

Rw Electrodes.com

CNNV® Resistance Welding Products Catalog

Your One Source for Resistance Welding Products

Worldwide Distribution

Thousands of Items in Stock

Ask About Volume Buying Programs

Order via Phone, Fax, EDI, or E-Commerce

Same Day Shipping for Stock Parts
Order by 2:00 P.M. EST

ISO 9001:2015 Certified

Largest Selection of Resistance Welding Products

We Can Answer Your Resistance Welding Questions

Ask the Welding Experts!

CALL US TOLL FREE 800-521-3722

Riectrodes.com

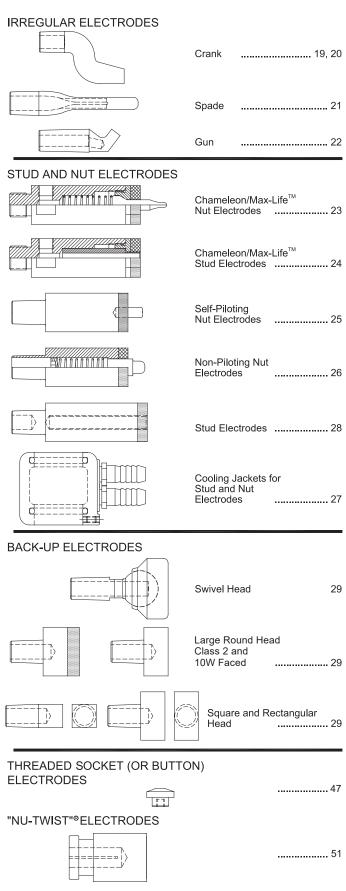
RESISTANCE WELDING PRODUCTS

• ELECTRODES • HOLDERS • BAR STOCK • SEAM WELDING WHEELS • RINGS • SPECIAL TOOLING • SHAFTS • BUSHINGS • CASTINGS • FORGINGS • ELECTRODE MATERIALS

Special electrodes, holders and tooling for resistance welding applications

Continuously serving the resistance Welding Industry since 1929, CMW has been an industry leader in the development, engineering and manufacturing of a variety of products. In addition, CMW offers a diversity of special metals for resistance welding applications. CMW's resistance welding products are engineered to provide the most effective materials commercially available to help achieve top quality welds. Experienced CMW Product engineers will aid you in the design and production of standard or special parts for your application to insure maximum efficiency from CMW's resistance welding products.

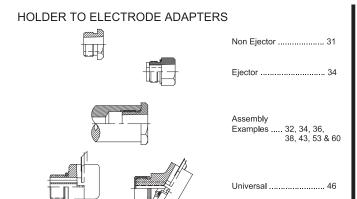
Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com Website: www.cmwinc.com



RESISTANCE WELDING PRODUCTS

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

APPLICATION AND DATA SHEETS CMW Copper Base Alloys					
CAP ELECTRODES GCAPS®AND	SHANKS				
	Cap Electrodes8, 9,10,11				
	GCAP® Electrodes9				
	Cap Shanks 12, 13				
STRAIGHT ELECTRODES					
	Dome and Pointed Nose14				
	Flat and Offset Nose 15				
	Radius, Truncated, and 30° Nose 16				
	Refractory Metal Faced Nose				
BENT ELECTRODES					
	Single and Radius Bend17				
	Double Bend18				
THREADED ELECTRODES					


Electrodes.com **RESISTANCE WELDING PRODUCTS**

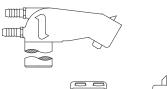

Phone: 800-521-3722

Fax: 864-877-2212

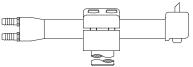
Email: cmw@cmwinc.com

ELECTRODE HOLDERS

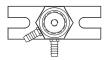
100 Series Straight Non Ejector 32, 33

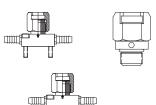


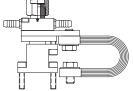
200 Series Straight Ejector 34, 35 300 Series

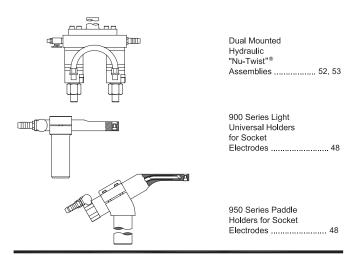


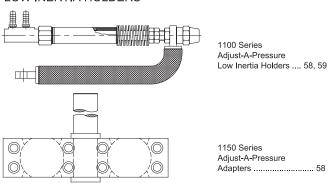
Premium Straight Ejector 36, 37


500 Series Heavy Duty Ejector Offset 41, 42, 43


600 Series Universal Holders 44

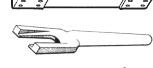

600 Series Universal Holder Components45


Platen Mounted


800 Series "Nu-Twist"® Surface and Threaded Adapters .. 50, 51

Hydraulic Equalizing Adapters for 800 Series 54, 55, 56, 57

LOW INERTIA HOLDERS



MULTISPOT ADAPTERS FOR AIR OR HYDRAULIC PISTONS

1200 Series Multi-Spot Adapters 61

ACCESSORIES

Shunt and Cables..... 62

Cap Electrode Extractor Fork .

Reamers, Hose Connectors, and Hose Clamps 63

Hand Electrode Dresser 63

Weld Analyzer 64

Force Gauge 66

Pneumatic Electrode	
Dresser and Cutters	65

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

Long electrode life is of paramount importance to the user of resistance welding equipment. Selection of the proper CMW alloy or combination of alloys will help to give improved weld strength and electrode life.

CMW electrodes are fabricated from alloys selected from the results of laboratory and practical field tests. For special problems, CMW engineers will make recommendations based on their years of experience.

Typical Physical and Mechanical Properties of Copper Based Alloys

Copper Based			R.W.M.A. Alloy	Hardness	Electrical Conductivity	Ultimate Tensile	Elongation	Permanent Begi	Softening ns at
Alloys	Condition	Principal Elements	Number	Rockwell	%I.A.C.S.	Strength, psi	% in 2"	°C	°F
CLASS 1 (1.15000)	Wrought**	Copper, Zirconium	1.15000	70 B	90	66,000	10	500	930
CLASS 2 (2.18200)	Cast Wrought***	Copper, Chromium	2.18200	70 B 83 B	80 85	50,000 75,000	20 15	500 500	930 930
CLASS 2 (2.18150)	Wrought***	Copper, Chromium, Zirconium	2.18150	83 B	85	75,000	15	500	930
CLASS 3 (3.18000)	Wrought Cast	Copper, Nickel, Silicon, Chromium	3.18000	94 B 90 B	48 48	100,000 85,000	13 10	455 455	850 850
CLASS 3 (3.17510)	Wrought	Copper, Nickel, Beryllium	3.17510	100 B	48	110,000	10	455	850
CLASS 4 (4.17200)	Cast Wrought	Copper, Beryllium	4.17200	38 C 38 C	20 23	110,000 170,000	2 4	375 375	710 710
Copper	Cast Wrought	Pure Copper	_	30 B 40 B	95 100	25,000 40,000	50 35	200 200	390 390

Note: All properties shown are TYPICAL and should not be used for specifications

TYPICAL USAGE

RWMA CLASS 1 (1.15000) Copper, Zirconium material is recommended for spot welding of coated steels and high conductivity materials, excluding copper and silver.

RWMA CLASS 2 (2.18200) Copper, Chromium material is recommended for spot and seam welding cold and hotrolled steels and coated materials as well as current carrying shafts and arms, back-up bars for both resistance and arc welding and electrical current carrying structural parts and springs.

RWMA CLASS 2 (2.18150) Copper, Chromium, Zirconium is recommended for spot and seam welding cold and hot rolled steels. It is often used for galvanized and coated steel.

RWMA CLASS 3 (3.18000) this is a Beryllium free copper product with properties similar to berylium coppers and able to function in most Class 3 applications.

RWMA CLASS 3 (3.17510) Copper, Beryllium material is recommended for spot and seam welding stainless steel and high temperature heat resisting alloys requiring high weld forces, flash welding dies, back-up bars, projection welding electrodes, and high strength, high conductivity electrical components and springs.

RWMA CLASS 4 (4.17200) Copper, Beryllium material is recommended for flash welding dies, springs, electrical components, high strength backing material for brazed assemblies and wire guides.

^{**} Cold drawn bars up to 5/8" diameter

^{***} Heat treated and cold drawn bars up to 1" diameter

REFRACTORY METAL COMPOSITIONS

₩ ₩

Phone: 800-521-3722 Fax: 864-877-2212

The refractory metals below are groups of metal compositions whose elements consist basically of the refractory metals tungsten, molybdenum and tungsten carbide combined with copper. Combinations of these elements produce dense, hard metals of superior wear resistance and strength at elevated temperatures, coupled with good thermal and electrical conductivity. The mechanical and physical properties of these materials make them particularly suitable as the die inserts and facings for volume projection welding, flash and butt welding, electrical upsetting, electroforging and mash welding applications.

These materials are also used successfully as facing on spot welding electrodes where heat balance or mechanical wear resistance are required. The initial premium cost of these refractory metals is offset by lower production cost per weld due to long tool life and less electrode dressing time. the high stability of these materials insures uniform heating and prevents misalignment, resulting in a higher quality weld.

Email: cmw@cmwinc.com

Typical Physical and Mechanical Properties of Refractory Based Materials

Grade	Refractory Based Materials	Type of Material	R.W.M.A. Group B Material	Hardness Rockwell	Electrical Conductivity %I.A.C.S.	Ultimate Tensile Strength, psi	Cross Breaking Strength psi
1W	RWMA CLASS 10	Tungsten-Copper		77 B	53	63,000	110,000
10W	RWMA CLASS 11	Tungsten-Copper	ASTM B702 C1D	98 B	45	90,000	150,000
30W	RWMA CLASS 12	Tungsten-Copper	ASTM B702 C1E	103 B	41	98,000	170,000
100W	RWMA CLASS 13	Tungsten		39 C	30	150,000	200,000
100M	RWMA CLASS 14	Molybdenum	ASTM B387 Type 360	90 B	30	80,000	120,000

Note: All properties shown are TYPICAL and should not be used for specifications

TYPICAL USAGE

RWMA CLASS 10 • CMW 1W

TUNGSTEN 55% - COPPER 45% materials are generally used for flash and butt welding die inserts where higher electrical and thermal conductivity is necessary and where a degree of malleability is desirable. These materials are also used for spot welding (as a radius faced electrode) low conductivity ferrous metals such as stainless steel.

RWMA CLASS 11 • CMW 10W

TUNGSTEN 75% - COPPER 25% material is used for electrode and die inserts in most flash and butt welding dies and for projection welding dies where welding pressures are moderate. It is also used for light electrical upsetting, electroforging dies and seam welder bushing inserts.

RWMA CLASS 12 • CMW 20W

TUNGSTEN 80% - COPPER 20% material is recommended for volume projection welding dies where the pressures involved are relatively high. Electrical upsetting of non-ferrous metals and low carbon steel is usually accomplished by the use of such RWMA CLASS materials as die facings. Cross-wire welding of large, diameter wire and rod is accomplished with such RWMA CLASS materials.

RWMA CLASS 13 • CMW 100W

TUNGSTEN 100% is extremely hard and its ductility is relatively low. It cannot be machined but may be ground to the required shape. It does not alloy appreciably with nonferrous materials and is used for cross-wire welding of metals such as copper and brass. It is also used for electrobrazing electrode material and for some electrical upsetting operations.

RWMA CLASS 14 • CMW 100M

MOLYBDENUM 100% is used pricipally for electrobrazing electrode material and for cross-wire welding of nonferrous metals. It is not as hard as RWMA CLASS 13 material and may be machined or drilled to fit the parts to be joined. A typical application of this material, as an electrode, is the welding or brazing of braided or solid copper conductors to ferrous or nonferrous terminals, lugs or fittings.

^{*} Properties are in fully heat treated condition

^{**} Hardness is 56 HRA at 1475 °F (800°C)

CONVERSION TABLES INCHES INTO MILLIMETERS

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

To convert from inches to metric we are including the three tables below to allow conversion from inches into millimeters.

Examples:

Convert 0.588 inches into millimeters

0.580 inches = 14.73 millimeters From Table I 0.008 inches = 0.203 millimeters From Table I

Total 0.588 inches = 14.933 millimeters

Convert 3.065 inches into millimeters

From Table II inches = 76.2002 millimeters 0.060 inches = 1.524 millimeters From Table I 0.005 inches = 0.127 millimeters From Table I

Total 3.065 inches = 77.8512 millimeters

Convert 2-51/64 inches into millimeters

From Table II 2-25/32 inches = 70.6439 millimeters 1/64 inches = 0.3969 millimeters From Table II 2-51/64 inches = 71.0408 millimeters

TABLE I

Decimals of an inch into millimeters

0.076

0.102

0.152

0.178

0.203

0.229

0.254

0.508

0.762

1.016

1.270

1 524

1.778

2.032

2 286

2.794

3 048

3.302

3 81

4.06

4.32

4 57

4.83

Inches

0.460

0.480

0.490

0.510

0.520

0.530

0.540

0.550

0.560

0.570

0.580

0.590

0.600

0.610

0.620

0.630

0.640

0.670

0.680

0.700

0.710

0.720

0.730

0.740

Millimeters

11 68

11.94

12.19

12.45

12.70

12.95

13 21

13.26

13.72

13 97

14.22

14.48

14 73

14.99

15.24 15.49

15.75

16.00

16 26

16.51

16.76

17.02

17.27

17.78

18.03

18.29

18 54

18.80

Inches

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

0.110

0.120 0.130

0.150

0.160

0.170

0.180

0.190

IABLE
Fractions of
an inch into
millimeters

TABLE !!

Inches	Millime- ters	Inches	Millime- ters
1/64 1/32 3/64 1/16 5/64 3/32 7/64 1/8	0.3969 0.7937 1.1906 1.5875 1.9844 2.3812 2.7781 3.1750	33/64 17/32 35/64 9/16 37/64 19/32 39/64 5/8	13.0969 13.4937 13.8906 14.2875 14.6844 15.0812 15.4781 15.8750
9/64 5/32 11/64 3/16 13/64 7/32 15/64	3.5719 3.9687 4.3656 4.7625 5.1594 5.5562 5.9531 6.3500	41/64 21/32 43/64 11/16 45/64 23/32 47/64 3/4	16.2719 16.6687 17.0656 17.4625 17.8594 18.2562 18.6531 19.0500
17/64 9/32 19/64 5/16 21/64 11/32 23/64 3/8	6.7469 7.1437 7.5406 7.9375 8.3344 8.7312 9.1281 9.5250	49/64 25/32 51/64 13/16 53/64 27/32 55/64 7/8	19.4469 19.8437 20.2406 20.6375 21.0344 21.4312 21.8281 22.2250
25/64 13/32 27/64 7/16 29/64 15/32 31/64 1/2	9.9219 10.3187 10.7156 11.1125 11.5094 11.9062 12.3031 12.7000	57/64 29/32 59/64 15/16 61/64 31/32 63/64	22.6219 23.0187 23.4156 23.8125 24.2094 24.6062 25.0031 25.4001

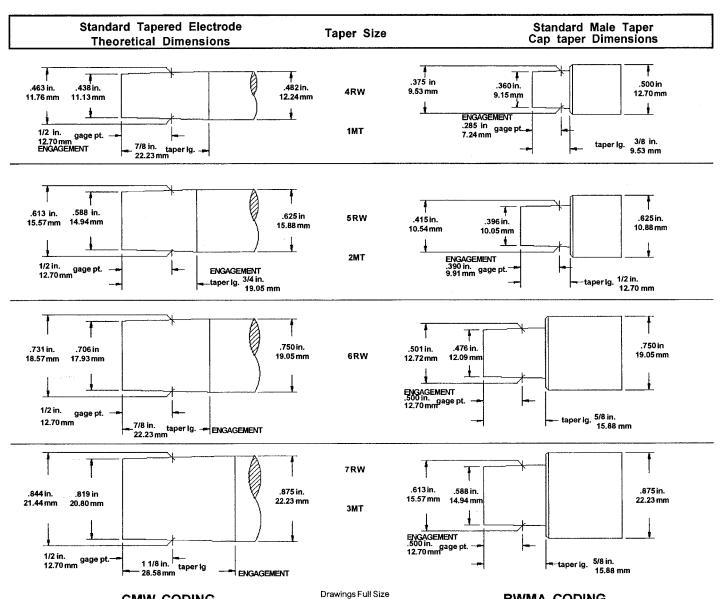
TABLE III Gage-Decimal-**Millimeter Conversion** Chart

Buy Online Electrodes.com

Gage	Decimal	Millimeter
3 4 5 6 7 8 9	.239 .234 .209 .194 .179 .164 .150 .135	6.350 5.953 5.556 5.159 4.762 4.365 3.968 3.571
11	.120	3.175
12	.105	2.778
13	.090	2.381
14	.075	1.984
15	.067	1.778
16	.060	1.587
17	.054	1.422
18	.048	1.270
20	.036	.965
21	.033	.865
22	.030	.793
23	.027	.711
25 26 27 28 29	.021 .018 .016 .015	.559 .483 .432 .396 .356
30	.012	.330
31	.011	.279
32	.010	.254
33	.009	.229
34	.0082	.216
35	.008	.203
36	.007	.178
37	.0064	.168
38	.006	.152

0.200 5.08 0.750 0.210 5.33 0.760 19.30 5.59 0.770 19.56 0.220 0.230 5.84 0.780 19.81 0.240 0.250 0.790 6.10 20.07 20.32 6.35 0.260 6.60 0.810 20.57 0.270 0.820 20.83 0.280 7.11 0.830 21.08 0.290 7.37 0.840 21.34 0.300 0.850 21.59 0.310 0.860 21 84 7 87 0.320 8.13 0.870 22.10 0.330 8.38 0.880 22.35 8 64 0.890 22 61 0.350 8.89 0.900 22.86 For Taper 0.360 9.14 0.910 23.11 0.370 9 40 0.920 23.37 0.380 0.930 23.62 9.65 0.400 10.16 0.950 24.13 0.410 10.41 0.960 24.38 0.420 10.67 24.64 0.430 10.92 0.980 24.89 0.440 0.990 25.15 11.18

Dimensions in inches & millimeters see Page 7.


TAPER DIMENSIONS AND ELECTRODE CODING

Phone: 800-521-3722

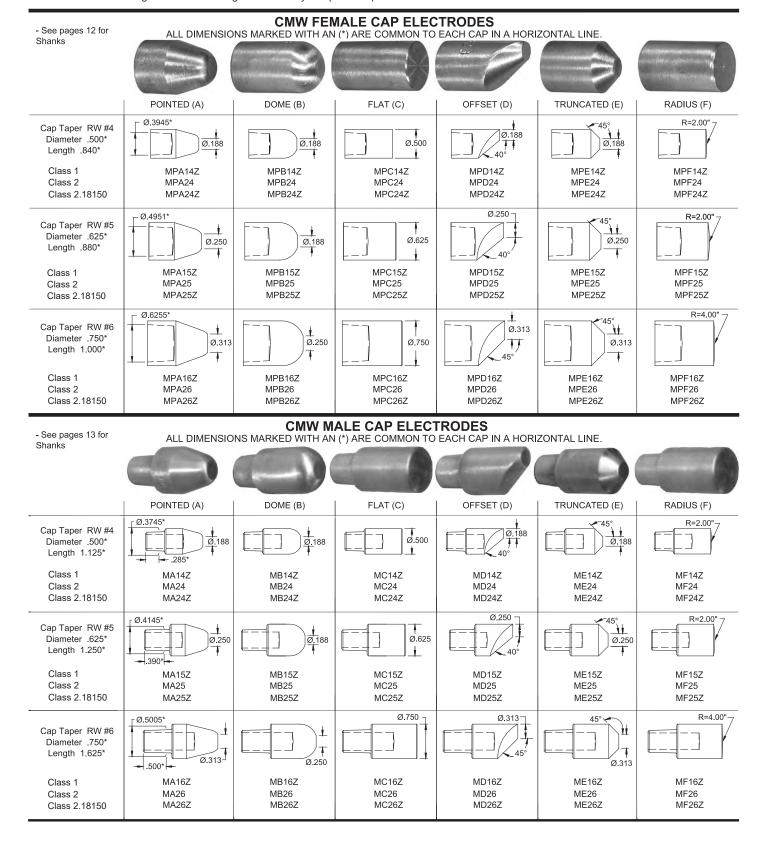
Fax: 864-877-2212

Email: cmw@cmwinc.com

CMW CODING FOR STRAIGHT TAPERED ELECTRODES

	─ ┙ ┍┙ └──	<u> </u>		
Material	Nose	Attachment	Length	
1=RWMA CLASS 1	1 = Dome 2 = Pointed	1 = No. 4RW No. 1MT	1 = 1" 2 = 1 1/4"	
3 = RWMA CLASS 2	3=Flat 4=Offset	2 = No. 5RW	3 = 1 1/2" 4 = 1 3/4"	
5 = RWMA CLASS 3 6 = RWMA CLASS 11	5=2"Sph. R 6=10"Sph. R.	No. 2MT	5 = 2" 6 = 2 1/4"	
8 = RWMA CLASS 13	7 = Truncated 8 = 3" Sph. R	3 = No. 7RW No. 3MT	7 = 2 1/2" 8 = 2 3/4" 9 = 3"	
9 = RWMA CLASS 14	9 = 4" Sph. R 0 = Shank for Male Cap	4 = No. 6RW	12 = 3 1/4" 14 = 3 1/2" 16 = 3 3/4"	
Note: Prefix MP = Shank for Female Cap 20 = 4 1/2" 22 = 4 1/2"				

RWMA CODING FOR STRAIGHT TAPERED ELECTRODES X X X X X


engthin o. of 1/4"
4=1" 5=1 1/4" 5=1 1/2" 7=1 3/4'
3 = 2" 9 = 2 1/4' 0 =2 1/2"
1 =2 3/4" 2=3" 3 =3 1/4" 4 =3 1/2"
5 =3 3/4" 6 =4" 7 =4 1/4" 8 =4 1/2"

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

These economical, quick change caps are made of long-lasting, highly-efficient Class 1, 2 and 2.18150 copper alloys, precision manufactured to exacting tolerances in a wide range of standard configurations or to your special requirements for use on CMW shanks.

- See pages 13 for

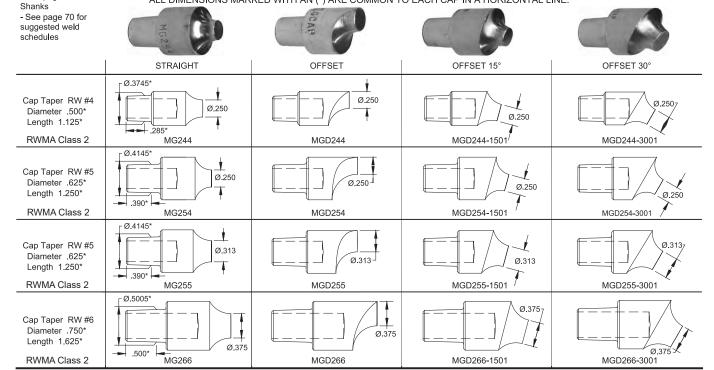
GCAP® ELECTRODES

Email: cmw@cmwinc.com

The CMW GCAP® electrode is the answer to welding galvanized steels. The GCAP's® revolutionary design, and precision manufacturing from CMW Engineering provides for no sticking from the very first weld. GCAP® electrode nuggets meet or exceed industry standards for high quality welds from the first weld through the life of the cap. This cap design made from R.W.M.A. class 2 material eliminates brass build-up by literally rolling the brass away. You will use

less electric power (up to 25% less) and still achieve superior welds due to GCAP® design. Productivity will increase with up to 10 times more welds without dressing.

For best use of CMW GCAPS, a stepper program is recommended. Consult CMW application engineering.
U.S. Patent 49,954,687; 5,015,816; 5,126,528.
Other patents pending.


