose and shall not be liable for any direct, indirect, incidental, special, exemplary, or consequential damages of any kind, however incurred, through the use of our products.
2 Quick Start

Getting started with the VINA-D51 is quick and easy. It comes fully loaded with the UF2 Bootloader and CircuitPython. A sample program is pre-installed that flashes the on-board red, green, and blue LEDs (LED_R, LED_G, and LED_B), in a sequential pattern followed by a short simultaneous flash of all three to let you know everything is working as expected. You'll also note the green PWR LED to indicate the board is powered.

Simply:

1. Set the PWR_SEL jumper to USB.
2. Plug a USB micro-B cable into the USB port of VINA-D51.
3. Plug the other end of the USB cable into your computer or USB hub.

![Figure 1: code.py simple LED pattern generator executing](image)

The expected results are as follows:

1. Power is supplied from the USB port of your computer or hub, the PWR_SEL jumper set to USB routes power from the USB port to power VINA-D51.
2. The PWR LED will light, indicating power has been supplied.
3. VINA-D51 will power-up and negotiate with your computer as a mass storage device. When this is successful, you will see a new disk drive appear on your desktop named CIRCUITPY. See Figure 2 showing the drive and sample content of the boot_out.txt file indicating the CircuitPython version and the board it is running on, in this case, the BDMICRO VINA-D51 with samd51n20.

4. CircuitPython will automatically load and run the BDMICRO pre-installed code.py program, located at the root level of the CIRCUITPY drive.

5. The sample code.py program initializes the LEDs, and begins flashing the on-board red, green, and blue LEDs in a sequential pattern to indicate it is working as expected. Figure 1 shows the code running on the board with the USB cable connected, PWR LED on, and all three LED_R, LED_G, and LED_B LEDs lit. See Figure 3 for the full source of the pre-installed code.py program.
Figure 3: code.py simple LED pattern generator source code
There is much more to VINA-D51. This section was intended to get you up and running quickly. Namely:

1. Initial power-up and verification using a simple USB connection to a PC or laptop, extra cables or power supply are not required

2. Brief intro to the default configuration

3. Demo of the sample, pre-installed code.py program for reference

4. Demonstrate that you do not need a hardware programmer or complex development environment setup to get started quickly and develop code for VINA-D51; all that is needed is a PC or laptop, and a text editor to begin developing applications with VINA-D51

5. Introduce the PWR_SEL jumper to set the power source

6. Provide a visual indication that your VINA-D51 is operational and ready to go

NOTE: While VINA-D51 ships with CircuitPython to help you get started quickly and easily, you can develop in other languages, compilers, and environments if you choose.

For example, many developers choose GCC's gcc-arm-none-eabi, a popular and capable cross-compiler available from https://developer.arm.com. Pre-built downloads are available for Windows, MacOS, Linux, and others. Or you can build the cross development tools yourself from source. With C, you have full hardware control over the MCU including interrupts and timers for event driven applications.

The Keil compiler is a stellar professional development environment and compiler as well.
https://www.keil.com

In all cases, code examples and bootstrap to get started quickly are usually included for rapidly configuring a project.

NOTE: Because we ship the VINA-D51 with the UF2 Bootloader installed, a hardware programmer is not needed to flash new firmware to the board, independent of using CircuitPython. The UF2 Bootloader will flash your C compiled programs as well, once converted to the UF2 format. The UF2 Bootloader makes reflashing the on-chip firmware easy using Mac or Windows drag and drop file operations, replacing CircuitPython or other application.
3 Applications

The VINA-D51 is a powerful, robust, pluggable control module designed for modular control applications. Built with all-industrial grade components and features, it is well-suited for a wide variety of automation and control requirements, including harsh environments.

VINA-D51 saves time and money by providing a proven, modular design, that enables custom application-specific solutions to move from the drawing board to finished product quickly.

NOTE: VINA-D51 enables you to develop your application-specific board independently of the control section. This simplifies your design, saves CAD time during the design phase, reduces errors that can cost weeks of PCB re-manufacture to correct, and saves debug time during the prototype and testing phases. By starting with VINA-D51, you start from a known-good foundation, reducing complexity and risk.

Incorporate the VINA-D51 in your designs over and over again and multiply your savings. Useful for custom applications, one-off projects, breadboarded prototypes, and even standalone projects. VINA-D51 has all of the common essentials built-in, on-board.

VINA-D51 is designed to include the most common components and facilities you need for the main control module:

- **POWER**: Powerful 32-bit ARM Cortex M4 microcontroller — based on the Microchip Atmel ATSAMD51N20w/1MB of program flash and 256K of RAM at 120 MHz Core clock
- **INDUSTRIAL GRADE**: All industrial spec parts for reliable operation in demanding applications
- **CONNECTIVITY**: USB interface for connecting to your development PC or Laptop computer for programming; provides virtual com port for CircuitPython console and UART, and mass storage filesystem interface to the 16 MB on-board flash for programs and data storage; can additionally be used in your application
- **CONTROL & INTERFACING**: RS485, I2C, WIFI: Latching I2C interface connector on-board for sensors, controllers, displays, keypads, etc, on this common bus; latching RS485 interface connector on-board, a UART-style differential bus with high noise immunity common in manufacturing and control automation applications; 12-pin AUX expansion socket on-board and WIFI-enabled using the ubiquitous and inexpensive ESP-01S module and general expansion capability; additionally, VINA-D51 brings out Digital I/O, UARTs, I2C, SPI, A/D, DAC, USB, and many other useful control and interfacing capabilities to the edge
- **DEVELOPMENT and DEBUG**: CircuitPython and UF2 Bootloader pre-installed to get started developing right away with just a laptop or PC and a text editor; no extra software or IDEs to install and no extra hardware to purchase; and with a standard ARM Cortex SWD debug header on-board, low level programming in C/C++ with source-level, single-step debugging utilizing a hardware programmer like the Segger J-Link
- **DATA STORAGE**: Large 16 MB of on-board flash filesystem storage space for your programs and data presented as an external drive on your development workstation; soldered directly to the board, this flash storage won’t suffer from corrosion or vibration in harsh environments like SD-Card type storage are prone
- **FLEX VOLTAGE**: Robust power section with wide voltage input range for flexible and reliable operation, and enough headroom to supply power to other devices - perhaps even your whole
application board - up to about 3 amps; incorporates industrial grade Molex latch-lock connector that will not vibrate loose even in the most demanding applications

To get you started even more quickly, BDMICRO provides the Autodesk Eagle CAD part for VINA-D51. Getting started is as easy as downloading the part and adding it to your application-specific design, allowing you to focus on your custom application's needs, with all the right connectors, headers, and other circuitry needed for your specific project solution.