CMW FEMALE GCAP® ELECTRODES

See pages 12 for ALL DIMENSIONS MARKED WITH AN (*) ARE COMMON TO EACH CAP IN A HORIZONTAL LINE.

Shanks - See page 70 for suggested weld schedules	STRAIGHT	OFFSET	OFFSET 15°	OFFSET 30°
Cap Taper RW #4 Diameter .500* Length .840* RWMA Class 2	Ø.3945* Ø.250 MPG244	Ø.250 MPGD244	Ø.250 7 MPGD244-1501	Ø.250 MPGD244-3001
Cap Taper RW #5 Diameter .625* Length .880* RWMA Class 2	Ø.4951* Ø.250 MPG254	Ø,250 MPGD254	Ø.250 7 MPGD254-1501	Ø.250 MPGD254-3001
Cap Taper RW #5 Diameter .625* Length .880* RWMA Class 2	Ø.4951* Ø.313 MPG255	Ø.313 MPGD255	Ø.3137 MPGD255-1501	Ø.313 MPGD255-3001
Cap Taper RW #6 Diameter .750* Length 1.000* RWMA Class 2	Ø.6255* Ø.375 MPG266	Ø.375 MPGD266	Ø.3757 MPGD266-1501	Ø.375 MPGD266-3001

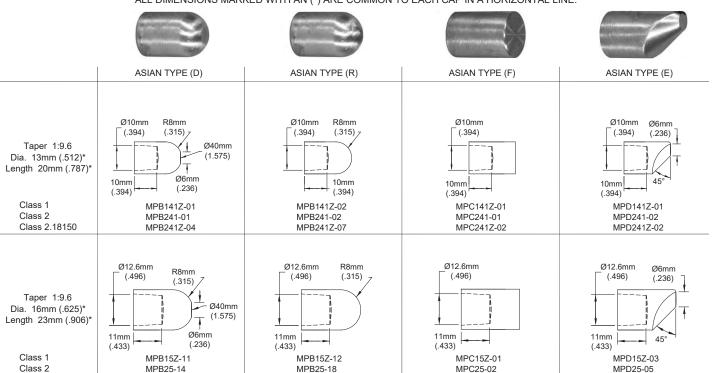
CMW MALE GCAP® ELECTRODES

ALL DIMENSIONS MARKED WITH AN (*) ARE COMMON TO EACH CAP IN A HORIZONTAL LINE.

Class 2.18150

MPB25Z-19

ASIAN CAP ELECTRODES


MPD25Z-04

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

These economical, quick change caps are made of long-lasting, highly-efficient Class 1, 2 and 2.18150 copper alloys, precision manufactured to exacting tolerances in a wide range of standard configurations or to your special requirements.

CMW FEMALE ASIAN CAP ELECTRODES

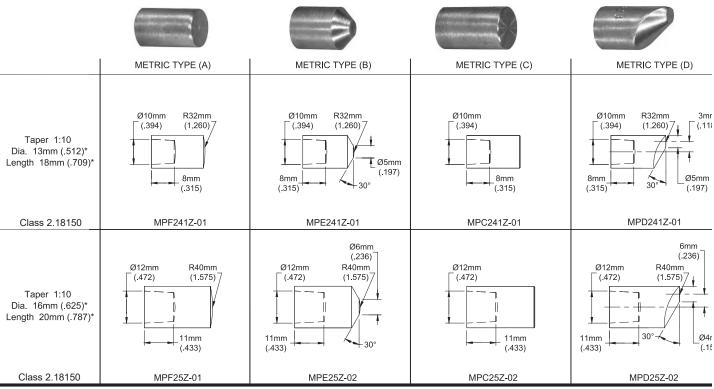
ALL DIMENSIONS MARKED WITH AN (*) ARE COMMON TO EACH CAP IN A HORIZONTAL LINE.

MPB25Z-20

MPC25Z-05

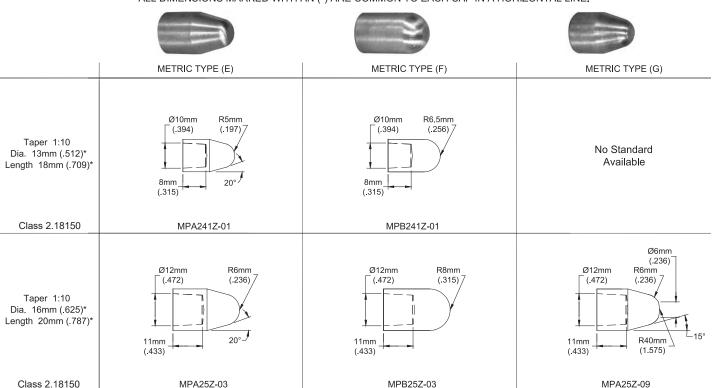
METRIC-ISO 5821 STANDARD CAP ELECTRODES

W


Phone: 800-521-3722 Fax: 864-877-2212

Email: cmw@cmwinc.com

These economical, quick change caps are made of long-lasting, highly-efficient Class 2.18150 copper alloy, precision manufactured to exactin tolerances in a wide range of standard configurations or to your special requirements.


CMW FEMALE METRIC-ISO 5821 CAP ELECTRODES

ALL DIMENSIONS MARKED WITH AN (*) ARE COMMON TO EACH CAP IN A HORIZONTAL LINE.

CMW FEMALE METRIC-ISO 5821 CAP ELECTRODES

ALL DIMENSIONS MARKED WITH AN (*) ARE COMMON TO EACH CAP IN A HORIZONTAL LINE.

SHANKS FOR FEMALE CAP ELECTRODES

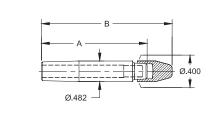
Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

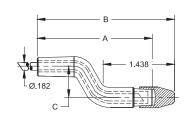
CMW shanks are precision manufactured from Class 2 material to provide a high quality mount for cap type electrodes. They are designed for high strength and electrical conductivity.

*These shanks are shown with a blind water hole for cap replacement without shutting off water. Shanks with through water holes are available, by adding "TH" to the basic part number. Example: MP30212TH.

- See pages 8 & 9 for CMW standard nose and GCAP® electrode

SHANKS FOR FEMALE CAP ELECTRODES



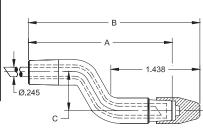

SHANKS FOR FEMALE CAPS WITH #4 RW TAPERS

TAPERS | BENT OFFSET SHANKS FOR FEMALE CAPS WITH #4 RW TAPERS

Part No.	Α	В	
MP3012	1.25	1.75	
MP3013	1.50	2.00	
MP3014	1.75	2.25	
MP3015	2.00	2.50	
MP3016	2.25	2.75	
MP3017	2.50	3.00	
MP3018	2.75	3.25	
MP3019	3.00	3.50	
MP30112	3.25	3.75	
MP30114	3.50	4.00	
MP30116	3.75	4.25	
MP30118	4.00	4.50	L
			_

Part No.	Α	В	С
MP3019-08 MP3019-12	2.62	3.28	0.50 0.75
MP30112-12 MP30112-16 MP30116-16 MP30116-20	2.81 2.37 2.87 2.60	3.47 3.03 3.53 3.28	1.00 1.00 1.25
1011 00110 20	2.00	0.20	1.20

Bent Dimensions for Reference Only



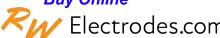
SHANKS FOR FEMALE CAPS WITH #5 RW TAPERS

BENT OFFSET SHANKS FOR FEMALE CAPS WITH #5 RW TAPERS

Part No.	Α	В	
MP3023	1.46	2.00	Ø.625
MP3024	1.71	2.25	
MP3025	1.96	2.50	
MP3026	2.21	2.75	
MP3027	2.46	3.00	
MP3028	2.71	3.25	
MP3029	2.96	3.50	
MP30212	3.21	3.75	
MP30214	3.46	4.00	
MP30216	3.71	4.25	
MP30218	3.96	4.50	
MP30220	4.21	4.75	
MP30222	4.46	5.00	

BEITT OF TOET OF IT THE							
Part No.	Α	В	С				
MP3029-08 MP3029-12 MP30212-12 MP30212-16	2.58 2.60 2.77 2.33	3.20 3.12 3.44 3.00	0.50 0.75 0.75 1.00				
MP30214-12 MP30214-16 MP30216-16 MP30216-20	3.00 2.81 2.83 2.77	3.66 3.48 3.49 3.43	0.75 1.00 1.00 1.25				

Bent Dimensions for Reference Only



SHANKS FOR FEMALE CAPS WITH #6 RW TAPERS

BENT OFFSET SHANKS FOR FEMALE CAPS WITH #6 RW TAPERS

Part No.	A	В		Part No.	A	В	С	
MP3044	1.64	2.25		MP3049-08	2.69	3.30	0.50	B ────────────────────────────────────
MP3045	1.89	2.50	B →	MP30412-12	2.81	3.42	0.75	
MP3046	2.14	2.75		MP30414-12	2.94	3.55	0.75	A — —
MP3047	2.39	3.00		MP30416-16	3.06	3.67	1.00]
MP3048	2.64	3.25		MP30420-20	3.25	3.86	1.25	1.438
MP3049	2.89	3.50	Ø.625					7
MP30412	3.14	3.75	0.025					7015
MP30414	3.39	4.00	vitinilli					Ø.245
MP30416	3.64	4.25	Ø.750 —					<u> </u>
MP30418	3.89	4.50	2.700					c
MP30420	4.14	4.75						
MP30422	4.39	5.00		Bent Dimension	ons for	Referer	ce Only	y
10								www.omwino.com

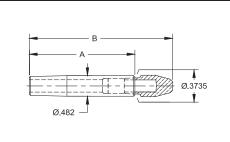
Ø.502

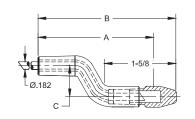
Electrodes.com SHANKS FOR MALE CAP ELECTRODES

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

CMW shanks are precision manufactured from Class 2 material to provide a high quality mount for cap type electrodes. They are designed for high strength and electrical conductivity.

SHANKS FOR MALE CAP ELECTRODES

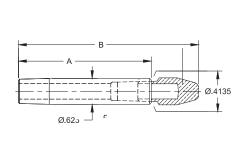


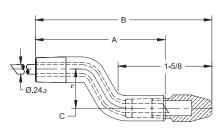

SHANKS FOR MALE CAPS WITH #4 RW TAPERS

Part No.	Α	В	
3012	1.25	1.88	
3013	1.50	2.12	
3014	1.75	2.38	
3015	2.00	2.62	
3016	2.25	2.88	
3017	2.50	3.12	
3018	2.75	3.38	
3019	3.00	3.62	
30112	3.25	3.88	
30114	3.50	4.12	
30116	3.75	4.38	
30118	4.00	4.62	

BENT OFFSET SHANKS FOR MALE CAPS WITH #4 RW TAPERS

3019-12 2.56 3.31 0.79 30112-12 2.81 3.56 0.79 30112-16 2.37 3.12 1.00 30116-16 2.87 3.62 1.00	Part No.	Α	В	C
30112-16 2.37 3.12 1.00 30116-16 2.87 3.62 1.00	3019-12	2.56	3.31	0.50 0.75 0.75
	30112-16 30116-16	2.37 2.87	3.12 3.62	1.00 1.00 1.25


Bent Dimensions for Reference Only


SHANKS FOR MALE CAPS WITH #5 RW TAPERS

Part No.	Α	В	
3022	1.25	2.00	
3023	1.50	2.25	
3024	1.75	2.50	
3025	2.00	2.75	
3026	2.25	3.00	
3027	2.50	3.25	
3028	2.75	3.50	
3029	3.00	3.75	
30212	3.25	4.00	
30214	3.50	4.25	
30216	3.75	4.50	
30218	4.00	4.75	
30220	4.25	5.00	
30222	4.50	5.25	

BENT OFFSET SHANKS FOR MALE CAPS WITH #5 RW TAPERS

Part No.	Α	В	С
3028-08	2.37	3.12	0.50
3028-12	2.31	3.06	0.75
30212-12	2.81	3.56	0.75
30212-16	2.37	3.12	1.00
30214-12	3.06	3.81	0.75
30214-16	2.62	3.37	1.00
30214-20	2.37	3.12	1.25
30216-16	2.87	3.62	1.00
30216-20	2.62	3.37	1.25

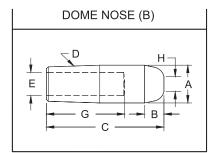
Bent Dimensions for Reference Only

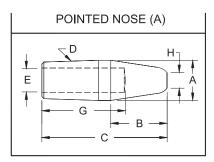
SHANKS FOR MALE CAPS WITH #6 RW TAPERS

Part No.	Α	В		F
3043 3044 3045 3046 3047 3048 3049 30412 30414 30416 30418 30420	1.50 1.75 2.00 2.25 2.75 3.00 3.25 3.50 3.75 4.00 4.25	2.62 2.88 3.12 3.38 3.62 3.88 4.12 4.38 4.62 4.88 5.12 5.38	Ø.750	3 3 3 3
30422	4.50	5.62		E

BENT OFFSET SHANKS FOR MALE CAPS WITH #6 RW TAPERS

	Part No.	Α	В	С	B
5	90412-08 30412-12 30414-12 30416-16 30420-20	A 2.62 2.56 2.75 2.87 3.12	3.75 3.69 3.88 4.00 4.25	0.50 0.75 0.75 1.00 1.25	B A A 1-7/8 O.245


Bent Dimensions for Reference Only


STRAIGHT ELECTRODES

4 RW TAPER (D)							
RWMA	RWMA	RWMA	Nose Length				
Class 1	Class 2	Class 3	В				
1111	3111	5111	13/64				
1112	3112	5112	1/4				
1113	3113	5113	1/4				
1114 1115 1116	3114 3115 3116	5114 5115 5116	1/4				
1117 1118 1119	3117 3118 3119	5117 5118 5119	1/4				
11112 11114 11116	31112 31114 31116	51112 51114 51116	1/4				
11118	31118	51118	1/4				

COMMON DIMENSIONS						
Face Dia. H	Major Dia. A	Water Hole Dia. E	Overall Length C	Hole Depth G		
			1 1-1/4 1-1/2	5/8 3/4 1		
			1-3/4 2 2-1/4	1-1/4 1-1/2 1-3/4		
3/16	.482	9/32	2-1/2 2-3/4 3	2 2-1/4 2-1/2		
			3-1/4 3-1/2 3-3/4	2-3/4 3 3-1/4		
			4	3-1/2		

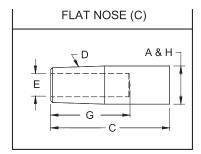
4 RW TAPER (D)							
	Nose						
RWMA	RWMA	RWMA	Length				
Class 1	Class 2	Class 3	В				
1211	3211	5211	3/8				
1212	3212	5212	3/8				
1213	3213	5213	5/8				
1214	3214	5214					
1215	3215	5215	3/4				
1216	3216	5216					
1217	3217	5217					
1218	3218	5218	3/4				
1219	3219	5219					
12112	32112	52112					
12114	32114	52114	3/4				
12116	32116	52116					
12118	32118	52118	3/4				

į	5 RW TAPER (D)				
1122	3122	5122			
1123	3123	5123			
1124	3124	5124			
1125	3125	5125			
1126	3126	5126			
1127	3127	5127			
1128	3128	5128	3/8		
1129	3129	5129			
11212	31212	51212			
11214	31214	51214			
11216	31216	51216			
11218	31218	51218			
11220	31220	51220			
11222	31222	51222			

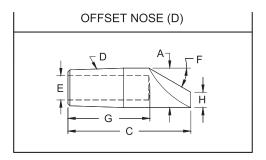
COMMON DIMENSIONS				
			1-1/4 1-1/2 1-3/4	3/4 3/4 1
			2 2-1/4 2-1/2	1-1/4 1-1/2 1-3/4
1/4	.625	3/8	2-3/4 3 3-1/4	2 2-1/4 2-1/2
			3-1/2 3-3/4 4	2-3/4 3 3-1/4
			4-1/4 4-1/2	3-1/2 3-3/4

5 RW TAPER (D)						
1222	1222 3222 5222					
1223	3223	5223	3/4			
1224	3224	5224	3/4			
1225	3225	5225				
1226	3226	5226	1-1/8			
1227	3227	5227				
1228	3228	5228				
1229	3229	5229	1-1/8			
12212	32212	52212				
12214	32214	52214				
12216	32216	52216	1-1/8			
12218	32218	52218				
12220	32220	52220				
12222	32222	52222	1-1/8			

^{*}Electrodes of other tapers and alloys available upon request.



STRAIGHT ELECTRODES


s **M**

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

4 RW TAPER (D)				
	5,4,4,4,4			
RWMA	RWMA	RWMA	Dia.	
Class 1	Class 2	Class 3	Н	
1311	3311	5311		
1312	3312	5312		
1313	3313	5313		
1314	3314	5314		
1315	3315	5315		
1316	3316	5316		
1317	3317	5317	.482	
1318	3318	5318		
1319	3319	5319		
13112	33112	53112		
13114	33114	53114		
13116	33116	53116		
13118	33118	53118		

COMMON DIMENSIONS					
Major Dia. A	Water Hole Dia. E	Overa ll Length C	Hole Depth G		
		1 1-1/4 1-1/2	5/8 3/4 1		
.482	9/32	1-3/4 2 2-1/4	1-1/4 1-1/2 1-3/4		
		2-1/2 2-3/4 3	2 2-1/4 2-1/2		
		3-1/4 3-1/2 3-3/4	2-3/4 3 3-1/4		
		4	3-1/2		

4 RW TAPER (D)					
RWMA Class 1	RWMA Class 2	RWMA Class 3	Nose Angle F	Face Dia. H	
1411 1412 1413	3411 3412 3413	5411 5412 5413	45° 40° 30°		
1414 1415 1416	3414 3415 3416	5414 5415 5416	30°		
1417 1418 1419	3417 3418 3419	5417 5418 5419	30°	3/16	
14112 14114 14116	34112 34114 34116	54112 54114 54116	30°		
14118	34118	54118	30°		

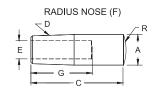
į	5 RW TAPER (D)			
1322	3322	5322		
1323	3323	5323		
1324	3324	5324		
1325	3325	5325		
1326	3326	5326		
1327	3327	5327		
1328	3328	5328	5/8	
1329	3329	5329		
13212	33212	53212		
13214	33214	53214		
13216	33216	53216		
13218	33218	53218		
13220	33220	53220		
13222	33222	53222		

COMMON DIMENSIONS				
		1-1/4 1-1/2 1-3/4	3/4 3/4 1	
.625	3/8	2 2-1/4 2-1/2	1-1/4 1-1/2 1-3/4	
		2-3/4 3 3-1/4	2 2-1/4 2-1/2	
		3-1/2 3-3/4 4	2-3/4 3 3-1/4	
		4-1/4 4-1/2	3-1/2 3-3/4	

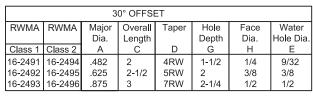
5 RW TAPER (D)				
1422 1423 1424	3422 3423 3424	5422 5423 5424	40° 40° 30°	
1425 1426 1427	3425 3426 3427	5425 5426 5427	30°	
1428 1429 14212	3428 3429 34212	5428 5429 54212	30°	1/4
14214 14216 14218	34214 34216 34218	54214 54216 54218	30°	
14220 14222	34220 34222	54220 54222	30°	

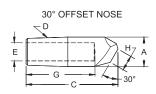
^{*}Electrodes of other tapers and alloys available upon request.

STRAIGHT ELECTRODES

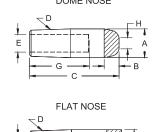


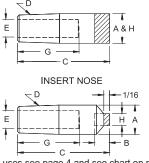
	TRUNCATED (E)							
RWMA	RWMA	RWMA	Major Dia.	Overall Length	Taper	Hole Depth	Face Dia.	Water Hole Dia.
Class 1	Class 2	Class 3	Α	С	D	G	Н	E
1712 1713 1715	3712 3713 3715	5712 5713 5715	.482	1-1/4 1-1/2 2	4RW	3/4 1 1-1/2	3/16	9/32
1717 1718	3717 3718	5717 5718		2-1/2 2-3/4		2 2-1/4		
1723 1725 1727	3723 3725 3727	5723 5725 5727	.625	1-1/2 2 2-1/2	5RW	3/4 1-1/4 1-3/4	1/4	3/8
1729 17218	3729 37218	5729 57218		3 4		2-1/4 3-1/4		


1	TRUNCA	ATED NOS	E (E)
E]	H A
T	- G -	-c -	30°



	RADIUS (F)							
	RWMA	RWMA	Major Dia.	Overall Length	Taper	Hole Depth	Spherical Radius	Water Hole Dia.
Class 1	Class 2	Class 3	Α	С	D	G	R	E
1523 1525 1527	3523 3525 3527	5523 5525 5527		1-1/2 2 2-1/2		3/4 1-1/4 1-3/4	2	
1529 15218	3529 35218	5529 55218		3 4		2-1/4 3-1/4		
1623 1625 1627	3623 3625 3627	5623 5625 5627	.625	1-1/2 2 2-1/2	5RW	3/4 1-1/4 1-3/4	10	3/8
1629 16218	3629 36218	5629 56218		3 4		2-1/4 3-1/4		
1825 1829	3825 3829	5825 5829		2 3		1-1/4 2-1/4	3	
1925 1929	3925 3929	5925 5929		2 3		1-1/4 2-1/4	4	




REFRACTORY METAL FACED STRAIGHT ELECTRODES

COPPER-TUNGSTEN, MOLYBDENUM OR TUNGSTEN DOME									
Major Nose Overall Taper Hole Face Wa								Water	
10W	100M	100W	Dia.	Length	Length		Depth	Dia.	Hole Dia.
Face	Face	Face	Α	В	С	D	G	Н	E
611050	811050	911050	.482	3/16	2	4RW	1-1/2	1/8	9/32
612050	812050	912050	.625	1/4		5RW			3/8

COPPER-TUNGSTEN, MOLYBDENUM OR TUNGSTEN FLAT NOSE									
631050	831050	931050	.482	3/16	2	4RW	1-1/2	.482	9/32
632030 632050 632070 16-1353	832050	932050	.625	1/4	1-1/2 2 2-1/2 2-1/2	5RW	1 1-1/2 2 5/8	5/8	3/8
633050	833050	933050	.875	1/4	2	7RW	1-1/2	7/8	1/2

MOLYBDENUM OR TUNGSTEN INSERT NOSE								
871050	971050	.482	3/8	2	4RW	1-1/2	3/16	9/32
872050	972050	.625	3/8	2	5RW	1-1/4	1/4	3/8

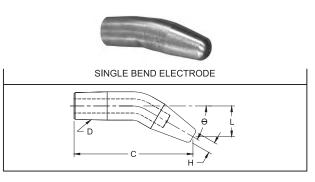
FLAT NOSE

INSERT NOSE

⁻ Electrodes of other tapers and alloys available upon request. For other recommended material uses see page 4 and see chart on page 76. Electrodes faced with material other than those shown on this page are available to special order.

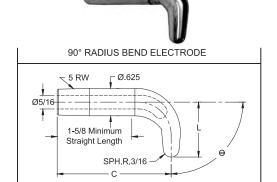
⁻ See page 6 for Metric conversions, & See page 7 for Taper dimensions

Electrodes.com **SINGLE BEND ELECTRODES**

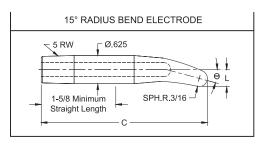

Phone: 800-521-3722 Fax: 864-877-2212

Email: cmw@cmwinc.com

RWMA CLASS 2 single bend electrodes are cold formed from full hard straight electrodes, and have properties superior to those obtained by casting or hot forging methods. Cooling tubes are bent in place, if requested, to provide water flow as near to the welding face as in the case of straight electrodes. These extra values assure you a more efficient, less costly electrode for gun welders and special offset welding applications.

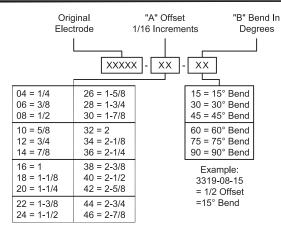

Furnished with water tubes as specials to your order. Other nose types available to order. For dimensions not shown here see straight electrode (round water hole) measurements on page 14, 15, & 16. RWMA CLASS 1 material available on special order.

SINGLE BEND ELECTRODES



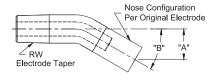
PART No.	Reference Length to ♀ of Face	Taper	Offset ♀ of Taper to ♀ of Face	Bend Angle	Bend Weld Face Dia.
. ,	C	D	L	Θ	Н
3214-04-15 3219-04-15 32118-13-15	1-11/16 2-15/16 3-7/8	4 RW	1/4 1/4 13/16		3/16
3225-04-15 3229-04-15 32218-10-15	1-7/8 2-7/8 3-13/16	5 RW	1/4 1/4 5/8	15°	1/4
3215-07-30 3219-07-30 32118-23-30	1-7/8 2-7/8 3-5/8	4 RW	7/16 7/16 1-7/16		3/16
3226-09-30 32212-09-30 32220-24-30	2-1/16 3-1/16 3-13/16	5 RW	9/16 9/16 1-1/2	30°	1/4
3215-10-45 32112-12-45 32118-33-45	1-11/16 2-7/8 3-1/8	4 RW	5/8 3/4 2-1/16		3/16
3228-17-45 32214-17-45 32220-33-45	2-1/4 3 3-3/8	5 RW	1-1/16 1-1/16 2-1/16	45°	1/4
3218-23-60 32116-23-60 32118-40-60	2 3 2-5/8	4 RW	1-7/16 1-7/16 2-1/2		3/16
32212-25-60 32218-25-60 32220-38-60	2-3/8 3-1/8 3	5 RW	1-9/16 1-9/16 2-3/8	60°	1/4
32216-35-75 32220-37-75 32220-43-75	2-5/16 2-11/16 2-3/8	5 RW	2-3/16 2-5/16 2-11/16	75°	

Bend dimensions are for reference only



DADTNa	O.A.L.	Offset © of Taper	Bend Angle
PART No.	С	to Top of Radius L	Arigie O
16-26015	3-11/16	3/8	15°
16-26030	3-5/8	33/64	30°
16-26045	3-1/2	43/64	45°
16-26060	3-3/8	27/32	60°
16-26075	3-7/64	1-1/32	75°
16-26090	2-13/16	1-1/4	90°

Radius bend electrodes are designed for use with 18-768 & 18-784 straight universal adapters shown on page 46.

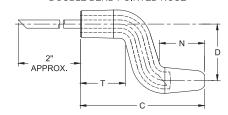

- See page 6 for Metric Conversion

 See page 7 for Taper Dimensions

SINGLE BEND ELECTRODE CODING SYSTEM

For electrodes not listed

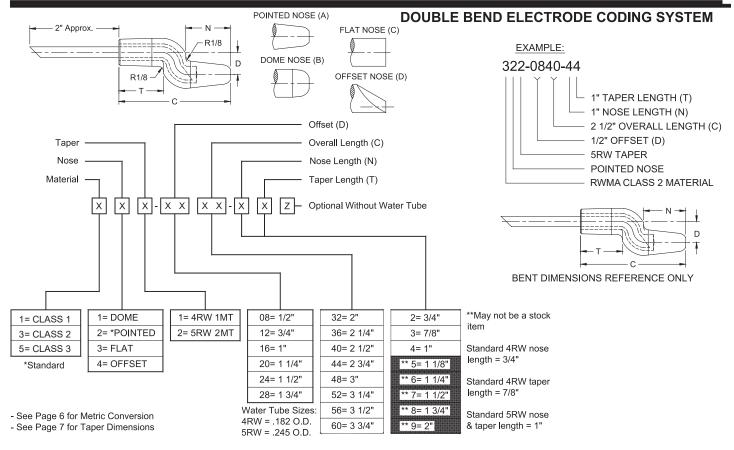
DOUBLE BEND ELECTRODES


Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

Offset	Taper	Nose End	Taper End	Dome, Pointed &	
D	Size	N	Т	Flat, O.A.L. C	Part No.
		3/4	7/8	2	321-0832-23
	4 RW	3/4	7/8	2-1/2	321-0840-23
	4 1777	2	7/8	3-1/4	321-0852-93
1/2		1	1	2-1/2	322-0840-44
1/2	5 RW	1		2-1/2	322-0844-44
	3100	1		3-1/4	322-0852-44
		2		3-1/2	322-0856-94
		3/4	7/8	2	321-1232-23
	4 RW	3/4	7/8	2-1/2	321-1240-23
	7 1000	2	7/8	3-1/2	321-1256-93
3/4		1	1	2-3/4	322-1244-44
	5 RW	1	1 1	3	322-1248-44
		2	1	3-1/2	322-1256-94
		3/4	7/8	2-1/4	321-1636-23
	4 RW	3/4	7/8	2-3/4	321-1644-23
		1-3/4	7/8	3-1/4	321-1652-83
		3/4	7/8	3-1/2	321-1656-23
1		1	1	2-3/4	322-1644-44
	5 RW	1	1	3	322-1648-44
		1	1	3-1/2	322-1656-44
		1-3/4	1	3-1/2	322-1656-84
		3/4	7/8	2-1/2	321-2040-23
	4 RW	3/4	7/8	3	321-2048-23
		1-1/2	7/8	3	321-2048-73
		1	1	2-3/4	322-2044-44
		1	1	3-1/4	322-2052-44
1-1/4	5 RW	1	1	3-1/2	322-2056-44
		1-1/2	1	3-1/2	322-2056-74
		1-3/4	1	3-1/2	322-2056-84
1-1/2	5 RW	1	1	2-3/4	322-2444-44
		1-1/4	1	3	322-2448-64
1-3/4	5 RW	1	1	2-3/4	322-2844-44
		1-1/4	1	3	322-2848-64

DOUBLE BEND ELECTRODES

CMW double bend electrodes are cold formed from full hard straight electrodes, and have properties superior to those obtainable by casting or hot forging methods. Cooling tubes, unless otherwise specified are bent in place to provide coolant flow near the welding face as in the case of straight electrodes. These extra values assure you of longer electrode life, longer runs between dressings, and highest weld quality. RWMA CLASS 2 material is standard for these electrodes. RWMA CLASS 1 or CLASS 3, available on special order.

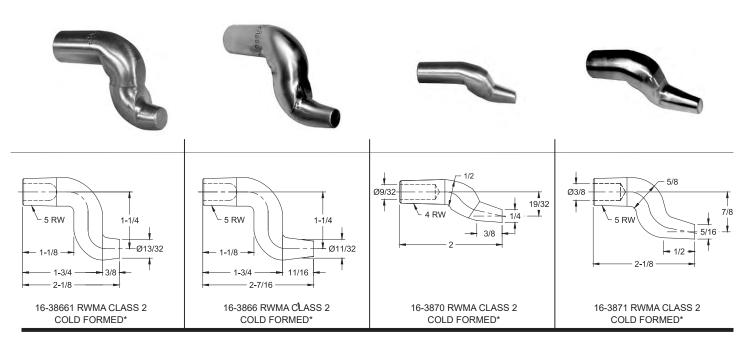

DOUBLE BEND POINTED NOSE

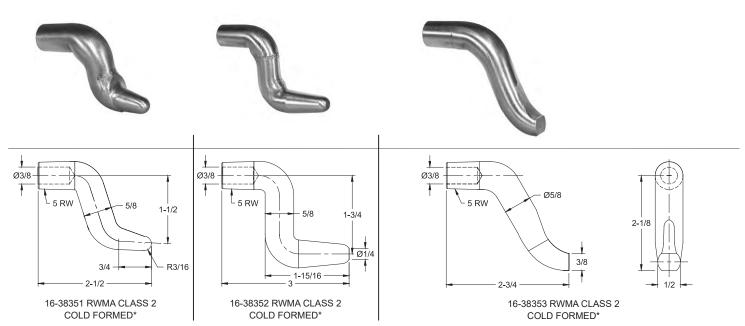
Bent dimensions are for reference only

Water Tube Sizes: 4RW = .182 O.D. 5RW = .245 O.D.

Electrodes.com CRANK ELECTRODES - COLD FORMED

Phone: 800-521-3722


Fax: 864-877-2212


Email: cmw@cmwinc.com

FEATURES AND SPECIFICATIONS

- Very strong bend electrodes for higher force applications
- Bent & Offset electrodes are for hard to reach locations
- Long lasting heavy duty electrodes
- Works with all industry standard holders
- Use with 4 & 5 R.W.M.A Holders
- Bent dimensions are for reference
- Electrical conductivity up to 85% IACS for cold formed crank electrodes
- Rockwell hardness up to 83 HRB for cold formed crank electrodes

CRANK ELECTRODES - COLD FORMED

*Optional materials RWMA CLASS 1 and CLASS 3 available on special order

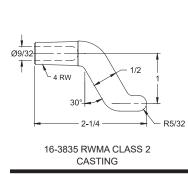
CRANK ELECTRODES - CASTINGS, FORGED ~ Electrodes.com

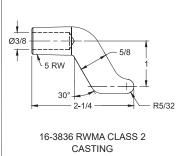
Phone: 800-521-3722

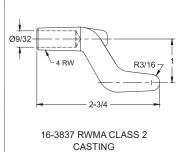
Fax: 864-877-2212 Email: cmw@cmwinc.com

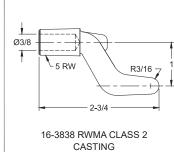
FEATURES AND SPECIFICATIONS

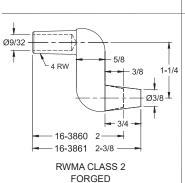
- Very strong bend electrodes for higher force applications
- Offset electrodes are for hard to reach locations
- Long lasting heavy duty electrodes
- Can be used in many job shop applications
- Works with all industry standard holders
- Use with 4 & 5 R.W.M.A Holders
- Electrical conductivity up to 80% IACS for castings & forged crank electrodes
- Rockwell hardness up to 70 HRB for castings & forged crank electrodes

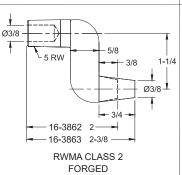

CRANK ELECTRODES - CASTING, FORGED

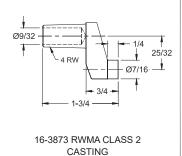


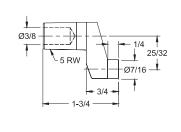






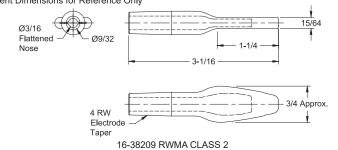




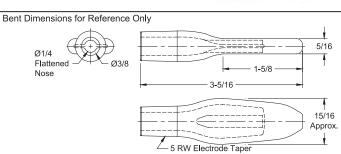


16-3874 RWMA CLASS 2 CASTING

SPADE ELECTRODES

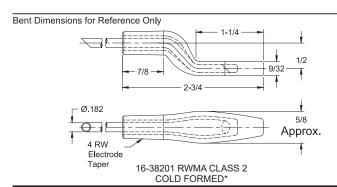

Omwine com

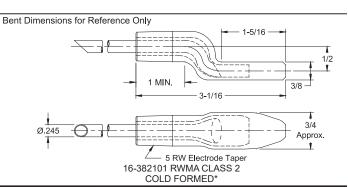
Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com


- See page 6 for Metric Conversions - See page 7 for Taper Dimensions

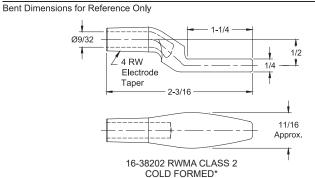
SPADE ELECTRODES

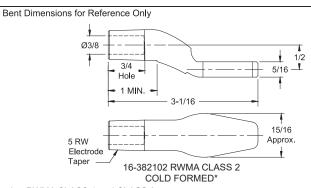
COLD FORMED*



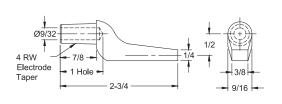


16-382109 RWMA CLASS 2

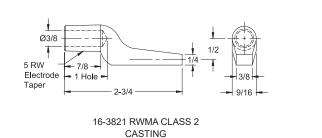

COLD FORMED*

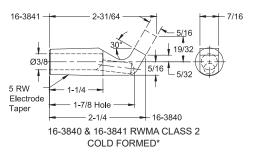


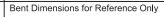
*Optional material available on special order: RWMA CLASS 1 and CLASS 3

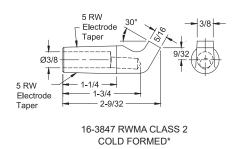


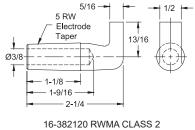
Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com


GUN ELECTRODES


16-3820 RWMA CLASS 2 CASTING



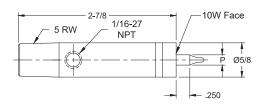




*Optional material RWMA CLASS 1 and CLASS 3 available on special order.

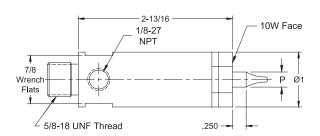
- See page 6 for
Metric Conversions
- See page 7 for
Taper Dimensions

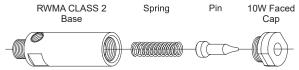
- See page 7 for
CASTING

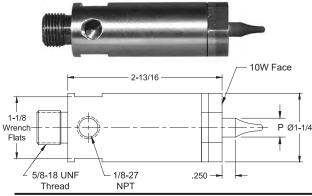

CHAMELEON/MAX-LIFE™ NUT WELDING ELECTRODES

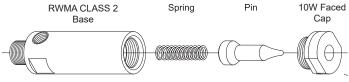
Phone: 800-521-3722 Email: cmw@cmwinc.com Fax: 864-877-2212

CHAMELEON/MAX-LIFE™ NUT WELDING ELECTRODES






					-00	
Nut Welding Assemblies	Nut Thread Size	Pin Dia. P	RWMA CLASS 2 Base	Spring	Ceramic Coated Steel Pin	10W Faced Cap
16-37725-04	#4	.142	16-37325	16-950078-01	16-950064-04	16-37725-C04
16-37725-05	#5	.158	16-37325	16-950078-01	16-950064-05	16-37725-C05
16-37725-06	#6	.173	16-37325	16-950078-01	16-950064-06	16-37725-C06
16-37725-M4	4MM	.187	16-37325	16-950078-01	16-950064-M4S	16-37725-CM4
16-37725-08	#8	.198	16-37325	16-950078-01	16-950064-08	16-37725-C08
16-37725-10	#10	.220	16-37325	16-950078-01	16-950064-10	16-37725-C10
16-37725-M5	5MM	.226	16-37325	16-950078-01	16-950064-M5S	16-37725-CM5
16-37725-12	#12	.250	16-37325	16-950078-01	16-950064-12	16-37725-C12
16-37725-M6	6MM	.266	16-37325	16-950078-01	16-950064-M6S	16-37725-CM6
16-37725-25	.250	.283	16-37325	16-950078-01	16-950064-25	16-37725-C25



Nut Welding Assemblies	Nut Thread Size	Pin Dia. P	RWMA CLASS 2 Base	Spring	Ceramic Coated Steel Pin	10W Faced Cap
16-37825-M4	4MM	.187	16-37825	16-950065-01	16-950064-M4	16-37825-CM4
16-37825-M5	5MM	.226	16-37825	16-950065-01	16-950064-M5	16-37825-CM5
16-37825-M6	6MM	.266	16-37825	16-950065-01	16-950064-M6	16-37825-CM6
16-37825-M7	7MM	.305	16-37825	16-950065-01	16-950064-M7	16-37825-CM7
16-37825-M8	8MM	.344	16-37825	16-950065-01	16-950064-M8	16-37825-CM8
16-37825-M9	9MM	.384	16-37825	16-950065-01	16-950064-M9	16-37825-CM9

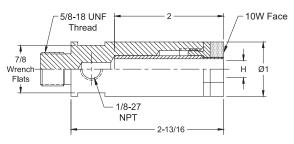
	Nut Welding Assemblies	Nut Thread	Pin Dia.	RWMA CLASS 2	Spring	Ceramic Coated	10W Faced Cap
		Size	Р	Base		Steel Pin	
4	16-37826-M10	10MM	.423	16-37826	16-950065-01	16-950064-M10	16-37826-CM10
	16-37826-M11	11MM	.463	16-37826	16-950065-01	16-950064-M11	16-37826-CM11
	16-37826-M12	12MM	.502	16-37826	16-950065-01	16-950064-M12	16-37826-CM12
	16-37826-M14	14MM	.581	16-37826	16-950065-01	16-950064-M14	16-37826-CM14

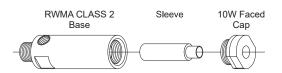
Electrode	Cooling	Tapered
Dia.	Chamber	Adapter
	Part No.	Part No.
5/8	18-1340	
1	18-1342	18-7741
1-1/4	18-1343	18-7742

- Electrode Assemblies 16-37825-XX and 16-37826-XXX may be used with 5/8-18 threaded holders 18-169, 18-170, 18-171, shown on page 32
- Electrode Assemblies 16-37825-XX and 16-37826-XXX may be used with Platen Mounted holders (page 49) by using adapter 18-7743 shown on page 31

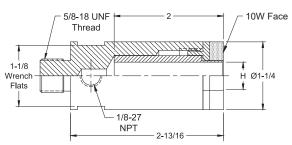
All dimensions are in inches unless otherwise noted

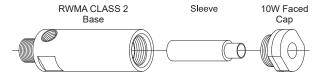
CHAMELEON/MAX-LIFE™ STUD WELDING ELECTRODES


Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com


CHAMELEON/MAX-LIFE™ STUD WELDING ELECTRODES

	Stud Welding	Screw	Sleeve	RWMA	Ceramic	10W Faced
	Assemblies	Thread	I.D.	CLASS 2	Coated	Cap
	, 1000111101100	Size	H	Base	Steel Sleeve	Jup
		OIZC		Dase	Older Oldeve	
	16-37325-116	#4	.116	16-37325	16-953116	16-37325-C116
	16-37325-132	#5	.132	16-37325	16-953132	16-37325-C132
	16-37325-140	#6	.140	16-37325	16-953140	16-37325-C140
400.5	16-37325-169	#8	.169	16-37325	16-953169	16-37325-C169
1-1/2 - 10W Face - 5 RW - 1/16-27	16-37325-169	4MM	.169	16-37325	16-953169	16-37325-C169
NPT /	16-37325-191	#10	.191	16-37325	16-953191	16-37325-C191
Ø5/8	16-37325-204	5MM	.204	16-37325	16-953204	16-37325-C204
<u>+</u>	16-37325-220	#12	.220	16-37325	16-953220	16-37325-C220
2-7/8	16-37325-243	6MM	.243	16-37325	16-953243S	16-37325-C243
	16-37325-254	.250	.254	16-37325	16-953254S	16-37325-C254





Stud Welding	Screw	Sleeve	RWMA	Ceramic	10W Faced
Assemblies	Thread	I.D.	CLASS 2	Coated	Cap
	Size	Н	Base	Steel Sleeve	
16-37525-243	6MM	.243	16-37825	16-953243	16-37525-C243
16-37525-254	.250	.254	16-37825	16-953254	16-37525-C254
16-37525-320	.312	.320	16-37825	16-953320	16-37525-C320
16-37525-320	8MM	.320	16-37825	16-953320	16-37525-C320
16-37525-380	.375	.380	16-37825	16-953380	16-37525-C380

Stud Welding Assemblies	Screw Thread Size	Sleeve I.D. H	RWMA CLASS 2 Base	Ceramic Coated Steel Sleeve	10W Faced Cap
16-37526-399	10MM	.399	16-37526	16-953399	16-37526-C399
16-37526-444	.438	.444	16-37526	16-953444	16-37526-C444
16-37526-477	12MM	.477	16-37526	16-953477	16-37526-C477
16-37526-502	.500	.502	16-37526	16-953502	16-37526-C502
16-37526-630	.625	.630	16-37526	16-953630	16-37526-C630

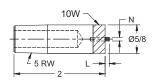
Electrode	Cooling	Tapered
Dia.	Chamber	Adapter
	Part No.	Part No.
5/8	18-1340	
1	18-1342	18-7741
1-1/4	18-1343	18-7742

Tapered Adapter

- Electrode Assemblies 16-37525-XXX and 16-37526-XXX may be used with 5/8-18 threaded holders 18-169, 18-170, 18-171, shown on page 32

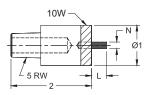
- Electrode Assemblies 16-37525-XXX and 16-37526-XXX may be used with Platen Mounted holders (page 49) by using adapter 18-7743 shown on page 31

Electrodes.com SELF-PILOTING NUT WELDING ELECTRODES

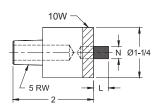

Phone: 800-521-3722 Fax: 864-877-2212

Email: cmw@cmwinc.com

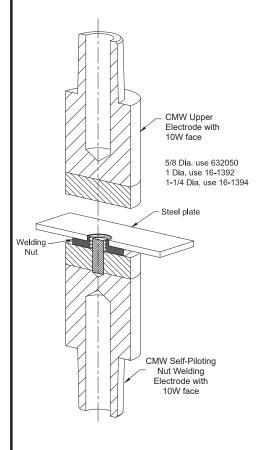
SELF-PILOTING NUT WELDING ELECTRODES



	Taper	Pin	For Nut	Pin
PART No.	Size	Dia.	Thread Size	Length
		N		L
16-3764-04		.082	#4	
16-3764-05		.093	#5	.093
16-3764-06		.100	#6	
16-3764-M3.5	5 RW	.107	3.5 MM	
16-3764-M4		.123	4.0 MM	
16-3764-08		.129	#8	.156
16-3764-10		.143	#10	
16-3764-M5		.156	5.0 MM	



	_			
	Taper	Pin	For Nut	Pin
PART No.	Size	Dia.	Thread Size	Length
		Ν		Ľ
16-3765-12		.166	#12	
16-3765-M6		.189	6.0 MM	
16-3765-25		.192	1/4	
16-3765-M7	5 RW	.223	7.0 MM	.375
16-3765-M8		.252	8.0 MM	
16-3765-31		.257	5/16	
16-3765-M9		.291	9.0 MM	


	Taper	Pin	For Nut	Pin
PART No.	Size	Dia.	Thread Size	Length
		N		L
16-3766-38		.306	3/8	
16-3766-M10		.320	10 MM	
16-3766-M11		.359	11 MM	
16-3766-44	5 RW	.361	7/16	.375
16-3766-M12		.388	12 MM	
16-3766-50		.415	1/2	
16-3766-M14		.455	14 MM	

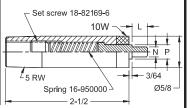
FEATURES AND SPECIFICATIONS

- 10W faced RWMA CLASS 2 material
- Insulated pin made of anodized aluminum
- Pins are treated to 55 HRC for wear resistance
- Use with tapered electrode holders
- Use with flat faced electrodes

TYPICAL SET-UP FOR SELF PILOTING NUTS

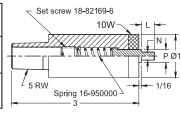
- See page 6 for Metric conversions
- See page 7 for Taper dimensions