NOTE: Download the Eagle Part Library for VINA-D51 from our website here: https://www.bdmicro.com/products/vina-d51

When it is time to test your custom application board, you know you've started from a solid foundation with the VINA-D51 module. VINA-D51 saves you from having to build and design the control section and other commonly needed facilities of your application over and over. Even when cut and pasting from one design to another, it is easy to make mistakes with dangling or conflicting signal names and other common errors. So it saves you money by saving you time - both in design work, as well as testing and debugging.

And when it is time to design and build another custom application solution, you are already familiar with the VINA-D51 and its capabilities. You know you can get a brand new custom application up and running with it quickly and with confidence. Saving you time and money, over and over again.

4 Autodesk Eagle CAD Part for VINA-D51

The Autodesk Eagle CAD Part for VINA-D51 is available for download here: https://www.bdmicro.com/products/vina-d51. See Figure 4 for the part's board outline, and Figure 5 for the schematic symbol.

![Figure 4: Autodesk Eagle CAD Part for VINA-D51 (board)](https://www.bdmicro.com/products/vina-d51)

BDMICRO, LLC • https://www.bdmicro.com/ • ~/doc/vina-d51.tex
NOTE: You can turn off the tDocu layer in the Eagle layout editor to eliminate the part reference locations on the VINA-D51 part. You might want to do this if you are laying out parts underneath the VINA-D51 part for placement clarity.

Figure 5: Autodesk Eagle CAD Part for VINA-D51 (schematic symbol)

5 Notable On-Board Features

The VINA-D51 has several notable on-board features. These include:

1. **32-bit ARM Cortex M4 MCU** — with 1MB Firmware Flash and 256KB RAM clocked at 120MHz (Microchip Atmel ATSAMD51N20), with A/D, DAC, Digital I/O, UARTs, I2C, SPI, PWM, Timers, Capacitive Touch, and many other capabilities

2. **1MB Firmware Flash** — large firmware space

3. **256KB Static RAM** — large, fast, internal RAM

4. **Hardware Peripheral Control** — A/D, DAC, Digital I/O, UARTs, I2C, SPI, I2S, PWM, Timers, Capacitive Touch, and more

5. **Highly Configurable** — to suit application needs

6. **CircuitPython** — pre-installed (MicroPython derivative)

7. **Easy to get started** developing immediately using only a PC or Laptop and a text editor

8. **UF2 Bootloader** — pre-installed eliminating the need for additional hardware or dedicated programmer to flash the firmware
9. **No IDEs needed** or complicated development environments to set up or install and no additional hardware needed for programming

10. **USB Port** for programming and interfacing

11. **Virtual COM Port** for connecting to the console using standard terminal emulator from a PC or Laptop - no additional hardware required for programming

12. **Large 16 MB Flash Filesystem** for data and programs; used by CircuitPython filesystem or other custom application; can be used for program and data storage under application control; soldered directly on the board, more reliable than SD-card type filesystem storage especially for harsh environments

13. **Mass Storage Device Interface to PC or Mac** for downloading programs

14. **WIFI** using the AUX module socket with an ESP-01S or BDMICRO ATW-01 WiFi Module with the WINC-1500

15. **Wide voltage input from 3.7 to 24V** with robust Latch-Lock connector that won’t vibrate loose even in harsh environments; mating connector is the Molex 0430250208 Microfit 3.0 Series Latch Lock connector

16. **USB Port Power**

17. **RS485 Port** — with optional termination on-board, for interfacing with this common, differential, high noise immunity industrial control bus — mating part is the Molex 0430250408 3mm MicroFit 3.0 Series; optional power can be supplied to or from the RS485 bus or I2C bus through jumper selection; one can even supply power to VINA-D51 using regulated 3.3V through this connector (jumper selectable)

18. **I2C Connector** — on-board, 4-pins for SCL, SDA, GND, and optionally 3.3V; with on-board pull-ups, for easily connecting I2C sensors, displays, etc — mating part is the Molex 0050579404 SL 70066 Series with robust latch lock that won’t vibrate loose even in harsh environments; optional power can be supplied to the I2C connector through jumper selection to power I2C devices or to even power the VINA-D51 from regulated 3.3V through this connector (jumper selectable)

19. **On-Board I2C pull-ups** — jumper selectable

20. **32kHz RTC Crystal** — for accurate time keeping

21. **/RESET Switch** — single-tap to reset the board, double-tap to enter the bootloader

22. **ARM Cortex SWD Debug Port** — for low-level firmware flashing and source level single-step debugging with hardware programmer support such as the Segger J-Link

23. **Robust, Latch-Lock Power Connectors** — for Power, RS485, and I2C — will not vibrate loose even in harsh environments

24. **Jumper Selectable Power** — either USB or External

25. **Jumper-Enabled RS485 Bus Termination**

26. **Jumper-Enabled I2C Bus Pull-Ups**

27. **Jumper-Enabled 3.3V Power to or from the RS485 Bus**

28. **Jumper-Enabled 3.3V Power to or from the I2C Bus**
29. **Fused Power Inputs** — both USB and External Power are fused appropriately for their voltage input and power draw

30. **Power Indicator LED** — with cuttable solder-jumper to disable for very lower power modes

31. **Three Programmable Status LEDs** — Red, Green, and Blue - connected to digital I/O and fully programmable under application control

32. **RX and TX LEDs** — for use by CircuitPython for indicating transmission and reception of data over USB, or fully programmable under application control

33. **Small Size** — 1.6 x 2.8 inches

34. **Low Power** — draws about 30mA, lower power modes are available through programming

35. **All Industrial Grade Parts** — ready for demanding environments and control applications
6 Pinout Diagram

See Figure 6 for the VINA-D51 pinout assignments.