NON-PILOTING NUT WELDING ELECTRODES ~ Electrodes.com

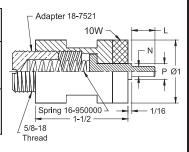


Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

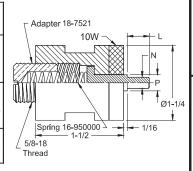
NON-PILOTING NUT WELDING ELECTRODES



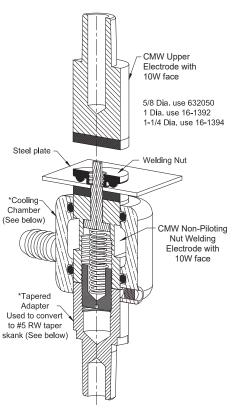
	Taper or	Pin	Pilot	Pilot	For Nut	Pin
PART No.	Thd. Size	Dia.	Length	Dia.	Thd. Size	Part
		N	L	Р	N	No.
16-3774-04		.082		.142	#4	16-950001-04
16-3774-05		.093		.158	#5	16-950001-05
16-3774-06		.100		.173	#6	16-950001-06
16-3774-08	5RW	.129	.312	.198	#8	16-950001-08
16-3774-10		.143		.220	#10	16-950001-10
16-3774-M6		.186		.250	6MM	16-950001-M6



Taper or	Pin	Pilot	Pilot	For Nut	Pin
Thd. Size	Dia.	Length	Dia.	Thd. Size	Part
	Ν	L	Ρ	N	No.
	.166		.250	#12	16-950001-12
	.186		.250	6MM	16-950001-M6
	.192		.283	1/4	16-950001-25
5RW	.252	.312	.283	8MM	16-950001-M8
	.257		.345	5/16	16-950001-31
	.322		.347	10MM	16-950001-M10
	Thd. Size	Thd. Size Dia. N .166 .186 .192 5RW .252 .257	Thd. Size Dia. Length N L .166 .186 .192 5RW .252 .257 .312	Thd. Size Dia. Length Dia. N 1.6 2.50 .186 .250 .250 .192 .283 5RW .252 .312 .283 .257 .345	Thd. Size Dia. N Length L P Dia. N Thd. Size P N .166



	Taper or	Pin	Pilot	Pilot	For Nut	Pin
PART No.	Thd. Size	Dia.	Length	Dia.	Thd. Size	Part
		Ν	L	Ρ	N	No.
16-3785-12		.166		.250	#12	16-950002-12
16-3785-M6		.186		.269	6MM	16-950002-M6
16-3785-25		.192		.283	1/4	16-950002-25
16-3785-M8	5/8-18	.252	.375	.348	8MM	16-950002-M8
16-3785-31		.257		.345	5/16	16-950002-31
16-3785-M10		.320		.427	10MM	16-950002-M10
16-3785-M11		.359		.466	11MM	16-950002-M11
16-3785-M12		.388		.470	12MM	16-950002-M12


	Taper or	Pin	Pilot	Pilot	For Nut	Pin
PART No.	Thd. Size	Dia.	Length	Dia.	Thd. Size	Part
		Ν	L	Ρ	N	No.
16-3786-12		.166		.250	#12	16-950002-12
16-3786-M6		.186		.269	6MM	16-950002-M6
16-3786-25		.192		.283	1/4	16-950002-25
16-3786-M8		.252		.348	8MM	16-950002-M8
16-3786-31		.257		.345	5/16	16-950002-31
16-3786-38	5/8-18	.306	.375	.408	3/8	16-950002-38
16-3786-M10		.320		.427	10MM	16-950002-M10
16-3786-M11		.359		.466	11MM	16-950002-M11
16-3786-44		.361		.470	7/16	16-950002-44
16-3786-M12		.388		.470	12MM	16-950002-M12
16-3786-50		.415		.533	1/2	16-950002-50

FEATURES AND SPECIFICATIONS

- 10W faced RWMA CLASS 2 material
- Insulated pin made of anodized
- Insulated pins are treated to 55 HRC for wear resistance
- Use with tapered electrode holders
- Use with flat faced electrodes
- Accepts external cooling chambers

TYPICAL SET-UP FOR NON PILOTING NUTS

*For additional information on cooling chamber and tapered adapter see page 27

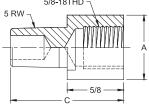
Electrode assemblies 18-3785-XX and 18-3786-XX may be used with 5/8-18 threaded holders 18-169, 18-170, 18-171

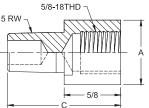
Phone: 800-521-3722

ELECTRODE COOLING CHAMBERS & TAPERED ADAPTERS

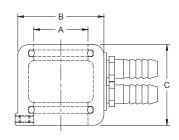
Fax: 864-877-2212

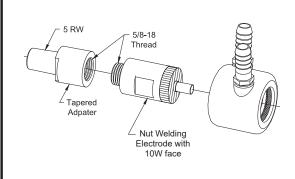
Email: cmw@cmwinc.com

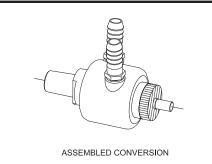

FEATURES AND SPECIFICATIONS


- Cooling Chamber recommended for additional cooling capacity on internally cooled applications
- Cooling Chamber is designed to provide supplementary cooling in special, hard to cool applications
- Securely sealed and locked in position with allen head set
- Tapered Adapter converts 5/8-18 thread to 5 RW tapers
- Use with Stud/Nut welding applications

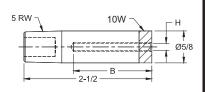
WELDING ELECTRODE ACCESSORIES


	TAPERED A	ADAPTER	
Part No.	To Fit Dia. Electrode A	Taper	Overall Length C
18-7741 18-7742	1 1-1/4	5 RW	1-3/4

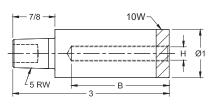



COOLING CHAMBER						
Part	To Fit Dia.	O.D.	Overall			
No.	Electrode		Length			
	A	В	С			
18-1340	5/8	1-1/4	1-1/2			
18-1341	7/8	1-1/2	1-1/2			
18-1342	1	1-3/4	1-1/2			
18-1343	1-1/4	2	1-7/8			

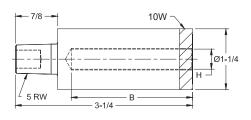
TAPERED ADAPTER CONVERSION FROM 5/8-18 THREAD TO 5 RW TAPER


STUD WELDING ELECTRODES

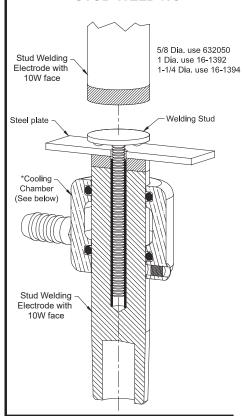
STUD WELDING ELECTRODES



Assemble	Insulation I.D.	Screw		
	Н	Size		
.375	.750	1.125		
16-3724-1161 16-3724-1321	16-3724-1162 16-3724-1322	16-3724-1163 16-3724-1323	.116 .132	#4 #5
.500	1.000	1.500		
16-3724-1401 16-3724-1501 16-3724-1571 16-3724-1691	16-3724-1402 16-3724-1502 16-3724-1572 16-3724-1692	16-3724-1403 16-3724-1503 16-3724-1573 16-3724-1693	140 150 157 169	#6 #8
.750	1.500	-		
16-3724-1911 16-3724-2201 16-3724-2541	16-3724-1912 16-3724-2202 16-3724-2542		.191 .220 .254	#10 #12 .250



Assembled E Num Dep		I.D. TI			
.750	1.500				
16-3725-2541	16-3725-2542	.254	.250		
1.000	2.000				
16-3725-2771 16-3725-3171 16-3725-3391 16-3725-3651 16-3725-3801	16-3725-2772 16-3725-3172 16-3725-3392 16-3725-3652 16-3725-3802	.277 .317 (8MM) .339 .365 .380	 .312 .375		


Assembled E Num Dep	ber	Insulation I.D. H	Screw Thread Size
1.000	2.000		
16-3726-4011 16-3726-4271 16-3726-4441 16-3726-5021	16-3726-4012 16-3726-4272 16-3726-4442 16-3726-5022	.401 .427 .444 .502	 .437 .500
1.000	2.000		
16-3726-5521 16-3726-6301 16-3726-6761 16-3726-8011	16-3726-5522 16-3726-6302 16-3726-6762 16-3726-8012	.552 .630 .676 .801	.625

FEATURES AND SPECIFICATIONS

- 10W faced RWMA CLASS 2 material
- Insulated sleeve made of anodized aluminum
- Insulated sleeve are treated to 55 HRC both I.D. & O.D. for wear resistance
- Use with tapered electrode holders
- Use with flat faced electrodes
- Accepts external Cooling Chambers

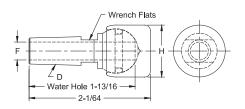
TYPICAL SET-UP FOR STUD WELDING

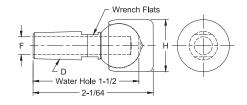
*For additional information on cooling chamber see page 27

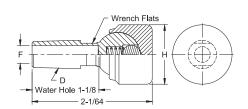
Electrode Dia.	Cooling Chamber
5/8	18-1340
1	18-1342
1-1/4	18-1343

BACK-UP ELECTRODES

Email: cmw@cmwinc.com


Phone: 800-521-3722 Fax: 864-877-2212

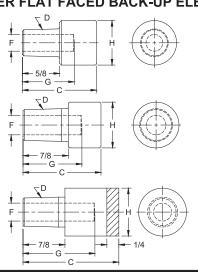

SWIVEL HEAD BACK-UP ELECTRODES


PART No.	Taper D	Water Hole Dia. F	Face Dia. H	Туре
16-2304 16-2305	4 RW 5 RW	9/32 3/8	7/8	
16-2302 16-2303	4 RW 5 RW	9/32 3/8	1	Thru hole
16-2300 16-2301	4 RW 5 RW	9/32 3/8	1-1/4	with "O" ring
16-2306	5 RW	3/8	1-1/2	

PART No.	Taper	Water Hole Dia.	Face Dia.	Туре
	D	F	Η	
16-2314 16-2315	4 RW 5 RW	9/32 3/8	7/8	
16-2312 16-2313	4 RW 5 RW	9/32 3/8	1	Blind
16-2310 16-2311	4 RW 5 RW	9/32 3/8	1-1/4	hole
16-2316	5 RW	3/8	1-1/2	

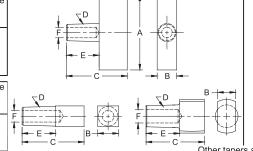
PART	Taper	Water	Face	Туре
No.		Hole Dia.	Dia.	
	D	F	Н	
16-23129	4 RW	9/32	1	
16-23139	5 RW	3/8		Blind
16-23109	4 RW	9/32	1-1/4	hole with
16-23119	5 RW	3/8		spring
16-23169	4 RW	9/32	1-1/2	and ball
16-23179	5 RW	3/8		

Standard material: Shank - RWMA CLASS 2 Cap - RWMA CLASS 2 Optional material available on specail order: Cap-Class 3 and 10W facing



LARGE DIAMETER FLAT FACED BACK-UP ELECTRODES

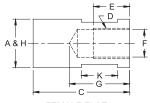
PART	Weld	O.A.L.	Taper	Water	Hole	Weld
No.	No. Face			Dia.	Depth	Face Dia.
	Material	С	D	F	G	Н
16-3012						3/4
16-3010	CLASS 2	1-1/4	4 RW	9/32	7/8	1
16-3030						1-1/4
DADT	I Wald I	0 4 1	Tanar	Matas	Llala	Wold
PART	Weld	O.A.L.	Taper	Water		Weld
No.	Face	_	_	Dia.	Depth	Face Dia.
	Material	С	D	F	G	Н
16-3021						7/8
16-3020	CLASS 2	1-1/2	5 RW	3/8	1-1/8	1
16-3040						1-1/4
16-3050						1-1/2
PART	Weld Face	lo.a.l.	Topor	Water	· Hala	Weld
		JO.A.L.	Taper			
No.	Material		_	Dia.	Depth	Face Dia.
		С	D	F	G	Н
16-1392		2			1-1/2	1
16-1393	10W	3	5 RW	3/8	5/8	1
16-1394		2			1-1/2	1-1/4
16-1395		3-1/4			5/8	1-1/4

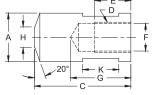


SQUARE & RECTANGULAR FACED BACK-UP ELECTRODES

PART	Weld	O.A.L.	Taper	Shank	Water	Weld Face	Weld Face
No.	Face			Length	Hole Dia.	Lgth.	Width
	Material	С	D	E	F	A	В
16-382158			4 RW		9/32	1-1/2	1/2
16-3111	CLASS 2	1-5/8	4 RW	7/8	9/32	2	5/8
16-382160	Casting		5 RW		3/8	1-1/2	1/2
16-3121			5 RW		3/8	2	5/8
PART	Weld	O.A.L.	Taper	Shank	Water	Weld Face	Weld Face
KI.				1	Lists Dis	141.	107: -141-

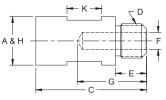
PART	Weld	O.A.L.	Taper	Shank	Water	Weld Face	Weld Face
No.	Face			Length	Hole Dia.	Lgth.	Width
	Material	С	D	E	F	A	В
16-3110	CLASS 2	1-1/2	4 RW	13/16	9/32	1/2	1/2
16-3120	Cold	1-3/4	5 RW	7/8	3/8	5/8	5/8
16-384110	Formed	1-5/8	5 RW	7/8	3/8	15/16	1/2

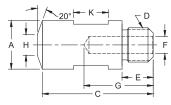

Other tapers and alloys available to special order



THREADED ELECTRODES

THREADED ELECTRODES

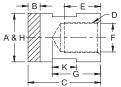


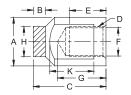


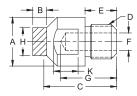
FEMALE FLAT

FEMALE TRUNCATED

	CLASS 2 FEMALE THREADED ELECTRODES												
CLASS 2	Туре	O.A.L.	Thread	Major	Thread	Water Hole	Water Hole	Over	Wrench Flat	Welding			
PART				Dia.	Depth	Depth	Dia.	Wrench	Length	Face Dia.			
No.		С	D	Α	E	G	F	Flats	K	Н			
336508 336510 336512	Female Flat	2	5/8-18	1 1-1/4 1-1/2	3/4	1-1/4	37/64	7/8 1 1-1/4	3/4 3/4 7/8	1 1-1/4 1-1/2			
326508 326510 326512	Female Truncat.	2	5/8-18	1 1-1/4 1-1/2	3/4	1-1/4	37/64	7/8 1 1-1/4	3/4 3/4 7/8	3/8 1/2 5/8			






MALE FLAT

MALE TRUNCATED

	CLASS 2 MALE THREADED ELECTRODES											
CLASS 2	Туре	O.A.L.	Thread	Major	Thread	Water Hole	Water Hole	Over	Wrench Flat	Welding		
PART				Dia.	Depth	Depth	Dia.	Wrench	Length	Face Dia.		
No.		С	D	Α	Е	G	F	Flats	K	Н		
330507			5/8-18	7/8	9/16		5/16	3/4	5/8	7/8		
330508			5/8-18	1	9/16		5/16	7/8	5/8	1		
335506	Male		5/8-11	3/4	15/32		5/16	5/8	1/2	3/4		
335507	Flat	2	5/8-11	7/8	15/32	1-1/4	5/16	3/4	3/4	7/8		
335508	1		3/4-10	1	5/8		3/8	7/8	7/8	1		
335510			3/4-10	1-1/4	5/8		3/8	1	3/4	1-1/4		
335512			7/8-9	1-1/2	3/4		1/2	1-1/4	7/8	1-1/2		
325506	Male		5/8-11	3/4	15/32		5/16	5/8	1/2	1/4		
325507	Truncat.	2	5/8-11	7/8	15/32	1-1/4	5/16	3/4	5/8	5/16		
325508			3/4-10	1	5/8		3/8	7/8	5/8	3/8		
325510			3/4-10	1-1/4	5/8		3/8	1	3/4	1/2		

10W FACED FEMALE FLAT

10W FACED FEMALE CENTERED

10W FACED MALE CENTERED

			10W FACED MALE & FEMALE THREADED ELECTRODES												
10W	Type	O.A.L.	Thread	Major	Thread	Water Hole	Water Hole	Over	Wrench Flat	Welding	10W				
PART				Dia.	Depth	Depth	Dia.	Wrench	Length	Face Dia.	Thickness				
No.		С	D	Α	E	G	F	Flats	K	Н	В				
636308	Female			1				7/8	1/2	1					
636310	Flat	1-1/2	5/8-18	1-1/4	3/4	1	37/64	1	1/2	1-1/4	1/4				
636312				1-1/2				1-1/4	7/8	1-1/2					
626308	Female	1-1/2	5/8-18	1	3/4	1	37/64	7/8	13/16	5/8	1/4				
626310	Centered			1-1/4				1	11/16	5/8					
620307	Male	1-1/2	5/8-18	7/8	9/16	1	5/16	3/4	3/4	1/2	1/4				
625206	Centered	1-1/4	5/8-11	3/4	15/32	7/8	5/16	5/8	3/4	1/2	3/16				
625308		1-5/8	3/4-10	1	5/8	1-3/16	3/8	7/8	7/8	5/8	1/4				

FEMALE FLAT

FEMALE TRUNCATED

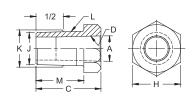
MALE FLAT

MALE TRUNCATED

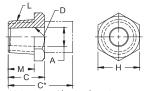
10W FACED FEMALE FLAT

10W FACED FEMALE CENTERED

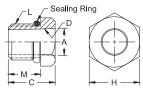
10W FACED MALE CENTERED



Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

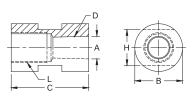

ADAPTERS

	MALE TAPER TO FEMALE TAPER ADAPTERS								
	M	ale Tape	r	Female	Taper				
Adapter	Size	Minor	Dia.	Size	Major	Length		Overall	
Part No.		Dia.	at 1/2		Dia.	Under Head	Flats	Length	
	L	J	K	D	Α	M	Н	С	
18-741	5 RW	.588	.613	4 RW	.463	7/8	7/8	1-3/16	
18-742	7 RW	.819	.844	5 RW	.625	1-3/16	1	1-1/2	
18-7414	6 RW	.706	.731	5 RW	.625	7/8	1	1-3/16	
18-7415	4 RW	.438	.463	5 RW	.625	5/8	7/8	1-3/4	
18-7416	5 RW	.588	.613	6 RW	.750	7/8	1	2-1/4	

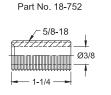


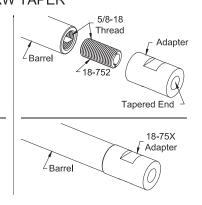
	MALE PIPE THREAD TO FEMALE TAPER ADAPTERS							
Adapter	Male Thd.	Female Ta		Length	Hex. Over.	Overall		
Part No.	Size	Size	Major Dia.	Under Head	Flats	Length		
	L	D	Α	M	Н	С		
18-746-07	1/2-14 pipe	4 RW	.463	5/8	1	7/8		
18-747-07	1/2-14 pipe	5 RW	.625	5/8	1	7/8		
18-7465-07	1/2-14 pipe	5 RW Male Cap	.414	9/16	7/8	7/8		
18-748-06	5/8-14 pipe	4 RW	.463	9/16	1	3/4		
18-749-06	5/8-14 pipe	5 RW	.625	9/16	1	3/4		
18-756-09	3/4-14 pipe	4 RW	.463	7/8	1-1/4	1-1/8		
18-757-09	3/4-14 pipe	5 RW	.625	7/8	1-1/4	1-1/8		
18-7576-09	3/4-14 pipe	6 RW	.750	7/8	1-1/4	1-1/8		

*Adapters of longer lengths available in 1/8" increments upon request

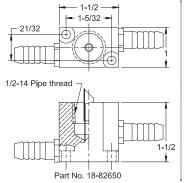

١	MALE THREAD TO FEMALE TAPER ADAPTERS							
Γ	Adapter	Male Thd.	Female	Female Taper		Hex or Dia.	Overall	Sealing
١	Part No.	Size	Size	Major Dia.	Under Head	Over. Flats	Length	Ring Part
L		L	D	Α	M	Н	С	No.
١	18-750	5/8-18	4 RW	.463	9/16	7/8 Hex	13/16	18-10060-11
١	18-751	5/8-18	5 RW	.625	9/16	1 Hex	1-11/16	18-10060-11
l	18-755*	3/4-10	5 RW	.625	9/16	1 Dia.	1-9/16	18-10060-12
ſ	18-770	7/8-14	4 RW	.463	5/8	1 Hex	13/16	18-76460
l	18-771	7/8-14	5 RW	.625	5/8	1 Hex	13/16	18-76460
ſ	18-7743	1-14	5/8-18 Thd.	-	5/8	1-1/4 Hex	1	18-10060-17
ľ	18-785	1-14	4 RW	.463	9/16	1-1/4 Hex	13/16	18-10060-17
١	18-786	1-14	5 RW	.625	9/16	1-1/4 Hex	13/16	18-10060-17
l	18-7863	1-14	6 RW	.750	3/4	1-1/4 Hex	1-3/4	18-10060-17
ľ	18-787	1-14	7 RW	.875	3/4	1-1/4 Hex	2-1/8	18-10060-17
١	18-7875	1-14	5 RW	.625	9/16	1-1/4 Dia.	11/16	18-10060-17
	18-7876	1-14	6 RW	.750	5/8	1-1/4 Dia.	7/8	18-10060-17

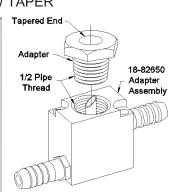
*This part has 3/4" wrench flats


	FEMALE THREAD TO FEMALE TAPER ADAPTERS								
Adapter	Female	Fema	le Taper	Outside	Over Wrench	Overall			
Part No.	Thd. Size	Size	Major Dia	Dia.	Flats	Length			
	L	D	A	В	Н	С			
18-753	5/8-18	4 RW	.475	1	3/4	1-5/8			
18-754	5/8-18	5 RW	.625	1	3/4	1-5/8			
18-7591	3/4-10	4 RW	.463	1-1/4 Hex.	1-1/4	1-3/4			
18-7592	3/4-10	5 RW	.625	1-1/4 Hex.	1-1/4	1-3/4			



See page 6 for Metric Conversions See page 7 for Taper Dimensions See page 34 for ejector type adapters


CONVERSION FROM 5/8-18 THREAD INTO 4, 5, 6, RW TAPER



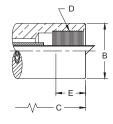
Threaded adapter used with tapered adapter to convert holder to use tapered electrodes.

CONVERSION FROM THREADED ADAPTER INTO 4, 5, 6, RW TAPER


Buy Online Electrodes.com 100 SERIES (NON-EJECTOR) WATER COOLED ELECTRODE HOLDER

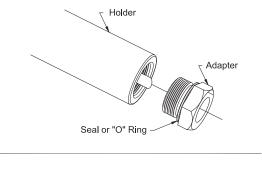
Fax: 864-877-2212

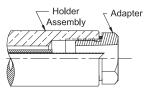
100 SERIES (NON-EJECTOR) WATER COOLED ELECTRODE HOLDER


	100 SERIES TAPERED HOLDER								
Part No.	Major	Barrel	Barrel	RW	Engagement				
Holder	Taper Dia.		Length	Taper	With Std. Elect.				
Assy.	A A	B B	C	napei D	E E				
18-101	 	3/4							
18-102	.463	7/8		4 RW	1/2				
18-103		1		7 1000	1/2				
18-104		1-1/4	3						
18-106		1	Ĭ						
18-107	.625	1-1/4		5 RW	3/4				
18-108	1 .025	1-1/2		5100	5/-				
18-111		3/4	_						
18-112	.463	7/8		4 RW	1/2				
18-113	.403	1		4 1777	1/2				
18-114		1-1/4							
18-116		1	8						
18-117	.625	1-1/4	٥	5 RW	3/4				
18-118	.025	1-1/4		J NW	3/4				
	.==				4 4 4 6				
18-119	.875	1-1/4		7 RW	1-1/8				
18-120		1-1/2	_						
18-131		3/4							
18-132	.463	7/8		4 RW	1/2				
18-133		1							
18-134		1-1/4	12						
18-136		1							
18-137	.625	1-1/4		5 RW	3/4				
18-138		1-1/2							

Phone: 800-521-3722

Email: cmw@cmwinc.com


100 SERIES THREADED HOLDER							
Part No. Holder	Barrel Dia.	Barrel Length	Thread Size	Engagement With Std. Electrode			
Assy.	В	С	D	E			
18-169 18-170 18-171	1 1-1/4 1-1/2		5/8-18	9/16			
18-172 18-173 18-174	1 1-1/4 1-1/2	8	7/8-14	9/16			
18-175 18-176	1-1/4 1-1/2		1-14	3/4			

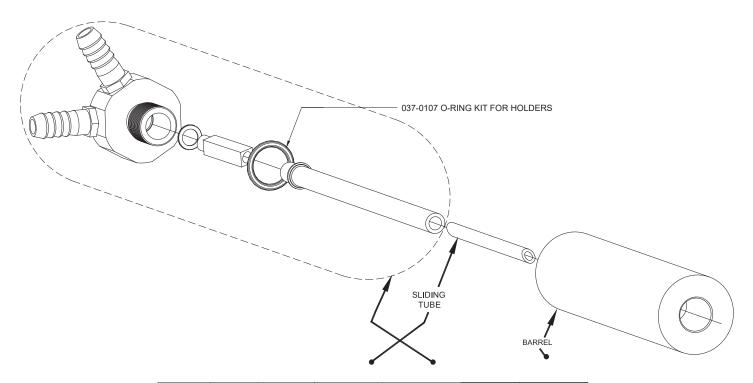


See available adapters in table below.

ADAPTERS USED WITH THREADED HOLDERS

	100 SERIES THREADED HOLDER ADAPTERS							
Holder Assembly No.		Adapter Part No.	Page No.	Attachment Description				
18-169 18-170 18-171	Use with	18-750 18-751 18-752 18-811	31 31 31 50	4 RW Female 5 RW Female 5/8-18 M. Thread #1 Size Nu-Twist ^o				
18-172 18-173 18-174	Use with	18-770 18-771	31 31	4 RW Female 5 RW Female	May also be used with universal Adapters having 7/8-14 Male thread See page 46			
18-175 18-176	Use with	18-785 18-786 18-7863 18-787 18-812	31 31 31 31 50	4 RW Female 5 RW Female 6 RW Female 7 RW Female #2 Size Nu-Twist°	May also be used with universal Adapters having 1-14 Male thread See page 46			

Phone: 800-521-3722

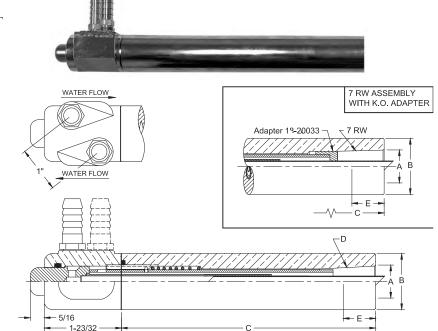

Electrodes.com 100 SERIES (NON-EJECTOR) REPLACEMENT PARTS

Email: cmw@cmwinc.com

100 SERIES (NON-EJECTOR) WATER COOLED ELECTRODE HOLDER

Fax: 864-877-2212

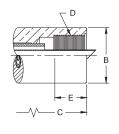
Part No. Holder Assy.	Thread Or Taper	Barrel Length	Sliding Tube	Water Conn. HD. Sub-Assy.	Barrel Diameter	Barrel
18-101 18-102 18-103 18-104	4 RW	3	18-10046-3	18-10093-5 18-10093-5 18-10091-3 18-10091-3	3/4 7/8 1 1-1/4	18-11110-3 18-11210-3 18-11310-3 18-11410-3
18-106 18-107 18-108	5 RW	3	18-10047-3	18-10092-3	1 1-1/4 1-1/2	18-11610-3 18-11710-3 18-11810-3
18-111 18-112 18-113 18-114	4 RW	8	18-10046-8	18-10093-8 18-10093-8 18-10091-8 18-10091-8	3/4 7/8 1 1-1/4	18-11110-8 18-11210-8 18-11310-8 18-11410-8
18-116 18-117 18-118	5 RW	8	18-10047-8	18-10092-8	1 1-1/4 1-1/2	18-11610-8 18-11710-8 18-11810-8
18-119 18-120	7 RW	8	18-10047-8	18-10092-8	1-1/4 1-1/2	18-11910-8 18-12010-8
18-131 18-132 18-133 18-134	4 RW	12	18-10046-8	18-10093-12 18-10093-12 18-10091-12 18-10091-12	3/4 7/8 1 1-1/4	18-11110-12 18-11210-12 18-11310-12 18-11410-12
18-136 18-137 18-138	5 RW	12	18-10047-8	18-10092-12	1 1-1/4 1-1/2	18-11610-12 18-11710-12 18-11810-12
18-169 18-170 18-171	5/8-18	8	18-10047-8	18-10092-8	1 1-1/4 1-1/2	18-16910-8 18-17010-8 18-17110-8
18-172 18-173 18-174	7/8-14	8	18-10047-8	18-10092-8	1 1-1/4 1-1/2	18-17210-8 18-17310-8 18-17410-8
18-175 18-176	1-14	8	18-10047-8	18-10092-8	1-1/4 1-1/2	18-17510-8 18-17610-8



200 SERIES (EJECTOR) WATER COOLED ELECTRODE HOLDER

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

200 SERIES (EJECTOR) WATER COOLED ELECTRODE HOLDER


					`			
200 SERIES TAPERED HOLDER								
Part No. Holder	Major Taper Dia A	Barrel Dia. B	Barrel Length C	RW Taper D	Engagement With Std. Elect. E			
Assy. 18-201 18-202 18-203 18-204	.463	3/4 7/8 1 1-1/4	3	4 RW	1/2			
18-206 18-207 18-208	.625	1 1-1/4 1-1/2		5 RW	3/4			
18-211 18-212 18-213 18-214	.463	3/4 7/8 1 1-1/4		4 RW	1/2			
18-216 18-217 18-218	.625	1 1-1/4 1-1/2	8	5 RW	3/4			
18-219* 18-220*	.875	1-1/4 1-1/2		7 RW	1-1/8			
18-231 18-232 18-233 18-234	.463	3/4 7/8 1 1-1/4	12	4 RW	1/2			
18-236 18-237 18-238	.625	1 1-1/4 1-1/2		5 RW	3/4			
18-236-18 18-237-18 18-238-18	.625	1 1-1/4 1-1/2	18	5 RW	3/4			

*Must use knockout adapter 18-20033

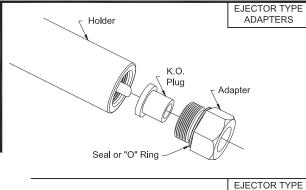
Must use knockout adapter 16-20033									
20	200 SERIES THREADED HOLDER								
Part No.	Barrel	Barrel	Thread	Engagement					
Holder	Dia.	Length	Size	With Std. Elect.					
Assy. B C D E									
18-272	1								
18-273	1-1/4	8	7/8-14	9/16					
18-274 1-1/2									
18-275	1-1/4	1-14	3/4						
18-276	1-1/2								

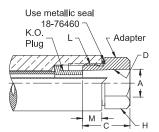
200 Series Threaded Holder can use Male Threaded to Female Taper Universal Adapters on page 46.

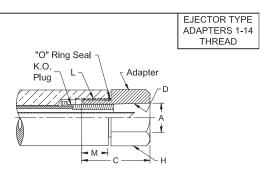
EJECTOR TYPE ADAPTERS

	EJECTOR TYPE ADAPTERS 7/8-14 THREAD								
Γ	Adapter	Male Thd.	Female	Taper	Length	Hex. Over	Overall	Sealing	K.O. Plug
ı	Part No.	Size	Size	Major Dia.	Under Hd.	Flats	Length	Ring	Part No.
L		L	D	A	M	Н	С	Part No.	
Г	18-7702	7/8-14	4 RW	.463	5/8	1	13/16	18-76460	18-78501
	18-7712	7/8-14	5 RW	.625	1/2	1	1-1/16	18-76460	18-7712-3

Use with
Threaded Ejector
Holder to make
Replaceable
Taper Holders


Part No.	Female Thd. Size	Barrel Dia.
18-272	7/8-14	1
18-273	7/8-14	1-1/4
18-274	7/8-14	1-1/2


EJECTOR TYPE ADAPTERS 1-14 THREAD										
Adapter	Male Thd.	Female Taper		Length	Hex. Over	Overall	Sealing	K.O. Plug		
Part No.	Size	Size	Major Dia.	Under Hd.	Flats	Length	Ring	Part No.		
	L	D	A	M	Н	С	Part No.			
18-7852	1-14	4 RW	.463	9/16	1-1/4	13/16	18-10060-17	18-78501		
18-7862	1-14	5 RW	.625	7/16	1-1/4	1-1/16	18-10060-17	18-7712-3		
18-7864 18-7872	1-14 1-14	6 RW 7 RW	.750 .875	3/4 3/4	1-1/4 1-1/4	1-3/4 2-1/8	18-10060-17 18-10060-17			


Threaded Ejector
Holder to make
Replaceable
Taper Holders

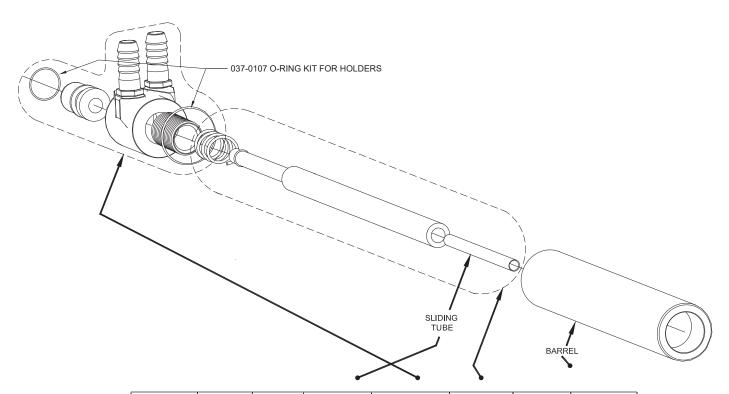
34

Part No.	Female Thd. Size	Barrel Dia
18-275	1-14	1-1/4
18-276	1-14	1-1/2

ADAPTERS 7/8-14

THREAD

Phone: 800-521-3722


200 SERIES (EJECTOR) REPLACEMENT PARTS

200 SERIES (EJECTOR) WATER COOLED ELECTRODE HOLDER

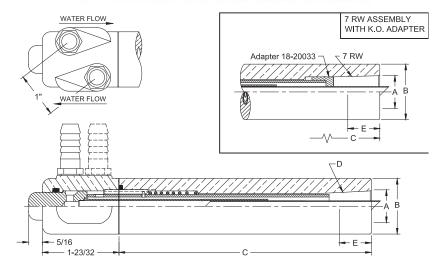
Fax: 864-877-2212

Part No. Holder Assy.	Thread Or Taper	Barrel Length	Sliding Tube	Water Conn. HD. Sub-Assy.	K.O. Tube Sub-Assy	Barrel Diameter	Barrel
18-201 18-202 18-203 18-204	4 RW	3	18-10046-3	18-20093 18-20093 18-20091 18-20091	18-20095-3	3/4 7/8 1 1-1/4	18-11110-3 18-11210-3 18-11310-3 18-11410-3
18-206 18-207 18-208	5 RW	3	18-10047-3	18-20092	18-20096-3	1 1-1/4 1-1/2	18-11610-3 18-11710-3 18-11810-3
18-211 18-212 18-213 18-214	4 RW	8	18-10046-8	18-20093 18-20093 18-20091 18-20091	18-20095-8	3/4 7/8 1 1-1/4	18-11110-8 18-11210-8 18-11310-8 18-11410-8
18-216 18-217 18-218	5 RW	8	18-10047-8	18-20092	18-20096-8	1 1-1/4 1-1/2	18-11610-8 18-11710-8 18-11810-8
18-219* 18-220*	7 RW	8	18-10047-8	18-20092	18-20096-58	1-1/4 1-1/2	18-11910-8 18-12010-8
18-231 18-232 18-233 18-234	4 RW	12	18-10046-8	18-20093 18-20093 18-20091 18-20091	18-20095-12	3/4 7/8 1 1-1/4	18-11110-12 18-11210-12 18-11310-12 18-11410-12
18-236 18-237 18-238	5 RW	12	18-10047-8	18-20092	18-20096-12	1 1-1/4 1-1/2	18-11610-12 18-11710-12 18-11810-12
18-236-18 18-237-18 18-238-18	5 RW	18	18-10047-29	18-20092	18-20096-18	1 1-1/4 1-1/2	18-11610-18 18-11710-18 18-11810-18
18-272 18-273 18-274	7/8-14	8	18-10047-8	18-20092	18-20096-8	1 1-1/4 1-1/2	18-17210-8 18-17310-8 18-17410-8
18-275 18-276	1-14	8	18-10047-8	18-20092	18-20096-8	1-1/4 1-1/2	18-17510-8 18-17610-8

*Must use knockout adapter 18-20033

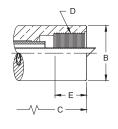
300 SERIES PREMIUM (EJECTOR) WATER COOLED ELECTRODE HOLDERS

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com


300 SERIES PREMIUM (EJECTOR) WATER COOLED ELECTRODE HOLDER

CMW Premium holder barrels are made from high strength RWMA CLASS 2 material, centerless ground within .002" tolerance on diameter and nickel plated to resist wear and assure uniform contact resistance of a low magnitude.

	300 SE	RIES TA	PERED H	OLDER	
Part No. Holder	Major Taper Dia.	Barrel Dia.	Barrel Length	RW Taper	Engagement With Std. Elect.
Assy.	Α	В	c	D	Е
18-317 18-318	.625	1-1/4 1-1/2	8	5 RW	3/4
18-319* 18-320*	.875	1-1/4 1-1/2		7 RW	1-1/8
18-337 18-338	.625	1-1/4 1-1/2	12	5 RW	3/4
18-339* 18-340*	.875	1-1/4 1-1/2		7 RW	1-1/8


^{*}Must use knockout adapter 18-20033

30	0 SERIES	THREAD	DED HOLE	DER					
Part No.	Barrel	Barrel	Thread	Engagement					
Holder	Dia.	Length	Size	With Std. Elect.					
Assy.	В	С	D	E					
18-372	1	8	7/8-14	9/16					
18-373	1-1/4								
18-375	1-1/4		1-14	3/4					
18-376	1-1/2								

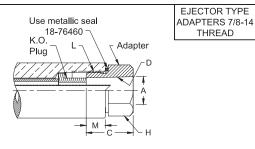
300 Series Threaded Holder can use Male Threaded to Female Taper Universal Adapters on page 46.

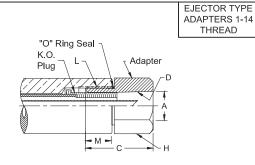
Note: These threaded holder barrels are the same as on 600 series holders on page 44.

Holder K.O. Plug Adapter Seal or "O" Ring

EJECTOR TYPE ADAPTERS

	EJECTOR TYPE ADAPTERS 7/8-14 THREAD										
Adapter	Male Thd.	Female	Taper	Length	Hex. Over	Overall	Sealing	K.O. Plug			
Part No.	Size	Size	Major Dia	Under Hd.	Flats	Length	Ring	Part No.			
	L	D		M	Н	С	Part No.				
18-7702	7/8-14	4 RW	.463	5/8	1	13/16	18-76460	18-78501			
18-7712	7/8-14	5 RW	.625	1/2	1	1-1/16	18-76460	18-7712-3			


Use with
Threaded Ejector
Holder to make
Replaceable
Taper Holders

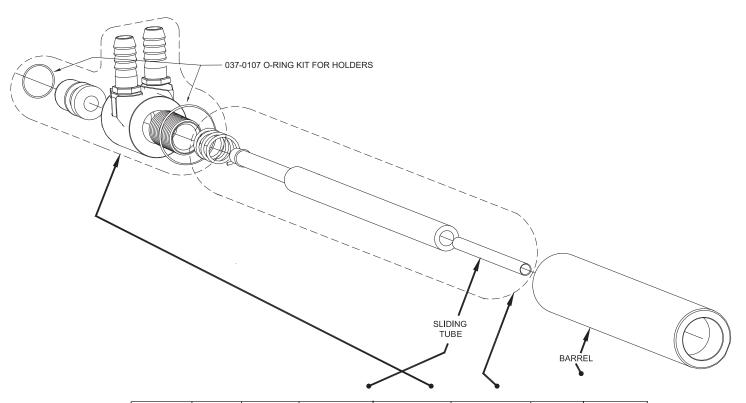

Part No.	Female	Barrel
	Thd. Size	Dia.
18-372	7/8-14	1
18-373	7/8-14	1-1/4

	EJECTOR TYPE ADAPTERS 1-14 THREAD										
Adapter	Male Thd.	Female	Taper	Length	Hex. Over	Overall	Sealing	K.O. Plug			
Part No.	Size	Size	Major Dia	Under Hd.	Flats	Length	Ring	Part No.			
	L	D		M	Н	С	Part No.				
18-7852	1-14	4 RW	.463	9/16	1-1/4	13/16	18-10060-17	18-78501			
18-7862	1-14	5 RW	.625	7/16	1-1/4	1-1/16	18-10060-17	18-7712-3			
18-7864	1-14	6 RW	.750	3/4	1-1/4	1-3/4	18-10060-17				
18-7872	1-14	7 RW	.875	3/4	1-1/4	2-1/8	18-10060-17	18-78701			

Use with
Threaded Ejector
Holder to make
Replaceable
Taper Holders

Part No.	Female Thd. Size	Barrel Dia.
18-375	1-14	1-1/4
18-376	1-14	1-1/2

Phone: 800-521-3722


Buy Online Electrodes.com 300 SERIES PREMIUM (EJECTOR) REPLACEMENT PARTS

Fax: 864-877-2212

Email: cmw@cmwinc.com

300 SERIES PREMIUM (EJECTOR) WATER COOLED ELECTRODE HOLDER

Part No. Holder Assy.	Thread Or Taper	O.A.L	Sliding Tube	Water Conn. HD. Sub-Assy.	K.O. Tube Sub-Assy	Barrel Diameter	Barrel
18-317 18-318	5 RW	8	18-10047-8	18-20092	18-20096-8	1-1/4 1-1/2	18-31710-8 18-31810-8
18-319* 18-320*	7 RW	8	18-10047-8	18-20092	18-20096-58	1-1/4 1-1/2	18-31910-8 18-32010-8
18-337 18-338	5 RW	12	18-10047-8	18-20092	18-20096-12	1-1/4 1-1/2	18-31710-12 18-31810-12
18-339* 18-340*	7 RW	12	18-10047-8	18-20092	18-20096-62	1-1/4 1-1/2	18-31910-12 18-32010-12
18-372 18-373	7/8-14	8	18-10047-8	18-20092	18-20096-8	1 1-1/4	18-37210-8 18-37310-8
18-375 18-376	1-14	8	18-10047-8	18-20092	18-20096-8	1-1/4 1-1/2	18-37510-8 18-37610-8

^{*}Must use knockout adapter 18-20033

TYPICAL SET-UP COMBINATIONS USING CMW WĚĽDING PRODUCTS

Buy Online

Electrodes.com

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

COMBINATIONS OF CMW HOLDERS, ADAPTERS AND ELECTRODES CAN PERFORM MOST RESISTANCE WELDING APPLICATIONS

Many of these combinations make possible welding operations that could have been done heretofore only by the use of "expensive and special" holders and electrodes. A few ideas of the many possible combinations are shown for your guidance.

950 Series

950 Series

Paddle Holder with Socket Truncated Cone Electrode

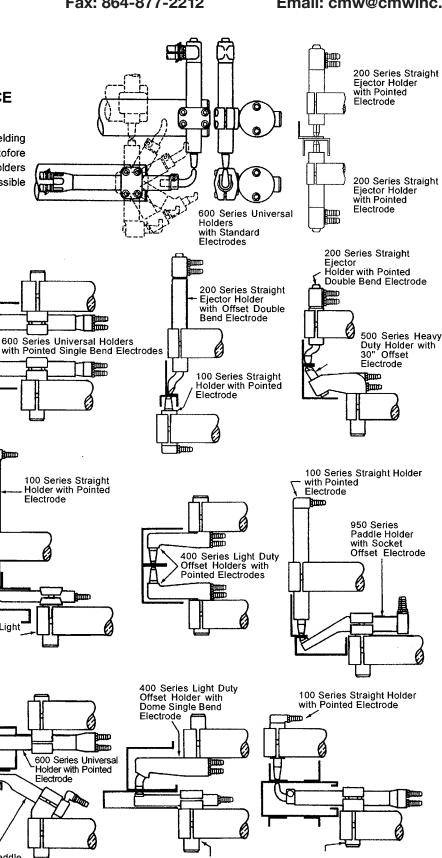
500 Series Heavy

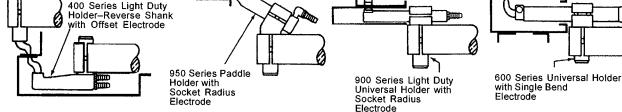
600 Series Universal Holder (30" "T" Connection)

300 Series Premium Ejector Holder with

Offset Electrode

Duty Offset Holder

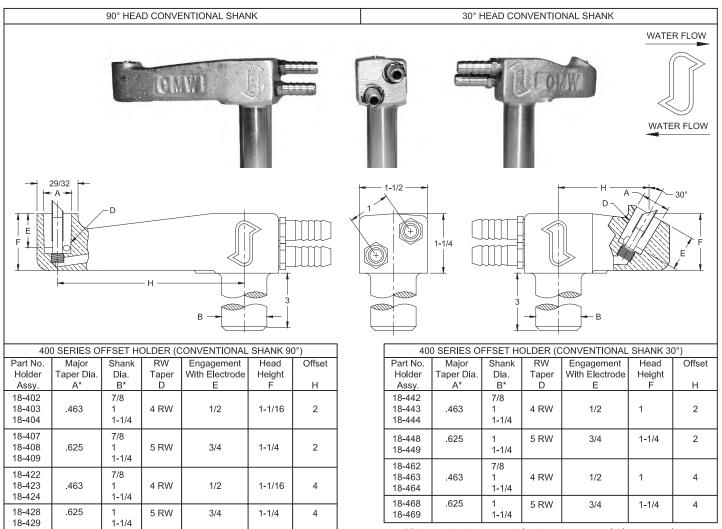

with Dome Electrode


with Dome Electrode

900 Series Light Duty Universal Holder with Socket

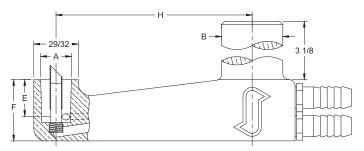
Paddle Holder

with Socket Offset Electrode



400 SERIES OFFSET (NON-EJECTOR) WATER COOLED ELECTRODE HOLDERS

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com


400 SERIES OFFSET (NON-EJECTOR) WATER COOLED ELECTRODE HOLDERS

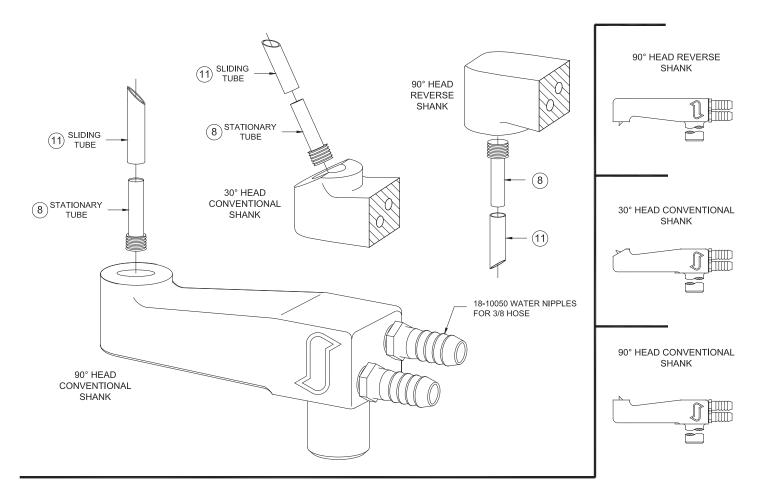
^{*}Other shank diameters and lengths or tapers available on special order