Figure 6: VINA-D51 Pinout Assignments

NOTE: Signal names are derived from the convenient function or peripheral they connect to. The MCU Pad name is also provided for ATSAMD51N20 datasheet reference. See Table 1 and Table 2 table detail in this section for the extensive list of alternate peripheral functions available for each pin.
VINA-D51 Pinout Table

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal Name(s)</th>
<th>MCU Pad</th>
<th>Primary Peripheral</th>
<th>Alternate Peripherals Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RS485_A</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>2</td>
<td>RS485_B</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>3</td>
<td>I2C1_SCL, SCL</td>
<td>PA12</td>
<td>SERCOM4, PAD-1/3</td>
<td>AC, CMP-0/1 EIC, EXTINT-12 PCC, DEN1 PORT, P-12 SDHC0, SDCC SERCOM2, PAD-0/1 SERCOM4, PAD-1/3 TC2, WO-0/2 TCC0, WO-6/1 TCC1, WO-2/4</td>
</tr>
<tr>
<td>4</td>
<td>I2C1_SDA, SDA</td>
<td>PA13</td>
<td>SERCOM4, PAD-0/3</td>
<td>AC, CMP-1/1 EIC, EXTINT-13 PCC, DEN2 PORT, P-13 SDHC0, SDWP SERCOM2, PAD-1/1 SERCOM4, PAD-0/3 TC2, WO-1/2 TCC0, WO-7/1 TCC1, WO-3/4</td>
</tr>
<tr>
<td>5</td>
<td>UART1_TX</td>
<td>PB25</td>
<td>SERCOM2, PAD-0/4</td>
<td>AC, CMP-1/3 EIC, EXTINT-9 PDEC, QDI-2/4 PORT, P-57 SERCOM0, PAD-1/2 SERCOM2, PAD-0/4</td>
</tr>
<tr>
<td>6</td>
<td>UART1_RX</td>
<td>PB24</td>
<td>SERCOM2, PAD-0/4</td>
<td>AC, CMP-0/3 EIC, EXTINT-8 PDEC, QDI-1/4 PORT, P-56 SERCOM0, PAD-0/2 SERCOM2, PAD-1/4</td>
</tr>
<tr>
<td>7</td>
<td>UART1_RTS</td>
<td>PC24</td>
<td>SERCOM2, PAD-2/4</td>
<td>EIC, EXTINT-8 PORT, P-88 SERCOM0, PAD-2/2 SERCOM2, PAD-2/4</td>
</tr>
<tr>
<td>8</td>
<td>UART1_CLK</td>
<td>PC25</td>
<td>SERCOM2, PAD-3/4</td>
<td>EIC, EXTINT-9 PORT, P-89 SERCOM0, PAD-3/2 SERCOM2, PAD-3/4</td>
</tr>
<tr>
<td>9</td>
<td>UART2_TX, TX, I2C2_SDA</td>
<td>PB21</td>
<td>SERCOM7, PAD-0/4</td>
<td>EIC, EXTINT-5 GCLK, IO-7 PORT, P-53 SDHC1, SDDAT-3 SERCOM3, PAD-1/2 SERCOM7, PAD-0/4 TCC1, WO-3/2</td>
</tr>
<tr>
<td>10</td>
<td>UART2_RX, RX, I2C2_SCL</td>
<td>PB20</td>
<td>SERCOM7, PAD-1/4</td>
<td>EIC, EXTINT-4 GCLK, IO-6 PDEC, QDI-2/2 PORT, P-52 SDHC1, SDDAT-2 SERCOM3, PAD-0/2 SERCOM7, PAD-1/4 TCC1, WO-2/2</td>
</tr>
<tr>
<td>11</td>
<td>SPI1_SCK, SCK</td>
<td>PC28</td>
<td>SERCOM1, PAD-1/3</td>
<td>CCL, IN-5 EIC, EXTINT-12 PORT, P-92 SERCOM1, PAD-1/3</td>
</tr>
<tr>
<td>12</td>
<td>SPI1_MISO, MISO</td>
<td>PB23</td>
<td>SERCOM1, PAD-3/3</td>
<td>CCL, OUT-0 EIC, EXTINT-7 GCLK, IO-1 OSCCTRL, XOUT-1 PDEC, QDI-0/4 PORT, P-55 SERCOM1, PAD-3/3 SERCOM5, PAD-3/4 TC7, WO-1/2</td>
</tr>
<tr>
<td>13</td>
<td>SPI1_MOSI, MOSI</td>
<td>PC27</td>
<td>SERCOM1, PAD-0/3</td>
<td>CCL, IN-4 EIC, EXTINT-11 PORT, P-91 SERCOM1, PAD-0/3</td>
</tr>
<tr>
<td>14</td>
<td>SPI1_SSS, SS, SSS</td>
<td>PB22</td>
<td>SERCOM1, PAD-2/3</td>
<td>CCL, IN-0 EIC, EXTINT-6 GCLK, IO-0 OSCCTRL, XIN-1 PDEC, QDI-2/3 PORT, P-54 SERCOM1, PAD-2/3 SERCOM5, PAD-2/4 TC7, WO-0/2 USBD, SOF_1KHZ/2</td>
</tr>
<tr>
<td>15</td>
<td>D15, I2S_SDO</td>
<td>PA21</td>
<td>I2S_SDO/2</td>
<td>ADC0_X-15 ADC0_Y-15 EIC, EXTINT-5 I2S_SDO/2 PCC, DATA-8 PORT, P-21 SDHC1, SDCK SERCOM3, PAD-3/2 SERCOM5, PAD-3/2 TC7, WO-1/1 TCC0, WO-1/6 TCC1, WO-5/1</td>
</tr>
<tr>
<td>16</td>
<td>D16, I2S_SDI</td>
<td>PA22</td>
<td>I2S_SDI/2</td>
<td>ADC0_X-16 ADC0_Y-16 CCL, IN-6 EIC, EXTINT-6 I2S_SDI/2 PCC, DATA-6 PORT, P-22 SERCOM3, PAD-0/1 SERCOM5, PAD-1/3 SERCOM5, PAD-0/3 TC7, WO-0/3 TC7, WO-0/6 TC7, WO-6/1</td>
</tr>
<tr>
<td>17</td>
<td>D17, I2S_FS0</td>
<td>PA20</td>
<td>I2S_FS0/2</td>
<td>ADC0_X-14 ADC0_Y-14 EIC, EXTINT-4 I2S_FS0/2 PCC, DATA-4 PORT, P-20 SDHC1, SDCMD SERCOM3, PAD-2/2 SERCOM5, PAD-2/2 TC7, WO-0/1 TCC0, WO-0/6 TCC1, WO-4/1</td>
</tr>
<tr>
<td>18</td>
<td>D18, I2S_SCK0</td>
<td>PB16</td>
<td>I2S_SCK0/2</td>
<td>CCL, IN-11 EIC, EXTINT-0 GCLK, IO-2 I2S_SCK0/2 PORT, P-48 SDHC1, SDCC SERCOM5, PAD-0/1 TC6, WO-0/1 TCC0, WO-6/6 TCC3, WO-3/2</td>
</tr>
<tr>
<td>19</td>
<td>D19, I2S_MCK0</td>
<td>PB17</td>
<td>I2S_MCK0/2</td>
<td>CCL, OUT-3 EIC, EXTINT-1 GCLK, IO-3 I2S_MCK0/2 PORT, P-49 SDHC1, SDWP SERCOM5, PAD-1/1 TC6, WO-0/2 TCC0, WO-5/6 TCC3, WO-1/2</td>
</tr>
<tr>
<td>20</td>
<td>D12</td>
<td>PA15</td>
<td>TC2, WO-0/1</td>
<td>EIC, EXTINT-15 GCLK, IO-1 OSCCTRL, XOUT-0 PORT, P-15 SERCOM2, PAD-3/3 SERCOM4, PAD-3/3 TC3, WO-1/1 TC1, WO-3/3 TCC2, WO-1/1</td>
</tr>
<tr>
<td>21</td>
<td>D13</td>
<td>PB12</td>
<td>TC3, WO-0/1</td>
<td>ADC0_X-26 ADC0_Y-26 EIC, EXTINT-12 GCLK, IO-6 I2S_SCK-11 PORT, P-44 SDHC0, SDCC SERCOM4, PAD-0/1 TC4, WO-0/2 TCC0, WO-0/5 TCC3, WO-0/1</td>
</tr>
<tr>
<td>22</td>
<td>D14</td>
<td>PB13</td>
<td>TC3, WO-1/1</td>
<td>ADC0_X-27 ADC0_Y-27 EIC, EXTINT-13 GCLK, IO-7 I2S_MCK-11 PORT, P-45 SDHC0, SDWP SERCOM4, PAD-1/1 TC4, WO-1/2 TCC0, WO-1/5 TCC3, WO-1/1</td>
</tr>
<tr>
<td>24</td>
<td>USB_DM</td>
<td>PA24</td>
<td>USB_DM</td>
<td>CCL, IN-8 EIC, EXTINT-8 PDEC, QDI-0/3 PORT, P-24 SERCOM3, PAD-2/1 SERCOM5, PAD-2/3 TC5, WO-0/3 TC2, WO-2/1 USB_DM</td>
</tr>
<tr>
<td>25</td>
<td>VUSB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>+3V3</td>
<td>VCC</td>
<td>VCC</td>
<td>VCC</td>
</tr>
<tr>
<td>27</td>
<td>V+IN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
</tbody>
</table>

Table 1: VINA-D51 Pinout Table
<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal Name(s)</th>
<th>MCU Pad</th>
<th>Primary Peripheral</th>
<th>Alternate Peripherals Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>D11</td>
<td>PA14</td>
<td>TCC2,WO-0/1</td>
<td>EIC,EXTINT-14 GCLK,IO-0 OSCCTRL,XIN-0 PCC,CLK PORT,P-14 SERCOM2,PAD-2/1 SERCOM4,PAD-2/3 TC3,WO-0/1 TCC1,WO-2/5 TCC2,WO-0/1</td>
</tr>
<tr>
<td>30</td>
<td>D10</td>
<td>PC13</td>
<td>TCC1,WO-7/3</td>
<td>EIC,EXTINT-13 PCC,DATA-11 PORT,P-77 SERCOM6,PAD-0/4:5 SERCOM7,PAD-1/1:3 TC0,WO-3/3 TCC1,WO-7/3</td>
</tr>
<tr>
<td>31</td>
<td>D9</td>
<td>PC12</td>
<td>TCC1,WO-6/3</td>
<td>EIC,EXTINT-12 PCC,DATA-10 PORT,P-76 SERCOM6,PAD-1/4:5 SERCOM7,PAD-0/1:3 TC0,WO-2/3 TCC1,WO-6/3</td>
</tr>
<tr>
<td>32</td>
<td>D8</td>
<td>PB19</td>
<td>TCC1,WO-1/3</td>
<td>EIC,EXTINT-3 GCLK,IO-5 PDEC,QDI-1/2 PORT,P-51 SDHC1,SDDAT-1 SERCOM5,PAD-3/1 SERCOM7,PAD-3/4 TCC1,WO-1/3</td>
</tr>
<tr>
<td>33</td>
<td>D7</td>
<td>PB18</td>
<td>TCC1,WO-0/3</td>
<td>EIC,EXTINT-2 GCLK,IO-4 PDEC,QDI-0/2 PORT,P-50 SDHC1,SDDAT-0 SERCOM5,PAD-2/1 SERCOM7,PAD-2/4 TCC1,WO-0/3</td>
</tr>
<tr>
<td>34</td>
<td>D6</td>
<td>PC21</td>
<td>TCC0,WO-5/4</td>
<td>CCL,IN-10 EIC,EXTINT-5 PORT,P-85 SDHC1,SDWP TCC0,WO-5/4</td>
</tr>
<tr>
<td>35</td>
<td>D5</td>
<td>PC20</td>
<td>TCC0,WO-4/4</td>
<td>CCL,IN-9 EIC,EXTINT-4 PORT,P-84 SDHC1,SDCD TCC0,WO-4/4</td>
</tr>
<tr>
<td>36</td>
<td>D4</td>
<td>PC19</td>
<td>TCC0,WO-3/4</td>
<td>EIC,EXTINT-3 PORT,P-83 SERCOM0,PAD-3/4 SERCOM6,PAD-3/1 TCC0,WO-3/4</td>
</tr>
<tr>
<td>37</td>
<td>D3</td>
<td>PC18</td>
<td>TCC0,WO-2/4</td>
<td>EIC,EXTINT-2 PDEC,QDI-2/1 PORT,P-82 SERCOM0,PAD-2/4 SERCOM6,PAD-2/1 TCC0,WO-2/4</td>
</tr>
<tr>
<td>38</td>
<td>D2</td>
<td>PC17</td>
<td>TCC0,WO-1/4</td>
<td>EIC,EXTINT-1 PDEC,QDI-1/1 PORT,P-81 SERCOM0,PAD-0/4 SERCOM6,PAD-1/1 TCC0,WO-1/4</td>
</tr>
<tr>
<td>39</td>
<td>D1</td>
<td>PC16</td>
<td>TCC0,WO-0/4</td>
<td>EIC,EXTINT-0 PDEC,QDI-0/1 PORT,P-80 SERCOM0,PAD-1/4 SERCOM6,PAD-0/1 TCC0,WO-0/4</td>
</tr>
<tr>
<td>40</td>
<td>D0</td>
<td>PB31</td>
<td>TCC0,WO-7/4</td>
<td>EIC,EXTINT-15 PORT,P-63 SERCOM5,PAD-0/5 SERCOM7,PAD-1/5 TC0,WO-1/3 TCC0,WO-7/4 TC4,WO-1/2</td>
</tr>
<tr>
<td>41</td>
<td>DAC1</td>
<td>PA05</td>
<td>DAC,VOUT-1</td>
<td>AC,AIN-1 ADC0,AIN-5 CCL,IN-1 DAC,VOUT-1 EIC,EXTINT-5 PORT,P-5 SERCOM0,PAD-1/1 TCC0,WO-1/1</td>
</tr>
<tr>
<td>42</td>
<td>DAC0</td>
<td>PA02</td>
<td>DAC,VOUT-0</td>
<td>ADC0,AIN-0 DAC,VOUT-0 EIC,EXTINT-2 PORT,P-2 RTC,IN-2</td>
</tr>
<tr>
<td>43</td>
<td>A11</td>
<td>PC00</td>
<td>ADC1,AIN-10</td>
<td>ADC1,AIN-10 EIC,EXTINT-0 PORT,P-64 RTC,IN-3</td>
</tr>
<tr>
<td>44</td>
<td>A10</td>
<td>PB07</td>
<td>ADC1,AIN-9</td>
<td>ADC0,X-25 ADC0,Y-25 ADC1,AIN-9 CCL,IN-7 EIC,EXTINT-7 PORT,P-39</td>
</tr>
<tr>
<td>45</td>
<td>A9</td>
<td>PB06</td>
<td>ADC1,AIN-8</td>
<td>ADC0,X-24 ADC0,Y-24 ADC1,AIN-8 CCL,IN-6 EIC,EXTINT-6 PORT,P-38</td>
</tr>
<tr>
<td>46</td>
<td>A8</td>
<td>PB05</td>
<td>ADC1,AIN-7</td>
<td>ADC0,X-23 ADC0,Y-23 ADC1,AIN-7 EIC,EXTINT-5 PORT,P-37</td>
</tr>
<tr>
<td>47</td>
<td>A7</td>
<td>PB04</td>
<td>ADC1,AIN-6</td>
<td>ADC0,X-22 ADC0,Y-22 ADC1,AIN-6 EIC,EXTINT-4 PORT,P-36</td>
</tr>
<tr>
<td>48</td>
<td>A6</td>
<td>PC03</td>
<td>ADC1,AIN-5</td>
<td>ADC1,AIN-5 EIC,EXTINT-3 PORT,P-67</td>
</tr>
<tr>
<td>49</td>
<td>A5</td>
<td>PC02</td>
<td>ADC1,AIN-4</td>
<td>ADC1,AIN-4 EIC,EXTINT-2 PORT,P-66</td>
</tr>
<tr>
<td>50</td>
<td>A4</td>
<td>PB09</td>
<td>ADC1,AIN-1</td>
<td>ADC0,AIN-3 ADC0,X-2 ADC0,Y-2 ADC1,AIN-1 CCL,OUT-2 EIC,EXTINT-9 PORT,P-41 SERCOM4,PAD-1/2 TC4,WO-1/1</td>
</tr>
<tr>
<td>51</td>
<td>A3</td>
<td>PB08</td>
<td>ADC1,AIN-0</td>
<td>ADC0,AIN-2 ADC0,X-1 ADC0,Y-1 ADC1,AIN-0 CCL,IN-8 EIC,EXTINT-8 PORT,P-40 SERCOM4,PAD-0/2 TC4,WO-0/1</td>
</tr>
<tr>
<td>52</td>
<td>A2</td>
<td>PA07</td>
<td>ADC0,AIN-7</td>
<td>AC,AIN-3 ADC0,AIN-7 ADC0,X-5 ADC0,Y-5 CCL,OUT-0 EIC,EXTINT-7 PORT,P-7 SDHC0,SDWP SERCOM0,PAD-3/3 TCC1,WO-1/1</td>
</tr>
<tr>
<td>53</td>
<td>A1</td>
<td>PA06</td>
<td>ADC0,AIN-6</td>
<td>AC,AIN-2 ADC0,AIN-6 ADC0,X-4 ADC0,Y-4 CCL,IN-2 EIC,EXTINT-6 PORT,P-6 SDHC0,SDCD SERCOM0,PAD-2/3 TC1,WO-0/1</td>
</tr>
<tr>
<td>54</td>
<td>A0</td>
<td>PA04</td>
<td>ADC0,AIN-4</td>
<td>AC,AIN-0 ADC0,AIN-4 ADC0,X-3 ADC0,Y-3 CCL,IN-0 EIC,EXTINT-4 PORT,P-4 SERCOM0,PAD-0/3 TC0,WO-0/1</td>
</tr>
<tr>
<td>55</td>
<td>VREFA</td>
<td>PA03</td>
<td>ADC0,AIN-1</td>
<td>ADC0,AIN-1 ADC0,X-0 ADC0,Y-0 EIC,EXTINT-3 PORT,P-3</td>
</tr>
<tr>
<td>56</td>
<td>RESET</td>
<td>RESET</td>
<td>PM,RESET</td>
<td>PM,RESET, N</td>
</tr>
</tbody>
</table>