400 SERIES OFFSET (NON-EJECTOR) WATER COOLED ELECTRODE HOLDERS

90° HEAD REVERSE SHANK

400 SERIES OFFSET HOLDER (REVERSE SHANK 90°)									
Part No.	Major	Shank	RW	Engagement With	Head	Offset			
Holder	Taper Dia.	Dia.	Taper	Electrode	Height				
Assy.	A*	B*	Ď	E	F	Н			
18-433	.463	1	4 RW	1/2	1-1/16	4			
18-439	.625	1-1/4	5 RW	3/4	1-1/4	4			

^{*}Other shank diameters and lengths or tapers available on special order


^{*}Other shank diameters and lengths or tapers available on special order

400 SERIES OFFSET (NON-EJECTOR) REPLACEMENT PARTS

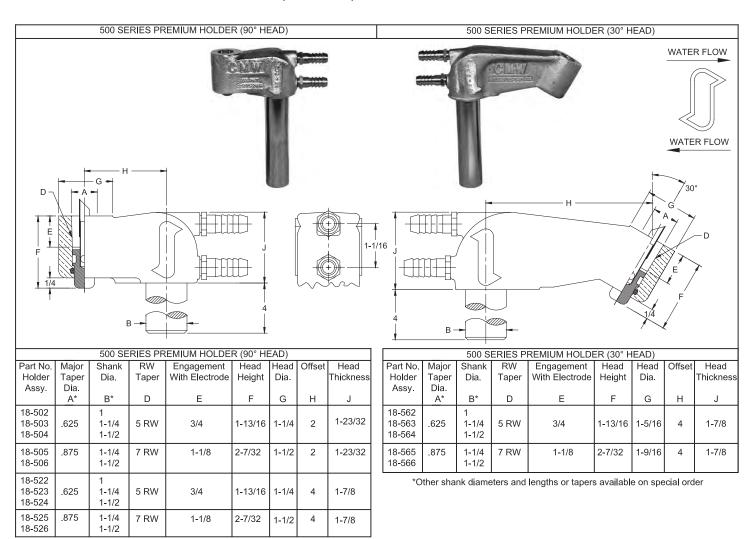
Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

400 SERIES OFFSET (NON-EJECTOR) REPLACEMENT PARTS

Part No. Holder Assy.	Taper	Angle Of Head	Stationary Tube 8	Sliding Tube 11	Shank Dia.
18-402 18-403 18-404	4 RW	90°	18-40041-1	18-40043-1	7/8 1 1-1/4
18-407 18-408 18-409	5 RW	90°	18-40041-1	18-40043-2	7/8 1 1-1/4
18-422 18-423 18-424 18-433*	4 RW	90°	18-40041-1	18-40043-1	7/8 1 1-1/4 1
18-428 18-429 18-439*	5 RW	90°	18-40041-1	18-40043-2	1 1-1/4 1-1/4
18-442 18-443 18-444	4 RW	30°	18-40041-1	18-40043-1	7/8 1 1-1/4
18-448 18-449	5 RW	30°	18-40041-1	18-40043-2	1 1-1/4
18-462 18-463 18-464	4 RW	30°	18-40041-1	18-40043-1	7/8 1 1-1/4
18-468 18-469	5 RW	30°	18-40041-1	18-40043-2	1 1-1/4

*Reverse shank

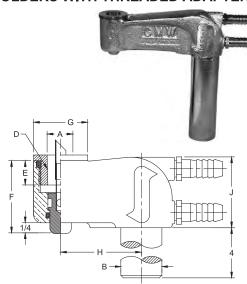
Phone: 800-521-3722


500 SERIES PREMIUM (EJECTOR) WATER COOLED OFFSET HOLDERS

Fax: 864-877-2212

Email: cmw@cmwinc.com

500 SERIES PREMIUM (EJECTOR) WATER COOLED OFFSET HOLDERS

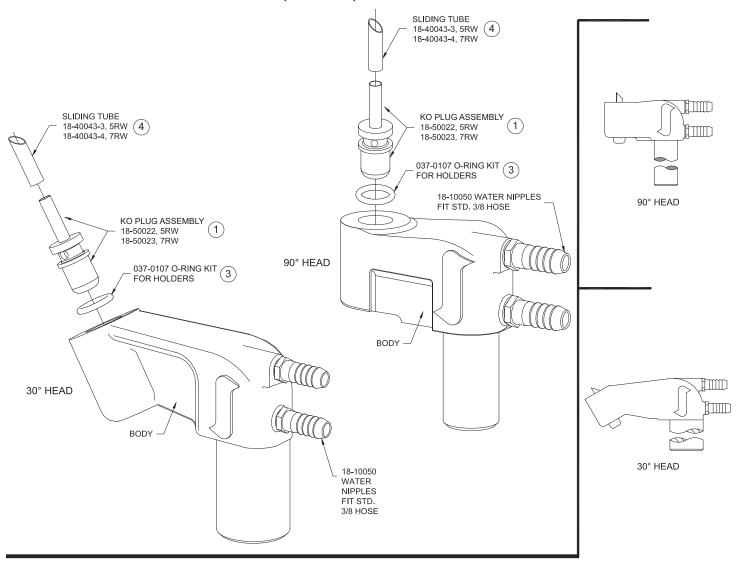


^{*}Other shank diameters and lengths or tapers available on special order

500 SERIES PREMIUM (EJECTOR) WATER COOLED ELECTRODE HOLDERS WITH THREADED ADAPTERS

		500 SE	RIES PR	EMIUM F	OLDER WITH T	HREADE	D ADA	PTERS	3	
Part No.	Head	Major	Shank	RW	Engagement	Head	Head	Offset	Head	Part No.
Holder	Angle	Taper	Dia.	Taper	With Electrode	Height	Dia.		Thickness	
Assy.		Dia. A*	В*	D	E	F	G	Н	G	Adapter
18-5035 18-5036	90°	.625 .750	1-1/4	5 RW 6 RW	3/4 7/8	1-13/16 1-15/16	1-1/4	2	1-23/32	18-7875 18-7876
18-5045 18-5046	90°	.625 .750	1-1/2	5 RW 6 RW	3/4 7/8	1-13/16 1-15/16	1-1/4	2	1-23/32	18-7875 18-7876
18-5235 18-5236	90°	.625 .750	1-1/4	5 RW 6 RW	3/4 7/8	1-13/16 1-15/16	1-1/4	4	1-7/8	18-7875 18-7876
18-5245 18-5246	90°	.625 .750	1-1/2	5 RW 6 RW	3/4 7/8	1-13/16 1-15/16	1-1/4	4	1-7/8	18-7875 18-7876
18-5635 18-5636	30°	.625 .750	1-1/4	5 RW 6 RW	3/4 7/8	1-13/16 1-15/16	1-1/4	4	1-7/8	18-7875 18-7876
18-5645 18-5646	30°	.625 .750	1-1/2	5 RW 6 RW	3/4 7/8	1-13/16 1-15/16	1-1/4	4	1-7/8	18-7875 18-7876

^{*}Other shank diameters and lengths or tapers available on special order

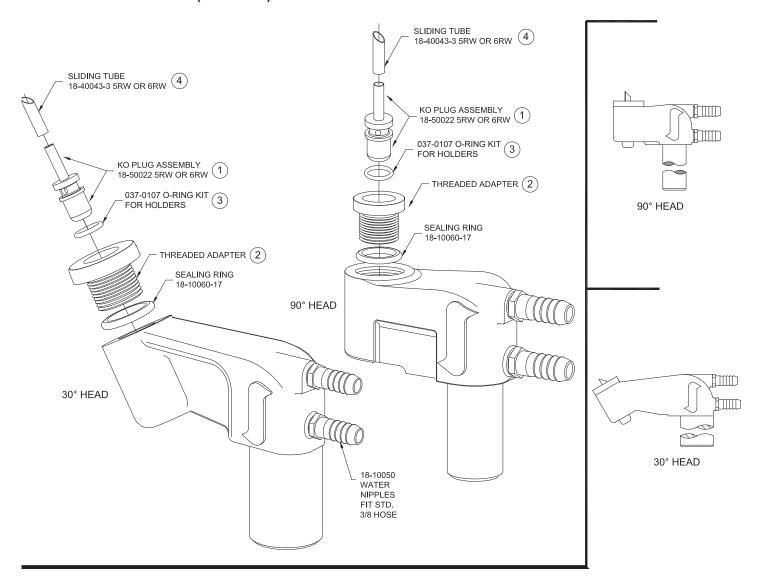


500 SERIES PREMIUM (EJECTOR) REPLACEMENT PARTS

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

Buy Online

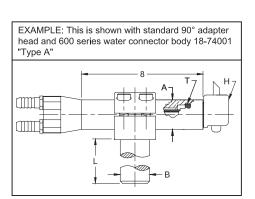
500 SERIES PREMIUM (EJECTOR) WATER COOLED OFFSET HOLDERS

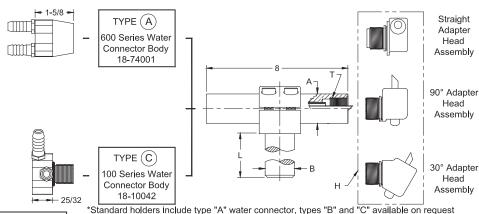

Part No. Holder Assy.	Taper	Angle Of Head	KO Plug Assembly 1	Sealing Ring 3	Sliding Tube 4	Shank Dia.
18-502 18-503 18-504	5 RW	90°	18-50022	18-10060-10	18-40043-3	1 1-1/4 1-1/2
18-505 18-506	7 RW	90°	18-50023	18-10060-12	18-40043-4	1-1/4 1-1/2
18-522 18-523 18-524	5 RW	90°	18-50022	18-10060-10	18-40043-3	1 1-1/4 1-1/2
18-525 18-526	7 RW	90°	18-50023	18-10060-12	18-40043-4	1-1/4 1-1/2
18-562 18-563 18-564	5 RW	30°	18-50022	18-10060-10	18-40043-3	1 1-1/4 1-1/2
18-565 18-566	7 RW	30°	18-50023	18-10060-12	18-40043-4	1-1/4 1-1/2

500 SERIES THREADED PREMIUM (EJECTOR) REPLACEMENT PARTS

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

500 SERIES PREMIUM (EJECTOR) WATER COOLED OFFSET HOLDERS WITH THREADED ADAPTER




Part No. Holder Assy.	Taper	Angle Of Head	KO Plug Assembly 1	Sealing Ring 3	Sliding Tube 4	Shank Dia.	Threaded Adapter 2
18-5035 18-5036	5 RW 6 RW	90°	18-50022	18-10060-10	18-40043-3	1-1/4	18-7875 18-7876
18-5045 18-5046	5 RW 6 RW	90°	18-50022	18-10060-10	18-40043-3	1-1/2	18-7875 18-7876
18-5235 18-5236	5 RW 6 RW	90°	18-50022	18-10060-10	18-40043-3	1-1/4	18-7875 18-7876
18-5245 18-5246	5 RW 6 RW	90°	18-50022	18-10060-10	18-40043-3	1-1/2	18-7875 18-7876
18-5635 18-5636	5 RW 6 RW	30°	18-50022	18-10060-10	18-40043-3	1-1/4	18-7875 18-7876
18-5645 18-5646	5 RW 6 RW	30°	18-50022	18-10060-10	18-40043-3	1-1/2	18-7875 18-7876

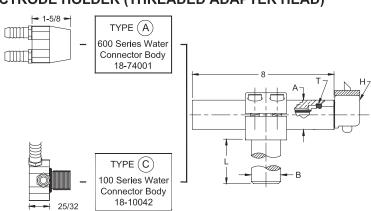
600 SERIES UNIVERSAL WATER COOLED ELECTRODE HOLDERS

600 SERIES UNIVERSAL WATER COOLED ELECTRODE HOLDERS

600 SI	ERIES UI	VIVERSAI	_ HOLDER	R (90° AD	APTER H	EAD)
Part No. Holder Assy.*	Taper	Barrel Dia. A	Shank Dia B	Shank Length L	Head Assy. H	Barrel Thread Size T
18-601 18-603	5 RW	1 1	7/8 1	3 3	18-764	7/8-14
18-605 18-607		1-1/4 1-1/4	1-1/4 1-1/2	3-1/2 4	18-764	7/8-14
18-611 18-613		1 1	7/8 1	3 3	18-766	7/8-14
18-615 18-617	5 RW	1-1/4 1-1/4	1-1/4 1-1/2	3-1/2 4	18-766	7/8-14
18-651 18-657	JIVV	1-1/4 1-1/4	1-1/4 1-1/2	3-1/2 4	18-780	1-14
18-655 18-653		1-1/2 1-1/2	1-1/4 1-1/2	4 4	18-780	1-14
18-661 18-665 18-663	7 RW	1-1/4 1-1/2 1-1/2	1-1/4 1-1/4 1-1/2	3-1/2 4 4	18-782	1-14

600 SERI	ES UNIVE	ERSAL HO	DLDER (S	TRAIGHT	ADAPTE	R HEAD)
Part No. Holder Assy.*	Taper	Barrel Dia A	Shank Dia B	Shank Length L	Head Assy. H	Barrel Thread Size T
18-621 18-622	4 RW	1 1	7/8 1	3 3	18-768	7/8-14
18-623 18-671	4 17 17	1-1/4 1-1/4	1-1/4 1-1/4	3-1/2 3-1/2	18-768 18-784	7/8-14 1-14
18-624 18-674	5 RW	1-1/4 1-1/4	1-1/2 1-1/2	4 4	18-768 18-784	7/8-14 1-14
18-672 18-673		1-1/2 1-1/2	1-1/2 1-1/4	4 4	18-784	1-14

a	


See page 46 for adapter head details and page 47 for additional "T" connector information.

600 5	600 SERIES UNIVERSAL HOLDER (30° ADAPTER HEAD)											
Part No. Holder	Taper	Barrel Dia	Shank Dia	Shank Length	Head Assy.	Barrel Thread Size						
Assy.*		A	В	L	Н	T						
18-602		1	7/8	3	18-765	7/8-14						
18-604	4 RW	1	1	3								
18-606		1-1/4	1-1/4	3-1/2	18-765	7/8-14						
18-608		1-1/4	1-1/2	4								
18-612		1	7/8	3	18-767	7/8-14						
18-614		1	1	3								
18-616		1-1/4	1-1/4	3-1/2	18-767	7/8-14						
18-618	5 RW	1-1/4	1-1/2	4								
18-652	3100	1-1/4	1-1/4	3-1/2	18-781	1-14						
18-658		1-1/4	1-1/2	4								
18-656		1-1/2	1-1/4	4	18-781	1-14						
18-654		1-1/2	1-1/2	4								
18-662		1-1/4	1-1/4	3-1/2								
18-666	7 RW	1-1/2	1-1/4	4	18-783	1-14						
18-664		1-1/2	1-1/2	4								

600 SERIES UNIVERSAL WATER COOLED ELECTRODE HOLDER (THREADED ADAPTER HEAD)

600 S	600 SERIES UNIVERSAL HOLDER (THREADED ADAPTER HEAD)											
Part No.	Taper											
Holder		Angle	Dia.	Dia	Length	Assy.	Thread Size					
Assy.*			Α	В	L	Н	Т					
18-6515		90°	1-1/4	1-1/4	3-1/2	18-7805	1-14					
18-6535	5 RW		1-1/2	1-1/2	4							
18-6525	3 KW	30°	1-1/4	1-1/4	3-1/2	18-7815	1-14					
18-6545			1-1/2	1-1/2	4							
18-6516		90°	1-1/4	1-1/4	3-1/2	18-7806	1-14					
18-6536	0.5147		1-1/2	1-1/2	4							
18-6526	6 RW	30°	1-1/4	1-1/4	3-1/2	18-7816	1-14					
18-6546			1-1/2	1-1/2	4							

^{*}Standard holders include type "A" water connector, types "B" and "C" available on request

600 SERIES UNIVERSAL REPLACEMENT PARTS

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

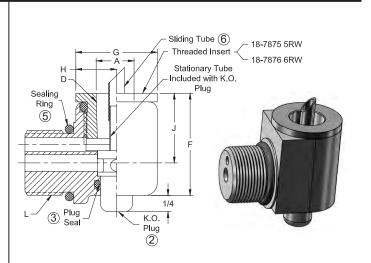
600 SERIES UNIVERSAL WATER COOLED OFFSET HOLDERS

Part No. Holder Assy.	Taper	Angle Of Head	Water Conn. Assembly	Barrel Assy.	Barrel	"T" Conn. Assy.	Adapter Head Assy.*
			1	2	3	4	5
18-601 18-602		90°	18-74000-8	18-701	18-37210-8	18-725	18-764 18-765
18-603 18-604	4 RW	90°	18-74000-8	10-701	10-37210-0	18-726	18-764 18-765
18-605 18-606		90°	18-74000-8	18-702	18-37310-8	18-727	18-764 18-765
18-607 18-608		90°	18-74000-8	10-702	10-37310-0	18-730	18-764 18-765
18-611 18-612		90°	18-74000-8	18-701	18-37210-8	18-725	18-766 18-767
18-613 18-614		90°	18-74000-8	10-701	10-37210-0	18-726	18-766 18-767
18-615 18-616		90° 30°	18-74000-8	18-702	18-37310-8	18-727	18-766 18-767
18-617 18-618	5 RW	90°	18-74000-8	10 702	10 07010 0	18-730	18-766 18-767
18-621 18-622		STR. STR.	18-74000-8	18-701	18-37210-8	18-725 18-726	18-768
18-623 18-624		STR. STR.	18-74000-8	18-702	18-37310-8	18-727 18-730	18-768
18-651 18-652		90° 30°	18-74000-8	18-704	18-37510-8	18-727	18-780 18-781
18-657 18-658		90°	18-74000-8	10-704	10-3/310-0	18-730	18-780 18-781

Part No. Holder Assy.	Taper	Angle Of Head	Water Conn. Assembly* 1	Barrel Assy.	Barrel 3	"T" Conn. Assy. *	Adapter Head Assy.* 5
18-655 18-656		90°	18-74000-8	18-705	18-37610-8	18-728	18-780 18-781
18-653 18-654	5 RW	90°	18-74000-8	10-703	10-37010-0	18-729	18-780 18-781
18-671 18-672		STR. STR.	18-74000-8	18-704 18-705	18-37510-8 18-37610-8	18-727 18-729	18-784
18-673 18-674		STR. STR.	18-74000-8	18-705 18-704	18-37610-8 18-37510-8	18-728 18-730	18-784
18-6515 18-6525	5 RW	90°	18-74000-8	18-704	18-37510-8	18-727	18-7805 18-7815
18-6535 18-6545	THD.	90°	18-74000-8	18-705	18-37610-8	18-729	18-7805 18-7815
18-6516 18-6526	6 RW	90°	18-74000-8	18-704	18-37510-8	18-727	18-7806 18-7816
18-6536 18-6546	THD.	90°	18-74000-8	18-705	18-37610-8	18-729	18-7806 18-7816
18-661 18-662		90°	18-74000-8	18-704	18-37510-8	18-727	18-782 18-783
18-665 18-666	7 RW	90°	18-74000-8	18-705	18-37610-8	18-728	18-782 18-783
18-663 18-664		90°	18-74000-8	10-703	10-37010-0	18-729	18-782 18-783

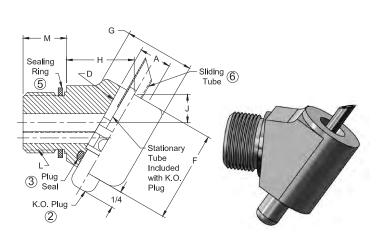
^{*} See page 46 for adapter head details and page 47 for additional "T" connector information.

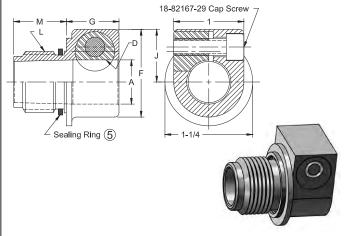
MALE THREAD TO FEMALE TAPER UNIVERSAL ADAPTERS


Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

MALE THREAD TO FEMALE TAPER UNIVERSAL ADAPTERS

MALE THREAD TO FEMALE TAPER 90° TYPE


MALE THREAD TO FEMALE TAPER 90° TYPE (ADAPT WITH INSERT)

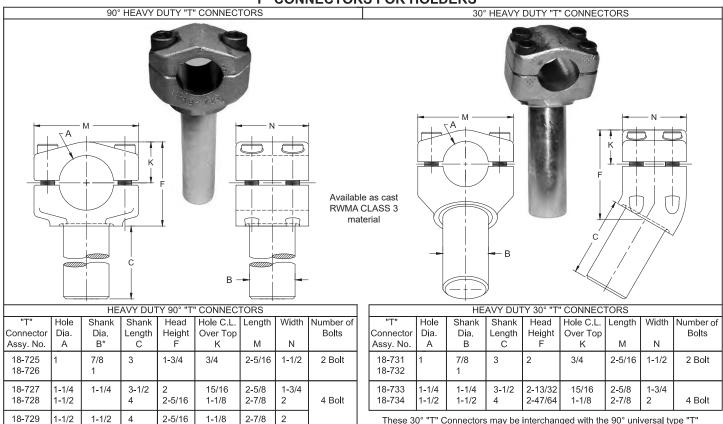


MALE THREAD TO FEMALE TAPER 30° TYPE

MALE THREAD TO FEMALE TAPER STRAIGHT TYPE

					MALE TH	READ TO FE	MALE TAPE	R UNIVERSA	L ADAPTER:	S			
Adapter	Adapter	Male T	hread	Female	Taper	Overall Head	Head	End Barrel	C.L. Barrel	K.O. Plug	K.O. Plug	Sealing	Sliding
Part No.	Angle	Thread	Length	Taper	Major	Height	Diameter	to C.L. of	to C.L. of	Part No.	Seal Ring	Ring	Tube
		Size		Size	Dia.		or Length	Taper	Taper		Part No.	Part No.	Part No.
		L	M	D	Α	F	G	Н	J	2	3	5	6
18-764	90°	7/8-14	9/16	4 RW	.463	1-9/16	1	19/32	13/16	18-50021	18-10060-8	18-76460	18-50041-1
18-765	30°							1-1/16	15/32				
18-766	90°					1-13/16	1	19/32	1-1/16	18-50022			18-40043-3
18-767	30°	7/8-14	9/16	5 RW	.625	1-13/16	1-1/16	1-11/32	53/64	18-50022	18-10060-10	18-76460	18-40043-3
18-768	Str.					1-1/4	3/4		3/4				_
18-780	90°					1-13/16	1-1/4	21/32	1-1/16	18-50022			18-40043-3
18-781	30°	1-14	3/4	5 RW	.625	1-13/16	1-5/16	1-3/8	13/16	18-50022	18-10060-10	18-10060-17	18-40043-3
18-784	Str.					1-1/4	3/4		3/4				_
18-782	90°	1-14	3/4	7 RW	.875	2-3/16	1-1/2	25/32	1-3/16	18-50023	18-10060-12	18-10060-17	18-40043-4
18-783	30°						1-9/16	1-3/8	13/16				
18-7805*	90°	1-14	3/4	5 RW	.625	1-13/16	1-1/4	21/32	1-1/16	18-50022	18-10060-10	18-10060-17	18-40043-3
18-7815*	30°						1-5/16	1-3/8	13/16				
18-7806*	90°	1-14	3/4	6 RW	.750	1-15/16	1-1/4	21/32	1-3/16	18-50022	18-10060-10	18-10060-17	18-40043-3
18-7816*	30°						1-5/16	1-7/16	59/64				

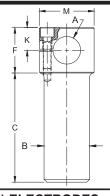
^{*}These adapters have threaded inserts 18-7875 (5RW) or 18-7876 (6RW) taper



Electrodes.com "T" CONNECTORS FOR HOLDERS

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

"T" CONNECTORS FOR HOLDERS

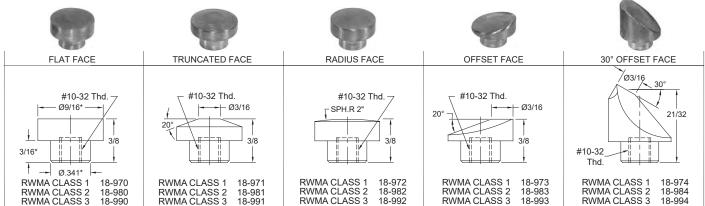


[&]quot;T" Connectors of other shank diameters and lengths may be ordered upon request.