Table 2: VINA-D51 Pinout Table
IMPORTANT: It is important to note that any pin can be configured for any of the alternate peripheral functions. You are not limited to the primary peripheral. The primary peripheral was chosen so that the VINA-D51 presented all of the most important features needed for a modular controller targeted at a variety of applications, to ensure that it is as flexible as possible with regard to the pins brought out to the edge. If any of these primary peripherals are not suitable for your application, VINA-D51 has the flexibility to redefine them through programming to any of the alternate peripheral functions to suit your needs.

7 Mechanical Diagram

See Figure 7 for the VINA-D51 mechanical layout with dimensions.

NOTE: Units are in inches.

![Figure 7: VINA-D51 Mechanical Layout](https://www.bdmicro.com/doc/vina-d51.tex)
8 Power

See Figure 8 for the diagram of the external power connection. The on-board regulator and fusing accepts a wide voltage range for flexibility and to minimize the chance of over-voltage using common power supplies. Accepted input range is 3.7V to 24V unregulated DC.

VINA-D51

External Power Connector

- **V+IN - Unregulated**
- **3.7V - 24V**
- **GND**

Mating Connector: Molex 0430250208
MicroFit 3.0 Series (Latch Lock)

Figure 8: VINA-D51 External Power Connector

NOTE: The on-board regulator can deliver up to 3A of current. The VINA-D51 itself only uses a fraction of that - about 20mA. So substantial headroom is left over for powering other circuits like sensors and displays. As with any circuit, be sure and power it with a suitable, high quality power supply that meets the power requirements of all of your components.

NOTE: Both the External Power and USB power inputs are fused using resettable PTC fuses sized appropriately for the power from each source.

While not depicted in the diagrams, VINA-D51 can also be powered by the 3V3 pin of the I2C connector or that of the RS485 connector. See Section 11 for a description of the 3.3V pin of the RS485 connector. See Section 12 for a description of the 3.3V pin of the I2C connector. These sections identify the 3.3V locations within their respective connectors and the jumpers that enable them. The setup for this configuration is:

1. **Remove** the **PWR_SEL** jumper
2. Connect one of the VINA-D51 I2C or RS485 connectors to a connection that supplies **regulated 3.3V** to the 3V3 pin
3. Install either the **IV** or the **RV** jumpers depending on whether power is coming from the I2C or the RS485 connector, respectively.

This configuration will power VINA-D51 using regulated 3.3V from an external source through the I2C or RS485 connector. The I2C connector can be used with the **IV** jumper installed, or the RS485 connector.
can be used with the RV jumper installed. Note that input power filtering from the External Power connection and USB power connection are bypassed. The advantage is that it allows VINA-D51 power to piggy back off of another device’s power, eliminating the need for multiple power supplies, assuming the origin power supply is sufficiently capable and clean to power VINA-D51.

See Figure 9 for the diagram and location of the PWR_SEL jumper. This jumper is used to select between the external latch lock Molex power connector near pin 28, or powering the board from the USB power of your computer or hub. Or it can be removed to supply power to VINA-D51 using one of the 3V3 pins available: Pin 26, I2C-1 3V3, I2C-2 3V3, or RS485 3V3 from an external source.

![VINA-D51 PWR_SEL Power Selection Jumper](image)

VINA-D51

PWR_SEL Power Selection Jumper

The PWR_SEL jumper selects the input power source for VINA-D51

Set PWR_SEL to EXT for External Power

Set PWR_SEL to USB for USB Power

NOTE: PWR_SEL jumper currently set to USB above, shift to the right for EXT power connector

Figure 9: VINA-D51 PWR_SEL Jumper for USB or External Power Selection

See Table 3 for a description of the power inputs and outputs available at the edge pins of the VINA-D51 controller module.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal</th>
<th>Purpose</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>VUSB</td>
<td>USB Connector Output Voltage — same as from the USB Connector's voltage input (normally 5V) regardless of the PWR_SEL jumper position; use the PWR_SEL jumper set to the USB position to select USB as the source of power</td>
<td>3.7V</td>
<td>5V</td>
</tr>
<tr>
<td>26</td>
<td>+3V3</td>
<td>VCC — Input or Output — if using +3V3 as input power to VINA-D51, disconnect the PWR_SEL jumper; if using +3V3 as an output to power external devices, do not overload the on-board regulator or USB bus depending on the setting of the PWR_SEL jumper</td>
<td>3.3V</td>
<td>3.3V</td>
</tr>
<tr>
<td>27</td>
<td>V+IN</td>
<td>Unregulated input voltage - same connection as the External Power connector; use the PWR_SEL jumper set to the EXT position to use this input as the power source</td>
<td>3.7V</td>
<td>24V</td>
</tr>
<tr>
<td>28</td>
<td>GND</td>
<td>Board Ground</td>
<td>0V</td>
<td>0V</td>
</tr>
</tbody>
</table>

Table 3: VINA-D51 Power and Ground Pin Connection
9 RESET Switch

See Figure 10 for the location of the reset switch. The VINA-D51 reset switch is a momentary, normally-open switch. A single-tap will reset VINA-D51. Double-tap to enter the pre-installed UF2 bootloader.

![VINA-D51 Reset Switch Location](image)

Figure 10: VINA-D51 Reset Switch Location

10 USB

See Figure 11 for the location of the USB connection.

![VINA-D51 USB Connection](image)

Figure 11: VINA-D51 USB Connector
11 RS485

See Figure 12 for the diagram of the RS485 connector and bus termination jumper.

VINA-D51 includes one dedicated RS485 interface. The RS485 interface is accessible through Pin 1 and Pin 2 on the board edge — RS485 A and B signals respectively, see Figure 6 and Table 1. RS485 is also available by cable using the on-board 4-pin Molex connector supplying RS485-A, RS485-B, GND, and optionally 3.3V (see Figure 12). Additionally, an RS485 termination resistor is available on-board with a jumper to optionally enable or disable termination at the VINA-D51. See Figure 12 for the location of the connector and associated jumpers for 3.3V EN, and TERM.

The RS485 interface is internally connected to SERCOM5 for full RS485 hardware support of RX, TX, TE (transmitter enable), and RE (receiver enable).

The 3.3V pin connections allow you to power external RS485 devices from the RS485 bus connector as long as their power requirements do not exceed that of the on-board power supply.

The mating connector for the on-board RS485 connector is the Molex 0430250408 Latch Lock MicroFit 3.0 Series connector, that is robust and will not vibrate loose even in harsh environments.

NOTE: The on-board regulator is rated for a maximum of 3A of current. The VINA-D51 itself only uses a fraction of that - about 20mA. The additional headroom can be used to power external devices like other RS485 devices if their power requirements do not exceed that of the on-board power regulation section. As with any circuit, be sure and power it with a suitable, high quality power supply that meets the power requirements of all of your components.

11.1 RS485 Bus Termination

The RS485 bus requires a terminating resistor for proper operation. See Figure 12 for the location of the TERM jumper that engages the on-board 120 Ohm termination resistor. If your RS485 bus is terminated elsewhere on the bus, remove the TERM jumper to avoid double-termination.
11.2 RS485 Bus Power

See Figure 12 for the location of the RV jumper that enables 3.3V to the 3V3 pin of the 4-pin RS485 connector. Disconnect the RV jumper to disable 3.3V at the connector.

NOTE: If your RS485 device utilizes power from the RS485 bus, and the cable run is short, install the RV jumper to engage power. If your RS485 device draws more power than the VINA-D51 board can supply, or the cable run is long, remove the jumper and power your RS485 device from another power supply.

12 I2C

See Figure 13 for the diagram of the I2C connector.

VINA-D51 includes one, 4-pin I2C connector supplying connections for SCL, SDA, GND, and optionally 3.3V. The SCL and SDA pins can be connected to VINA-D51’s on-board I2C pull-ups using the indicated jumpers in Figure 13.

The I2C connector is connected to the same I2C bus as the edge pins labeled SCL and SDA internally. This allows you to easily connect an I2C peripheral using a cable and daisy chaining the bus for additional devices. Use the on-board pull-ups if needed - only one I2C device on the bus needs to have the pull-ups engaged, and VINA-D51 provides these if no other devices on the bus have pull-ups available.

The 3.3V pin connections allow you to power external I2C devices from this connector as long as their power requirements do not exceed that of the on-board power supply.

The mating connector for the on-board I2C connectors is the Molex 0050579404 SL 70066 Series Latch Lock connector for a secure connection that is resistant to vibration and suitable for harsh environments.