Available as cast RWMA CLASS 2 material

	SMALL BARREL 90° "T" CONNECTORS										
"T" Connector Assy. No.	Hole Dia A	Shank Dia B	Shank Length C	Head Height F	Hole C.L. Over Top K	Dia. M	Number of Bolts				
18-720 18-721	3/4	3/4 7/8	3	1-1/4	5/8	1-1/2	1 Bolt				
18-722 18-723 18-724		1 1-1/4 1-1/2									

[&]quot;T" Connectors of other shank diameters and lengths may be ordered upon request.

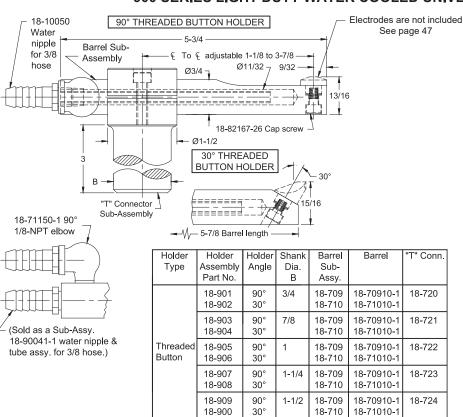


Connectors. See page 38 for suggested setups.

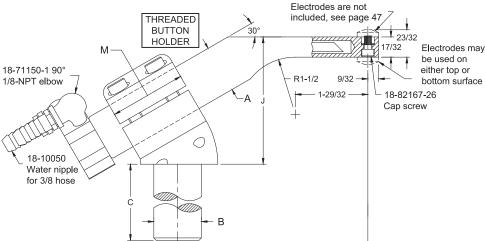
THREADED SOCKET(OR BUTTON) ELECTRODES

(USE WITH 900 AND 950 SERIES HOLDERS ON PAGE 48) ALL DIMENSIONS WITH AN (*) ARE COMMON TO EACH CAP IN A HORIZONTAL LINE.

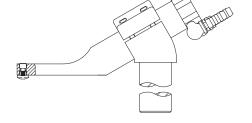
18-730


1-1/4

Buy Online Electrodes.com 900 SERIES UNIVERSAL & 950 SERIES PADDLE WATER COOLED HOLDERS


Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

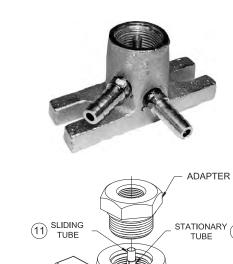
900 SERIES LIGHT DUTY WATER COOLED UNIVERSAL HOLDER

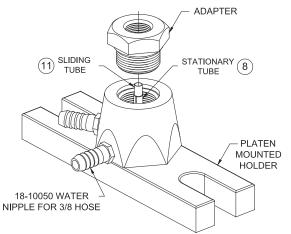


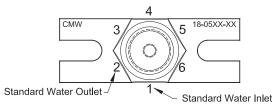
950 SERIES WATER COOLED PADDLE HOLDERS FOR THREADED BUTTON ELECTRODES

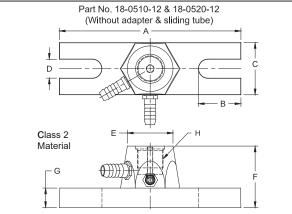
Holder	Holder	Barrel	Shank	Shank	Offset Range	Height Range	Width	Barrel	"T"
Туре	Assembly	Dia.	Dia.	Length				Sub-	Conn.
	Part No.	Α	В	С	Н	J	M	Assy.	
Threaded	18-952 18-953	1	7/8 1	3	3-3/8 to 5-3/32	2-1/16 to 3-1/16	1-1/2	18-713	18-731 18-732
Button	18-954 18-955	1-1/4 1-1/2	1-1/4 1-1/2	3-1/2 4	4 to 5-23/32 4-7/32 to 5-15/16	2-3/4 to 3-3/4 2-7/8 to 3-7/8	1-3/4 2		18-733 18-734

VIEW IS SHOWING BARREL SUB-ASSY AND ELECTRODE REVERSED IN SHANK




Electrodes.com PLATEN MOUNTED ELECTRODE HOLDERS


Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com


PLATEN MOUNTED ELECTRODE HOLDERS

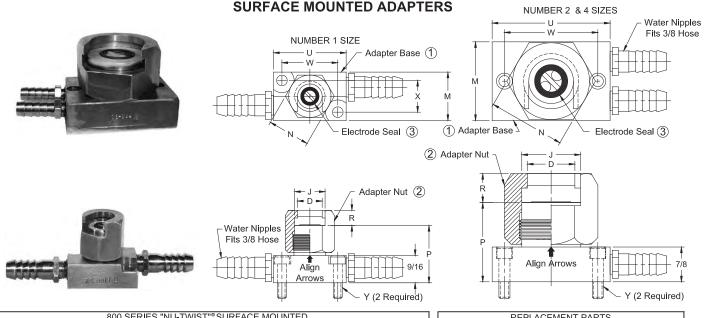
The CMW Platen Mounted Holder, as shown below, has the inlet water nipple at position #1 and the outlet water nipple at position #2, any other combinations may be special ordered by changing the last two digits of the part number. The first of the last two digits indicates the location of the inlet nipple and the second digit indicates the location of the outlet nipple. Example; part No. 18-0510-56 would place the inlet water nipple at position #5 and the outlet water nipple at position #6.

Order on	e of each			Order as re	quired							_	
for your a	application	Attachment	Stationary	Sliding	Sliding	Overall	Slot	Width	Slot	Top Dia.	Overall	Base	Thread
Holder Part No.	Adapter Part No.	Туре	Tube 8	Tube 11	Length	Length A	Depth B	С	Width D	Е	Height F	Height G	Н
18-0510-12	18-785	4RW	18-40041-5	18-50041-3 18-50041-2	1-3/8 2-1/2	4-1/4	1	1-1/2	1/2	1-23/64	2-1/8	1/2	
18-0520-12	18-785	4RW	18-40041-5	18-50041-3 18-50041-2	1-3/8 2-1/2	7	1-5/8	2	3/4	1-49/64	2-3/8	3/4	
18-0510-12	18-786	5RW	18-40041-5	18-40043-11 18-40043-5 18-40043-9	1-3/8 2 4	4-1/4	1	1-1/2	1/2	1-23/64	2-1/8	1/2	
18-0520-12	18-786	5RW	18-40041-5	18-40043-11 18-40043-5 18-40043-9	1-3/8 2 4	7	1-5/8	2	3/4	1-49/64	2-3/8	3/4	
18-0510-12	18-7863	6RW	18-40041-5	18-40043-14 18-40043-9	2-1/8 4	4-1/4	1	1-1/2	1/2	1-23/64	2-1/8	1/2	1-14 UNF
18-0520-12	18-7863	6RW	18-40041-5	18-40043-14 18-40043-9	2-1/8 4	7	1-5/8	2	3/4	1-49/64	2-3/8	3/4	
18-0510-12	18-787	7RW	18-40041-5	18-40043-15 18-40043-9	2-3/8 4	4-1/4	1	1-1/2	1/2	1-23/64	2-1/8	1/2	
18-0520-12	18-787	7RW	18-40041-5	18-40043-15 18-40043-9	2-3/8 4	7	1-5/8	2	3/4	1-49/64	2-3/8	3/4	
18-0510-12	18-812	#2 SIZE Nu-Twist®	18-40041-5	-	-	4-1/4	1	1-1/2	1/2	1-23/64	2-1/8	1/2	
	18-7743**	5/8-18 THD.											
18-0520-12	18-812	#2 SIZE Nu-Twist® 5/8-18	18-40041-5	-	-	7	1-5/8	2	3/4	1-49/64	2-3/8	3/4	
	18-7743**	THD				1							

^{**}Adapter for 1" dia. & 1-1/4 dia. Chameleon/Max-Life™ projection welding electrodes and 18-811 #1 size threaded "NU-TWIST" adapter.

800 SERIES "NU-TWIST"® ADAPTERS

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

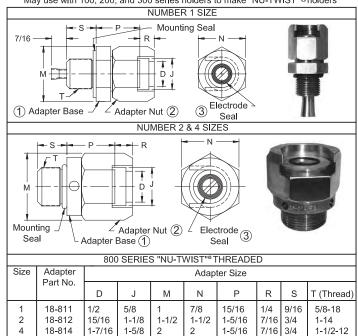

800 SERIES "NU-TWIST"® ADAPTERS

CMW "NU-TWIST"® FEATURES

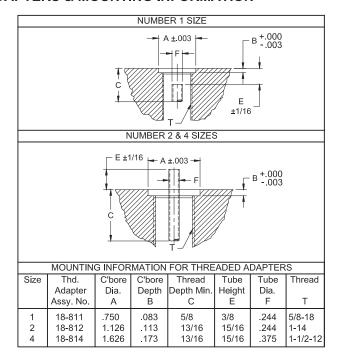
- 1. Hex locking nut may be tightened or loosened effectively by hand or wrench for easy replacement of electrodes.
- 2. "O" ring seals provide water tight connections.
- 3. Double groove construction in bore or locking nut accurately aligns and locks the

electrode in position with a maximum of a turn and one half.

- 4. Through use of baffles in adapters and in electrodes over 1" long efficient cooling is effectively achieved.
- 5. All components are of corrosion-resistant alloys.
- 6. Maintenance costs are unusually low.
- 7. Adapter bases are RWMA CLASS 2 material.



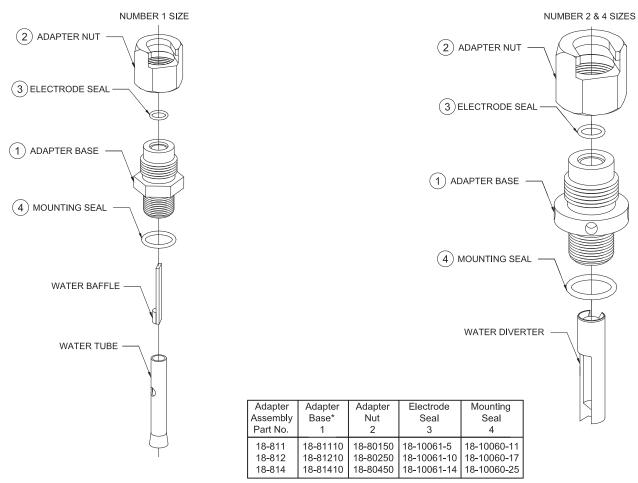
	800 SERIES ING-TWIST SURFACE MOUNTED										
Size	Adapter		Adapter Size								
	Part No.		J	М	N	Р	R	J	W	Х	Υ
1 2 4	18-801 18-802 18-804	1/2 15/16 1-7/16	5/8 1-1/8 1-5/8	1 1-1/2 2	7/8 1-1/2 2	1-1/4 1-13/16 1-13/16		2-1/2		21/32 	No. 10-24 Scr. No. 1/4-20 Scr. No. 1/4-20 Scr.


	REPLACEMENT PARTS						
Adapter	Water	Adapter	Adapter	Electrode			
Part No	Nipples	Base	Nut	Seals			
		1	2	3			
18-801		18-80110	18-80150	18-10060-5			
18-802	18-10050	18-80210	18-80250	18-10060-1			
18-804		18-80410	18-80450	18-10061-14			
	For replace	ment narte	soo nago 5	1			

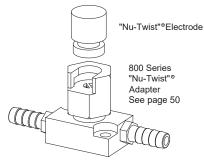
800 SERIES "NU-TWIST"® THREADED ADAPTERS & MOUNTING INFORMATION

May use with 100, 200, and 300 series holders to make "NU-TWIST"®holders

For replacement parts see page 51



800 SERIES "NU-TWIST"® THREADED ADAPTER REPLACEMENT PARTS


Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

800 SERIES "NU-TWIST"® THREADED ADAPTERS



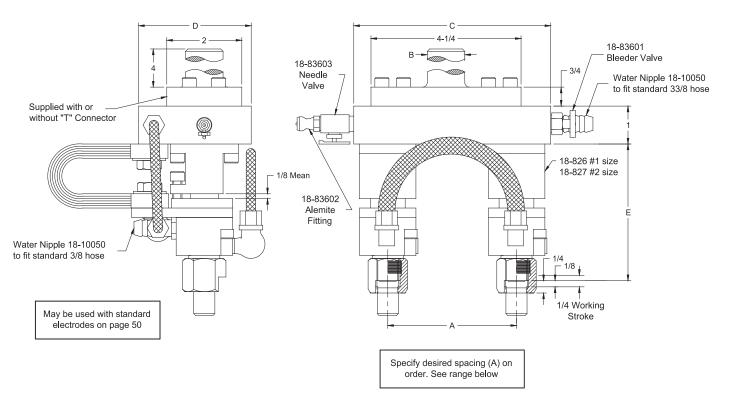
^{*} Adapter base includes water tube & baffel or water diverter

"NU-TWIST"®ELECTRODES

- No tapers or threads
- Can be extracted with a simple turn of hexagor locking nut
- Any contour in electrode face can be located or relocated in a given position
- Water circulated to end of electrode for maximum cooling
- Silver plated contact surfaces on electrode and base for maximum conductivity
- Provides a simple, low-cost electrode for most applications
- Electrodes shown can be modified with contours to provide faces required for most resistance welding applications

	Size	Type	Electrod	e Part No.	Body	Weld	Overall	Adapter	Water	Water	Electrode	Elect. Ext.
			RWMA	RWMA	Dia.	Face Dia.	Length	Clearance	Hole Dia.	Hole Depth	Seat Dia.	From Adapt.
on			CLASS 2	CLASS 3	Н	Α	C	E	F	G	J	K
-	1	0 Flat	338750	538750	1/2	1/2	3/4		1/4	3/8	.625	1/2
or			338030	538030	1/2	1/2	1-1/2		1/4	1-1/8	.625	1-1/4
	1	0 Trunc.	378750	578750	1/2	1/4	3/4		1/4	3/8	.625	1/2
			378030	578030	1/2	1/4	1-1/2		1/4	1-1/8	.625	1-1/4
nd	1	Flat	338751	538751	5/8	5/8	3/4	5/16	1/4	3/8	.625	1/2
-			338031	538031	5/8	5/8	1-1/2	5/16	1/4	1-1/8	.625	1-1/4
st	2	Flat	338012	538012	1-1/4	1-1/4	1	5/8	1/2	1/2	1.125	1/2
			338052	538052	1-1/4	1-1/4	2	5/8	1/2	1-1/2	1.125	1-1/2
İ	4	Flat	338014	538014	1-3/4	1-3/4	1	5/8	3/4	1/2	1.625	1/2
			338054	538054	1-3/4	1-3/4	2	5/8	3/4	1-1/2	1.625	1-1/2
·												

Special face contours, lengths and diameters available on special order


FIXED UNIT HYDRAULIC EQUALIZING ASSEMBLIES (WATER COOLED)

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

FIXED UNIT HYDRAULIC EQUALIZING ASSEMBLIES

CMW Hydraulic Equalizing adapter units are used to equalize the weld force when two or more welds are required simultaneously. The equalizing action is developed in a closed hydraulic system - and is accomplished by hydraulically interconnecting two or more units. We recommend using fire resistant hydraulic fluid compatible with BUNA "N" such as HOUGHTO-SAFE #620, 1120 or equivalent. Consult your local industrial lubricant distributor.

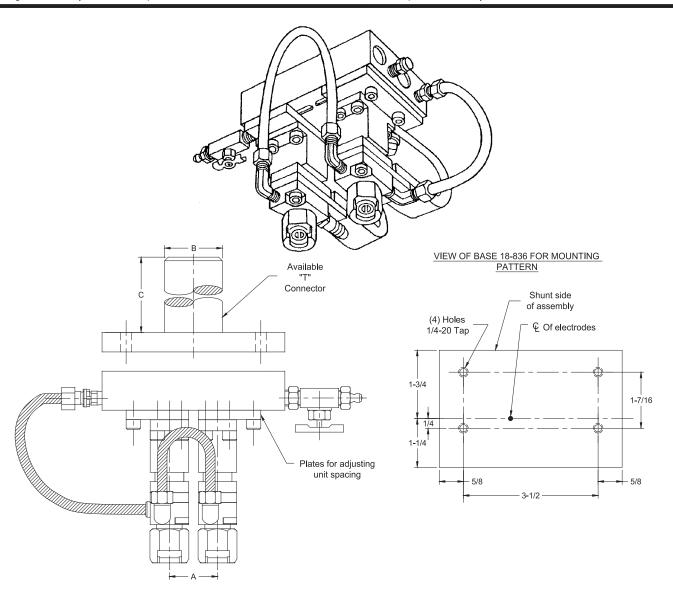
TWO #1 OR #2 SIZE HYDRAULIC UNITS MOUNTED TO CUSTOMER'S DESIRED ELECTRODE SPACING.*

Assembly Unit Part No.	Unit Size	"T" Connector Shank Dia. B	Base Plate Length C	Base Plate Width D		Max. Recommended Weld force Per Electrode LBS	Mean Height to Electrode Base E
18-846 18-84601-01	#1	None 1"	6	3	1-1/32" to 5"	1000	3-13/64
18-84601-02 18-84601-03		1-1/4" 1-1/2"				(12,000 Amps @ 10% duty cycle)	
18-847 18-84701-01	#2	None 1"	7-1/2	3-1/2	1-3/4" to 6"	2000	3-61/64
18-84701-02 18-84701-03		1-1/4" 1-1/2"				(16,000 Amps @ 10% duty cycle)	

Note

- 1. Multiple units of 2-8 can also be supplied on custom designed base plates with or without "T" Connectors.
- 2. Units may be modified with adapters for RW tapered caps and electrodes

Contact Factory
All above items
priced and made
to special order.


ADJUSTABLE HYDRAULIC EQUALIZING ASSEMBLY 18-836

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

ADJUSTABLE HYDRAULIC EQUALIZING ASSEMBLY 18-836

Part No. 18-836 (shown below) is a typical assembly using two 18-826 assemblies set up as a complete self-contained unit for making two spot welds at one time. This unit is so arranged as to allow the center distances to be readily adjusted from 1-3/32" centers to 2-1/4" centers or by rearrangement of the same parts centers maybe adjusted from 2-1/4" to 3-1/2". This setup also include facilities for filling and bleeding the hydraulic units. "T" Mounting 18-83614 is available to order for assembly 18-836. We recommend using fire resistant hydraulic fluid compatible with BUNA "N" such as HOUGHTO-SAFE #620, 1120 or equivalent. Consult your local industrial lubricant distributor.

Assembly Part No.	Hydraulic Unit Size	Electrode Attachment ***	Adjustable Spacing Range A	"T" Connector	Max. Recommended Weld force Per Electrode LBS
18-836	#1	#1 NU-TWIST®	1-1/32 - 2-1/4 2-1/4 - 3-1/2*	NONE	1000 (12000 AMPS @ 10% Duty Cycle)
				D: 11 "	

^{*} Partial disassembly, rearrangement of plates, and bleeding of unit will be necessary to switch centerline ranges.

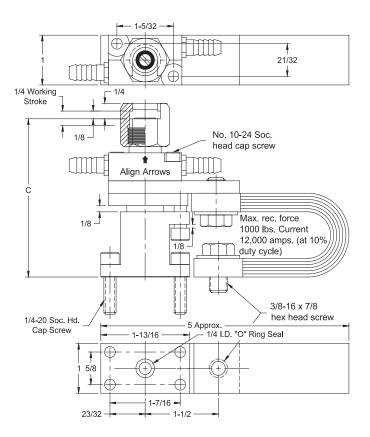
Available Dia. Length B C

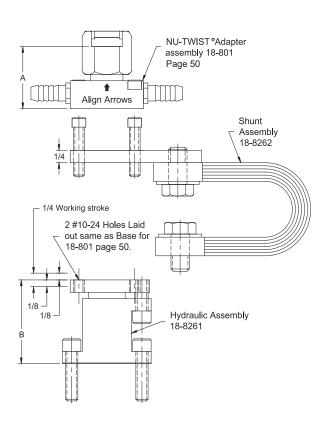
18-83614-01 ** 4
18-83614-03 ** **

Contact Factory All above items priced and made to special order.

^{**} Customer must specify dimensions desired.

^{***} Other attachments available on request




HYDRAULIC EQUALIZING ADAPTERS AND ASSEMBLIES

HYDRAULIC EQUALIZING ADAPTERS AND ASSEMBLIES

CMW Hydraulic Equalizing adapter units are used to equalize the weld force when two or more welds are required simultaneously. The equalizing action is developed in a closed hydraulic system - and is accomplished by hydraulically interconnecting two or more units. We recommend using fire resistant hydraulic fluid compatible with BUNA "N" such as HOUGHTO-SAFE #620, 1120 or equivalent. Consult your local industrial lubricant distributor.

18-826 #1 SIZE UNIT WITH NU-TWIST® SHOWN

Tapered End

Complete	Unit	Electrode	Included	Height	Mean	Mean Electrode
Unit	Size.	Attachment	Tapered		Height	Engagement Height
Part No.			Adapters	Α	В	С
18-826 18-82650	#1 #1	NU-TWIST® 1/2-14 Pipe Thd.		1-1/4 1-1/2		3-13/64 3-29/64
18-82651 18-82652 18-82653	#1 with adapters	5 RW Male cap 4 RW 5 RW	18-7465-07 18-746-07 18-747-07	1-59/64 1-51/64 1-51/64		3-7/8 3-3/4 3-3/4

Adapter

1/2 Pipe
Thread

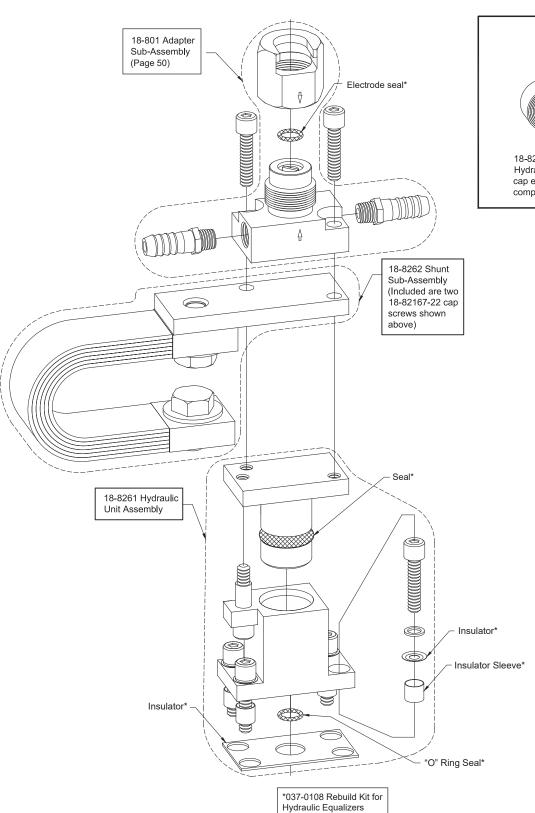
18-82650
Adapter
Assembly

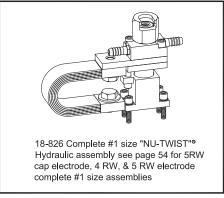
*037-0108 Rebuild Kit for Hydraulic Equalizers

Contact Factory
All above items
priced and made
to special order.