NOTE: The on-board regulator is rated for a maximum of 3A of current. The VINA-D51 itself only uses a fraction of that. The additional headroom can be used to power external devices like I2C sensors and displays. As with any circuit, be sure to power it with a suitable, high quality power supply that meets the power requirements of all of your components.
12.1 I2C Pull Ups

See Figure 13 for the location of the SCL and SDA pull-up jumpers. These jumpers enable the on-board pull-up resistors for the I2C bus. If you wish to use the SCL and SDA pins for a purpose other than I2C, or another I2C device on the bus is supplying the pull-ups, disconnect these jumpers.

12.2 I2C Bus Power

See Figure 13 for the location of the IV jumper that enables 3.3V to the 3V3 pin of the 4-pin I2C connector.

NOTE	The I2C connector on the VINA-D51 board connects internally to the same I2C pins on the board edge, pins 3 & 4. The I2C connector allows for conveniently connecting I2C peripherals using a cable connection and can optionally power the connected I2C peripheral(s).
	If your I2C device utilizes power from the I2C bus, install the IV jumper (Figure 13) for the connector. If your I2C device draws more power than the VINA-D51 board can supply, remove the jumper and power the I2C device from another power supply.

13 AUX Socket and Expandable Versatility

VINA-D51 provides an versatile auxiliary socket named ‘AUX’. This socket is intended for easy expansion using plug-in modules. For example, pins 1-8 of the 12-pin AUX socket match up the pins of the ESP-01S for providing easy WiFi connectivity. And BDMICRO offers the ATW-01 module using the WINC-1500 module that plugs into the AUX socket for more advanced WiFi capability.

The AUX socket is not limited to those modules. One can easily design a useful module to work with the VINA-D51 in order to expand its capabilities. The AUX port brings out a full ATSAMD51N20 SERCOM peripheral hardware in order to communicate with plug-in modules using I2C, RS232 TX/RX w/optional RTS/CTS for flow control, or SPI bus. Additionally, four GPIO pins are also brought out for digital I/O control and sensing, PWM, A/D, and IRQ inputs, greatly expanding the usefulness of the socket and VINA-D51 when the on-board features may not meet all your needs. Thus, the AUX connector is suitable for any application that can be implemented with any combination of those pins and peripherals.

See Figure 14 for the location of the AUX socket and it's pinout. See Figure 15 for examples of several different modules plugged into the AUX connector. Specifically note the location and orientation of the ESP-01S module since it doesn’t completely fill the socket and has four empty positions. The ESP-01S, if used, should fill pins 1-8, which are located closest to the USB connector.

Other applications for the AUX socket are many, from LoRa radio and other communications modules, servo controllers, special purpose sensors, and so on. It is designed for expandability, and future-proofing VINA-D51 vs having to switch to another controller or placing additional circuitry on a VINA-D51 application carrier board in order to meet the needs of the application.

See Table 4 for the detailed pinout and MCU pads that brought out to the AUX socket.
AUX Expansion Socket

NOTE: Signals in *Table 4* are not brought out to the VINA-D51 edge pins. They are only available on the 12-pin AUX Socket. Pin numbers match the standard pin assignments of this connector style with Pin 1 being in the top left corner, with the orientation of the top the side closest to the USB connector. The AUX Socket with pin labels is shown in *Figure 14*.

NOTE: Versatile Expansion Socket — While the 12-pin AUX socket is designed to interface with expansion modules, its pin layout accommodates the common ESP-01S WiFi module and the BDMICRO ATW-01 WINC-1500 WiFi module. Endless other devices and modules can be designed with the same compatible pinout and utilized as well. The possibilities are abundant, utilizing I2C, UARTs, SPI, PWMs, Input Capture and Counters, Analog Inputs, external interrupts, and general purpose digital I/O as accommodated by the MCU peripherals available on this versatile socket.

This capability opens many possibilities for expansion and utility.
14 ARM Cortex SWD Debug Header

The ARM Cortex debug header is a standard 10-pin header for use with hardware programmers and debuggers like the Segger J-Link. If using the Segger J-Link, use it with Segger J-Link 9-Pin Cortex-M Adapter (8.06.02).

14.1 Segger J-Link

BDMICRO uses the Segger J-Link Ultra+ for flashing the initial UF2 bootloader firmware and for source level debugging. The J-Link is available in several models and form factors, including an economical EDU model for non-commercial purposes. The Segger J-Link has several attractive features, notably, it ships with

Table 4: VINA-D51 AUX Socket Pinout Detail

<table>
<thead>
<tr>
<th>AUX Socket Pin #</th>
<th>Signal Name(s) / Purpose</th>
<th>MCU PAD</th>
<th>MCU Primary Peripheral</th>
<th>MCU Peripheral Alternates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AUX_1, AUX_UART_TX, AUX_SPI_MOSI, AUX_J2C_SDA, ATW01_MOSI, ESP01_TX</td>
<td>PA17</td>
<td>SERCOM3,PAD-0/3</td>
<td>ADC0,X-11 ADC0,Y-11 CCL,IN-1 EIC,EXTINT-1 GCLK,IO-3 PCC,DATA-1 PORT,P-17 SERCOM1,PAD-1/1 SERCOM3,PAD-0/3 TC2,WO-1/3 TCC0,WO-5/5 TCC1,WO-1/1</td>
</tr>
<tr>
<td>2</td>
<td>AUX_2, 3V3</td>
<td>VCC</td>
<td>VCC</td>
<td>VCC</td>
</tr>
<tr>
<td>3</td>
<td>AUX_3, AUX_UART_RTS, AUX_SPI_SS, ATW01_SS, ESP01_GPIO0</td>
<td>PA18</td>
<td>SERCOM3,PAD-2/3</td>
<td>AC,CMP-0/2 ADC0,X-12 ADC0,Y-12 CCL,IN-2 EIC,EXTINT-2 PCC,DATA-2 PORT,P-18 SERCOM1,PAD-2/1 SERCOM3,PAD-2/3 TC3,WO-0/2 TCC0,WO-6/3 TCC1,WO-2/1</td>
</tr>
<tr>
<td>4</td>
<td>ATW01_RESET, ESP01_RESET</td>
<td>PC14</td>
<td>PORT,P-78</td>
<td>EIC,EXTINT-14 PCC,DATA-12 PORT,P-78 SERCOM6,PAD-2/4 SERCOM7,PAD-2/1 TCC0,WO-4/3 TCC1,WO-0/5</td>
</tr>
<tr>
<td>5</td>
<td>AUX_5, AUX_UART_CTS, AUX_SPI_MISO, ATW01_MISO, ESP01_GPIO2</td>
<td>PA19</td>
<td>SERCOM3,PAD-3/3</td>
<td>AC,CMP-1/2 ADC0,X-13 ADC0,Y-13 CCL,OUT-0 EIC,EXTINT-3 PCC,DATA-3 PORT,P-19 SERCOM1,PAD-3/1 SERCOM3,PAD-3/3 TC3,WO-1/2 TCC0,WO-7/3 TCC1,WO-3/1</td>
</tr>
<tr>
<td>6</td>
<td>ATW01_EN, ESP01_GPIO0</td>
<td>PC15</td>
<td>PORT,P-79</td>
<td>EIC,EXTINT-15 PCC,DATA-13 PORT,P-79 SERCOM6,PAD-3/4 SERCOM7,PAD-3/1 TCC0,WO-5/3 TCC1,WO-1/5</td>
</tr>
<tr>
<td>7</td>
<td>AUX_7, GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>AUX_8, AUX_UART_RX, AUX_SPI_SCK, AUX_J2C_SCL, ATW01_SCK, ESP01_RX</td>
<td>PA16</td>
<td>SERCOM3,PAD-1/3</td>
<td>ADC0,X-10 ADC0,Y-10 CCL,IN-6 EIC,EXTINT-0 GCLK,IO-2 PCC,DATA-0 PORT,P-16 SERCOM1,PAD-0/1 SERCOM3,PAD-1/3 TC2,WO-0/3 TCC0,WO-4/5 TCC1,WO-0/1</td>
</tr>
<tr>
<td>9</td>
<td>ATW01_WAKE</td>
<td>PA27</td>
<td>PORT,P-27</td>
<td>ADC0,X-18 ADC0,Y-18 EIC,EXTINT-11 GCLK,IO-1 PORT,P-27</td>
</tr>
<tr>
<td>10</td>
<td>ATW01_IRQ</td>
<td>PC01</td>
<td>PORT,P-65</td>
<td>ADC1,AIN-11 EIC,EXTINT-1 PORT,P-65 RTC,IN-4</td>
</tr>
<tr>
<td>11</td>
<td>AUX_11, ATW01_GPIO3</td>
<td>PC10</td>
<td>PORT,P-74</td>
<td>EIC,EXTINT-10 PORT,P-74 SERCOM6,PAD-2/5 SERCOM7,PAD-2/3 TCC0,WO-0/3 TCC1,WO-4/4</td>
</tr>
<tr>
<td>12</td>
<td>AUX_12, ATW01_GPIO1</td>
<td>PC11</td>
<td>PORT,P-75</td>
<td>EIC,EXTINT-11 PORT,P-75 SERCOM6,PAD-3/5 SERCOM7,PAD-3/3 TCC0,WO-1/3 TCC1,WO-5/4</td>
</tr>
</tbody>
</table>
with the GNU GDB server specifically for the J-Link, includes the J-Link command line utility, and multi-platform support including Windows, MacOS, and Linux.

The J-Link (or similar hardware programmer) enables you to program the flash on the VINA-D51, independently of the pre-installed UF2 bootloader. Under normal circumstances, this is not required since VINA-D51 ships with the UF2 bootloader pre-installed, enabling easy flash programming using MacOS or Windows drag and drop file operations without having to purchase or set up additional hardware and software.

If you wish to replace the UF2 bootloader with another bootloader, or load your application directly without bootloader support, you will need a hardware programmer similar to the Segger J-Link.

NOTE: The UF2 bootloader is capable of self-update to overwrite itself with a newer version of the UF2 bootloader. So you can update the bootloader to a newer version without having to purchase and use a hardware programmer like the Segger J-Link.

14.2 Using the Segger J-Link Command-Line and VINA-D51

The Segger J-Link comes with a command-line tool to, among other things, flash your firmware onto your board, in this case the VINA-D51 with the atsamd51n20 chip. To utilize the command-line tool, connect your J-Link to USB of your development computer, connect the J-Link Target side to the 10-pin ARM Cortex Debug Header on the VINA-D51, and supply power to the VINA-D51, either using the external power connector or the USB connector.

We use MacOS for development and by default, the Segger applications are installed in:

```
/Applications/SEGGER/JLink
```

With the command-line utility at:

```
/Applications/SEGGER/JLink/JLinkExe
```
You can write a simple shell script to shorten command-line invocation as follows:

```
#!/bin/ksh
/Applications/SEGGER/JLink/JLinkExe $*
```

Name it something like `jlink` and put it in `$HOME/bin` and make sure `$HOME/bin` is in your `PATH` environment variable.

At this point, you can invoke the Segger J-Link command-line tool by executing your `jlink` short-name script. Once the tool is running, connect to VINA-D51 by typing `connect` at the J-Link> prompt. Enter `atsamd51n20` for the device. Select `s` and press return to connect using the SWD protocol, and accept the default target interface speed. You should see something similar to Figure 17 when connected.
From the J-Link> prompt, you can load your flash using the loadbin command, examine memory and registers, set memory and registers, start and halt the MCU, and much more. Use the `?` command for a full listing of the commands available and their syntax.

14.3 Source Level Debugging using the Segger J-Link and VINA-D51

To utilize source-level, single-step debugging with the Segger J-Link, do the following:
1. Install the `gcc-arm-none-eabi` tools for your platform, and ensure the `bin` directory for the tools is in your `PATH`.

2. Install the Segger J-Link full software and documentation pack available from Segger for your platform.

3. Plug the Segger J-Link into your computer using a USB cable.

4. Plug the J-Link 10-pin adapter connector into the debug header of the VINA-D51.

5. Ensure your board is powered either through the USB connector or External Power connector.

6. Start the Segger JLinkGDBServer for your platform.

7. Within the JLinkGDBServer, connect to your Segger J-Link using USB (see Figure 18).

![Figure 18: Segger J-Link GDB Server Settings for VINA-D51](image)

(a) Select the Target device `atsamd51n20`
(b) Select the Target interface `SWD`
(c) Leave everything else default
(d) Click “OK”
8. The JLinkGDBServer will connect to your J-Link and wait for a remote GDB connection (see Figure 19)

![Figure 19: Segger J-Link GDB Server Waiting for Connection from GDB](image)

9. Bring up a command-line window and start GDB using the `arm-none-eabi-gdb` command

10. At the `(gdb)` prompt, connect to the remote JLinkGDBServer using the port that it advertises - note, you can find port as the highlighted line in Figure 19:

    ```bash
    (gdb) target remote localhost:2331
    ```

11. You should now see GDB and JLinkGDBServer connect and negotiate and be returned to the `(gdb)` prompt

12. At this point, you are now debugging the remote target using GDB and all of its commands are available such as setting breakpoints, single-stepping, examining variables, back-trace the stack, and all of the other powerful debug capabilities of GDB (see Figure 20)
NOTE: To utilize source level debugging you need to compile your application with the `-g` option to include debug symbols.