Phone: 800-521-3722

HYDRAULIC EQUALIZING ADAPTERS AND ASSEMBLY REPLACEMENT PARTS

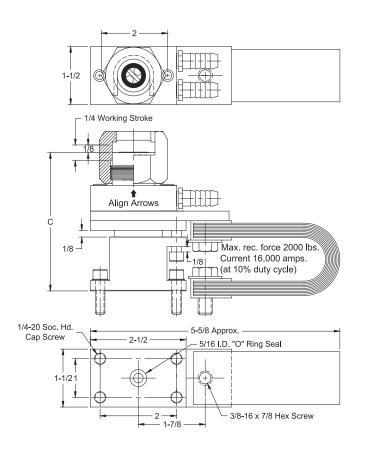

Fax: 864-877-2212

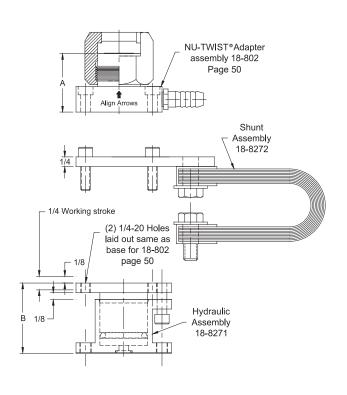

Email: cmw@cmwinc.com

HYDRAULIC EQUALIZING ADAPTERS AND ASSEMBLIES

18-826 COMPLETE #1 SIZE "NU-TWIST" ASSEMBLY

Contact Factory
All above items
priced and made
to special order.




HYDRAULIC EQUALIZING ADAPTERS AND ASSEMBLIES

HYDRAULIC EQUALIZING ADAPTERS AND ASSEMBLIES

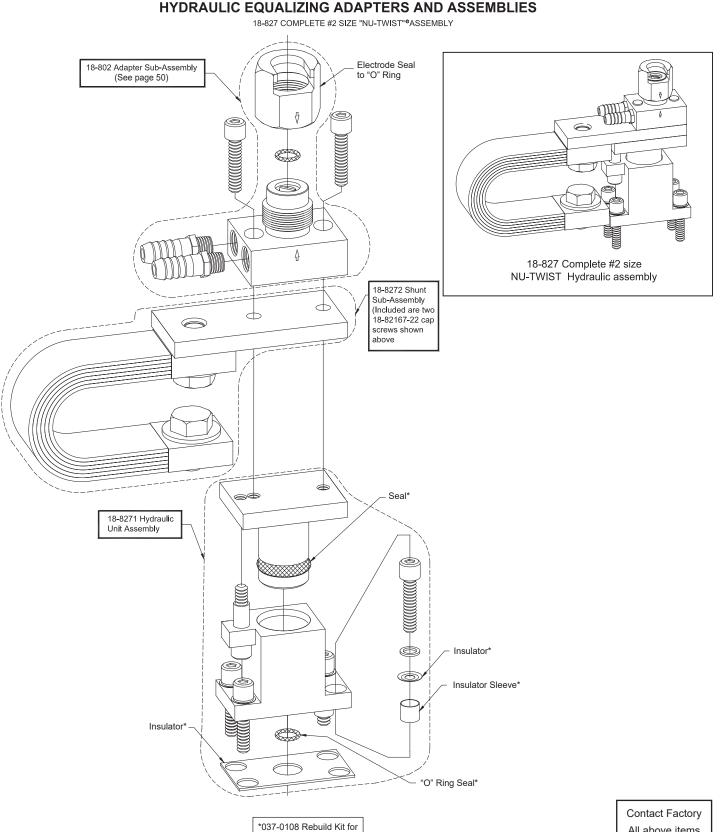
CMW Hydraulic Equalizing adapter units are used to equalize the weld force when two or more welds are required simultaneously. The equalizing action is developed in a closed hydraulic system - and is accomplished by hydraulically interconnecting two or more units. We recommend using fire resistant hydraulic fluid compatible with BUNA "N" such as HOUGHTO-SAFE #620, 1120 or equivalent. Consult your local industrial lubricant distributor.

18-827 #2 SIZE UNIT WITH "NU-TWIST" SHOWN

Complete	Unit	Electrode			Mean Electrode
Unit	Size.	Attachment		Height	Base Height
Part No.			Α	В	С
18-827	#2	NU-TWIST	1-13/16	1-49/64	3-53/64

*037-0108 Rebuild Kit for Hydraulic Equalizers

Contact Factory
All above items
priced and made
to special order.



Phone: 800-521-3722

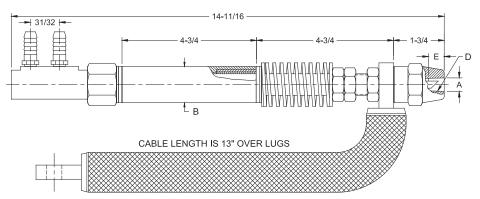
HYDRAULIC EQUALIZING ADAPTERS AND ASSEMBLY REPLACEMENT PARTS

Fax: 864-877-2212

Email: cmw@cmwinc.com

Hydraulic Equalizers

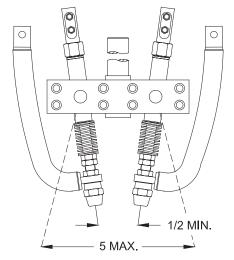
All above items priced and made to special order.



Buy Online Electrodes.com 1100 SERIES ADJUST-A-PRESSURE WATER COOLED LOW INERTIA ELECTRODE HOLDER

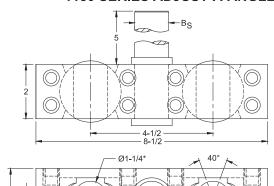
Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

1100 SERIES ADJUST-A-PRESSURE WATER COOLED LOW INERTIA ELECTRODE HOLDERS


Like other low-inertia holders the heavy duty Adjust-A-Pressure Holders are used for multiple spot and projection welding, and are excellent for indirect welding when mounted in the Adjust-A-Angle Adapter.

Electrical current is conducted through heavy flexible cables and holder is installed to prevent any damaging effects to the spring mechanism. Light duty springs supplied to order.

Γ	Part No.	Major	Barrel	Taper	Standard Electrode	Pressure
1	Holder	Taper Dia.	Dia.		Taper Engagement	Range (Pounds)
L	Assy.*	Α	В	D	Ē	
Γ	18-1101	.463	1-1/4	4 RW	1/2	to 500
	18-1102	.625		5 RW	3/4	
Γ	18-1103	.463	1-1/2	4 RW	1/2	
	18-1104	.625		5 RW	3/4	


^{*} Standard holder uses 18-110006-1 spring. A heavy duty holder is available with spring 18-110006-2 for pressure to 1000 lbs. For additional holder information and replacement parts see page 59.

1150 SERIES ADJUST-A-ANGLE ADAPTERS

1100 SERIES HOLDERS ASSEMBLED IN 1150 SERIES ADAPTER

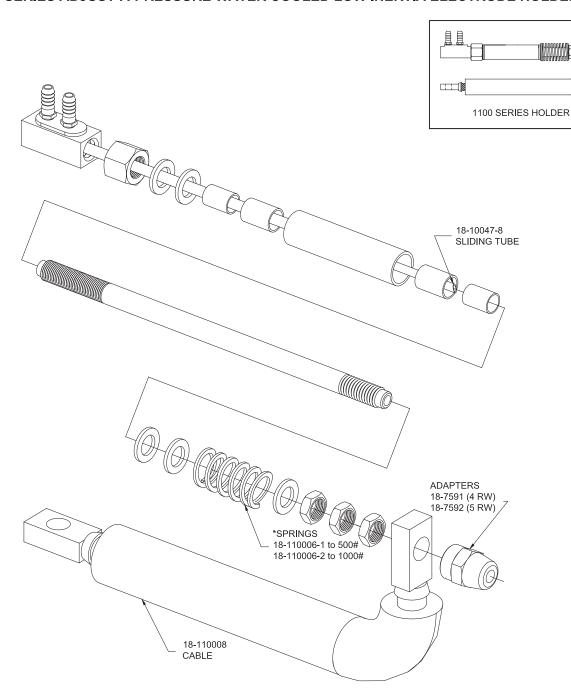
1150 SERIES ADJUST-A-ANGLE ADAPT -ERS ARE ADAPTABLE FOR USE WITH SPRING TYPE LOW INERTIA HOLDERS 1100 SERIES AS WELL AS STRAIGHT HOLDERS 100, 200, AND 300 SERIES.

	Ø1-1/4*	✓ ^{40°} /	
2-15/16	+		1/8
		/ \	

Adapter	Shank Dia.
Assembly	_
Part No.*	B _S
18-1154	1
18-1155	1-1/4
18-1156	1-1/2

* Adapters for all barrel sizes are available as specials

Phone: 800-521-3722


1100 SERIES ADJUST-A-PRESSURE HOLDER REPLACEMENT PARTS

Fax: 864-877-2212

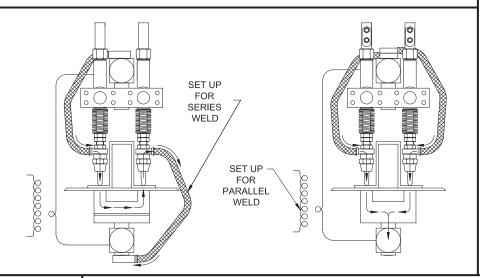
Email: cmw@cmwinc.com

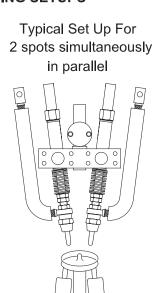
1100 SERIES ADJUST-A-PRESSURE WATER COOLED LOW INERTIA ELECTRODE HOLDERS

 $^{^{\}ast}$ SPRINGS: 500# SPRING IS PAINTED BLUE; 1000# SPRING IS PAINTED YELLOW

Part No. Holder Assy.*	Barrel	Adapter	Adjust -A- Angle Adapters
18-1101 18-1102	18-110005-1		Select from 1150 Series Chart page 58
18-1103 18-1104	18-110005-2	18-7591 18-7592	Special order

^{*} See page 58 for more information

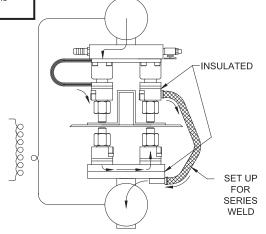



APPLICATION SHEET FOR TYPICAL MULTIPLE SPOT WELDING SETUPS

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

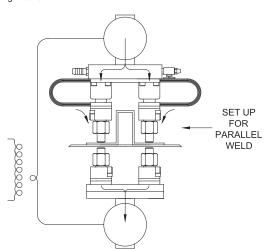
APPLICATION SHEET FOR TYPICAL MULTIPLE SPOT WELDING SETUPS

Typical Set Up For 3 Spots at a time in Parallel 1 CMW Std. 1150 Series Adapter 2 CMW Std. 1100 Series Holders 1 CMW Special 1100 Series Holder 4 RW-16-582011-01 5 RW-16-582012-01


Upper 2-1100 Series Holders 1-1150 Series Adapter

Lower 2-100,200 or 300 Series Holders 1-1150 Series Adapter with special center shank

TYPICAL SET UP OF 800 SERIES "NU-TWIST" UNITS


For dual spot welding using hydraulic "Nu-Twist" Pressure equalizing subassemblies and surface mounted adapters as basic building blocks

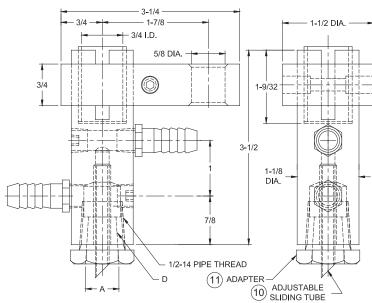
two
18-826
hydraulic
unit assemblies
mounted on
fixed centers
(See Pages
52 & 53)

Lower
two
18-801
surface
mounted
"Nu-Twist"o
Adapters
(See page 50)

Upper

Electrodes.com MULTI-SPOT WELDER ELECTRODE ADAPTERS

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

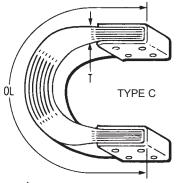

MULTI-SPOT WELDER ELECTRODE ADAPTERS

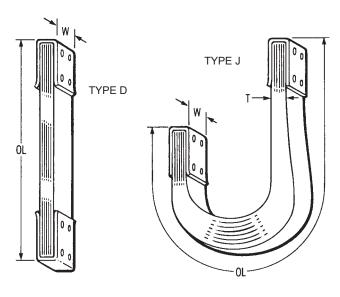
CMW electrode adapters for multispot air or hydraulic pistons are supplied with 3/4 diameter straight piston rod ends. These adapters are equipped with means for attaching the welding cable from the transformer and the water hoses to the inlet and outlet water connections.

These adapters are available in four basic assemblies as shown in the table.

MULTI-SPOT WELDER ELECTRODE ADAPTER REPLACEMENT PARTS 18-100007 5/16-18 KNURLED NUT 2 18-120102 CLAMP 18-120105 INSULATION 18-82167-16, \(\) 5/16-18 x 1 LG SOC. HEAD CAP SCREW 18-120106 INSULATION 18-10050 WATER NIPPLES (3) FIT STD, 3/8 HOSE 18-82168-02 (1/8) PIPE PLUG 18-120101 BARREL (1) 1/2-14 NPT **THREAD** ADAPTER (11) (D)STATIONARY TUBE 9 ADJUSTABLE -SLIDING TUBE

ſ	Part No.	Major	Attachment	Adjustable	Adapter Part
	Assembly	Tape Dia.	Type	Sliding tube	No.
		Α	D	10	11*
	18-1201		1/2-14 NPT	18-10046-23	
	18-1202	.414	5 RW Male cap		18-7465-07
ſ	18-1203	.463	4 RW	18-10046-23	18-746-07
	18-1204	.625	5 RW	10-10040-23	18-747-07


All assemblies include items 1, 2, 3, 4, 5, 6, 7, 8, and 9. * See page 31 for adapter details.


SHUNTS AND JUMPERS

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

Laminated copper shunts are made to your size and shape specifications. High conductivity electrolytic copper strip is used, and terminal clips are riveted in place.

HOW TO ORDER

Give the following information:

Type (C, F, or J)

Outside length (OL)

Width (W)

Thickness (less clip) (T)

Hole pattern (specify by letter code)

Hole location (X, Y, Z values)

Hole diameter

HOLE PATTERN A

HOLE PATTERN B

HOLE PATTERN C

HOLE PATTERN E

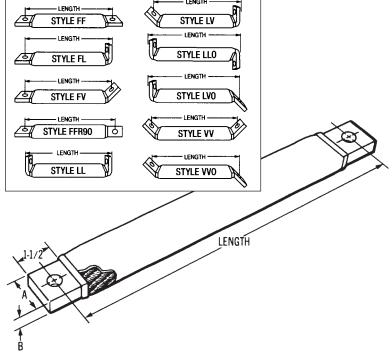
Air-cooled jumper cables are flexible, high-conductivity copper conductors with insulative sleeves. They are made in lengths to suit your needs.

HOW TO ORDER

Give the following information:

Conductor rating (MCM)

Length between holes


Terminal orientation style

DIMENSIONS, INCHES

MCM Rating	O.D. (approx.)	Lug Width A	Lug Thickness B
600 750	1-5/8 1-3/4	1-3/8 1-3/8	.50 .60
1000	2	1-1/2	.70
1200	2-1/8	1-1/2	.82
1500	2-1/4	1-1/2	.99

Holes are 17/32 unless otherwise specified.

TERMINAL ORIENTATION

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

TIP SOCKET REAMERS & TAP

Hole in reamer center permits water tube entry; no need to dismantle holder. 4 RW; Part No. 601-0004; 5 RW, Part No. 601-0005; 6 RW, Part No. 601-0006; 7 RW, Part No. 601-0007. 5/8-14 NPT Tap, Part No. 601-0025

TIP DRESSING TOOL

To remove mushroomed nose material on a pair of tips of 4 or 5 RW size, having pointed or dome noses. Dresser, Part No. 601-0102; Dresser cutter, Part No. 601-0103.

RADIUS TIP FILE

To restore original contours of welding tips use this two-inch radius file. File, Part No. 601-0120; Handle, Part No. 601-0120-H; File & Handle, Part No. 601-0120-A.

WELDING TIP EXTRACTORS

MALE CAP SOCKET REAMERS

To ream or dress sockets to hold male caps. 4 RW, Part No. 601-0014; 5 RW, Part No. 601-0015; 6 RW, Part No. 601-0016.

QUICK-CONNECT COUPLINGS with automatic shut-off

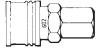
Use these couplings to make up efficient, trouble free coolant systems. Any plug shown will mate with any socket shown. Always put the socket on the upstream side of a connection. Its built-in valve will automatically close upon disconnection.

1/8" NPT female plug Part No. 601-0300

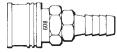
1/8" NPT male plug Part No. 601-0301

1/4" NPT male plug Part No. 601-0302

1/4" NPT male plug Part No. 601-0303


3/8" NPT hose plug Part No. 601-0309

1/8" NPT female socket Part No. 601-0314


1/8" NPT male socket Part No. 601-0315

1/4" NPT female socket Part No. 601-0316

1/4" NPT male socket Part No. 601-0317

3/8" NPT hose socket Part No. 601-0320

CONDUCTIVE LUBE

Part No. 601-0400 1 lb. container

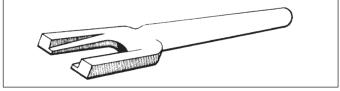
WATER HOSE

Part No. 601-0350 3/8 ID

HOSE CLAMP

Part No. 601-0340

MALE CAP EXTRACTORS


Male Caps, 4 & 5 RW, EX-45, Part No. 601-0240 Male Caps, 5 & 6 RW, EX-56, Part No. 601-0242

Male cap extractor has long lever handles for easier cap removal. In two dual-size models: EX-45 and EX-56.

Female Caps, 4 RW, EX-4F, Part No. 601-0220 Female Caps, 5 RW, EX-5F, Part No. 601-0221 Female Caps, 6 RW, EX-6F, Part No. 601-0222

Male Cap 4 RW Male Cap 5 & 6 RW Male Cap 7 RW

Female cap extractors are made for three cap shank sizes: Models EX-4F, EX-5F, and EX-6F.

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

WA2 WELD ANALYZER

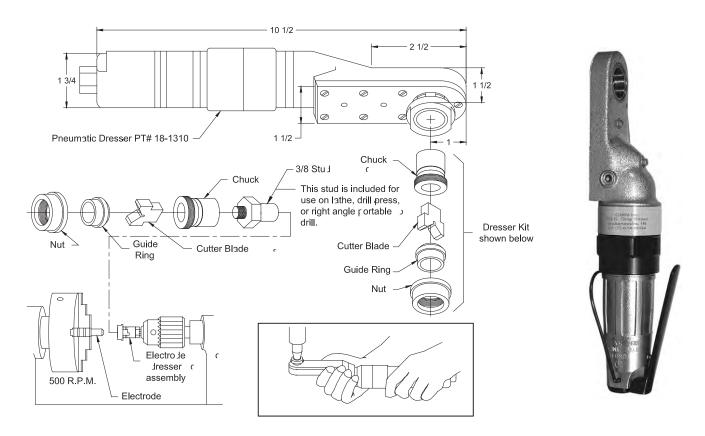
- Current meter
- Easy to use
- Easily legible in all lighting conditions
- · Positive keypad action
- Suitable for various applications
- Reads wave forms from 50 Hz upwards
- Traceable accuracy
- Data archiving
- Small and lightweight allowing for easy portability
- Calibration services available
- One year warranty

FEATURES

- · Intuitive, flexible interface
- LCD 128 x 64 pixels FSTN with yellow/green backlight
- Embossed disc tactile keypad with antiglare display window
- · Auto power-off
- · Large choice of coils
- AC or MFDC operation
- Calibration certification
- USB connection
- · Includes 6 inch flexible coil, batteries and carrying case
- Integrator output for oscilloscope connection
- WA Terminal software

OPTIONS

- Flexible coil 3 inch (Part No. 313027) or 12 inch (Part No. 313021) diameter with 6.5 feet lead
- Attenuator range multiplier for up to 300kA (Part No. 316009)
- Extension cable 10 meters (Part No. 316010)



PNEUMATIC DRESSER

₩

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

PNEUMATIC POWER HANDLE ELECTRODE DRESSER PART NO. 18-1310

Light weight and rugged construction, this CMW Pneumatic Power Handle requires a clearance of only 1-1/2" with a standard ring an £2" with an extended ring. In most situations this allows dressing of electrodes without removal from the welder. Operating at a cutting speed of 1200 rpm, it enables the operator to dress electrodes quickly and accurately. Cutters and guide rings are easily replaced. These must be matched to the electrode nose and are selected from the chart below.

CMW Electrode Dresser 18-1310 is supplied without blade holder, ring, and cutter blade. When ordering, specify the "Kit" appropriate for your dressing needs as selected from the table below. "The stud" furnished with the kit is not required when using the Pneumatic Power Handle. It may optionally be used, but will increase the clearance required on the welder for dressing. Additional special cutters can be furnished upon special request.

These kits may also be used for cap electrode dressing.

Size To Dress									
	Nose style CMW Electrode No.	Dome x11x	Pointed x21x	Flat - x31x	2" Ra lius x51x	3" Radius x81x	4" Radius x91x	10" Radius x61x	Truncate J x71x
4 RW .482 Dia	Kit to Or Jer** c	18-1390411	18-1390420	18-1390410	18-1390413	18-1390414	18-1390415	18-1390416	18-1390412
.402 DIA	Rer lacement Blade Rer lacement Gui Je Ring (Each for above kit).	18-139411 c18-139401	18-139420 18-139402	18-139410 18-139401	18-139413 18-139401	18-139414 18-139401	18-139415 18-139401	18-139416 18-139401	18-139412 18-139401
	CMW Electrode No.	x12x	x22x	x32x	x52x	x82x	x92x	x62x	x72x
5 RW	Kit to Or Jer** c	18-1390511	18-1390520	18-1390510	18-1390513	18-1390514	18-1390515	18-1390516	18-1390512
.625 Dia	Rer lacement Blade Rer lacement Gui Je Ring (Each for above kit)-	18-139511 c18-139501	18-139520 18-139502	18-139510 18-139501	18-139513 18-139501	18-139514 18-139501	18-139515 18-139501	18-139516 18-139501	18-139512 18-139501

^{**} Note: This kit includes Stud for (for 3/8 Keyed Chuck), Chuck, 1 Gui Je Ring, 1 Apr ropriate blade, and Retaining Nut. Note: Cutters are **NOT** designed to conform to "Electrode Cap" geometries. Caps are intended for value salvage when expended.

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

HIGH-ACCURACY WELD FORCE GAUGES

WE OFFER ONE OF THE BROADEST PRODUCT LINES AVAILABLE TODAY

CMW supplies a broad range of weld force gauges, available with accuracies from 0.5% for Digital-Electronic gauges; to 2% accuracy for the Digital-Hydraulic which has a digital output driven by hydraulics; to our Standard Hydraulic models with 2%-3% accuracy. All are available in English and metric readouts.

Our **Digital-Electronic** gauge supplies the highest accuracy (0.5% for 95% of the gauges range). The gauge has large LCD readouts with peak-hold capabilities. All functions are electronic which prevents variations caused by flexing.

The **Digital-Hydraulic** delivers better accuracy than standard hydraulic gauges but at a lower price than all-digital models. The unit of measureis field selectable between pounds, kilograms, newtons and kilonewtons. The peak-hold feature allows for reading variable forces, which are common in resistance welding machinery. Gauges maintain an accuracy of 2% for 30% to 90% of the gauge's range.

CMW's **Standard Hydraulic** gauges are the low cost method for obtaining general force measurements. These gauges are available in a standard block style, with extensions. Sizes range from 600 lb. up to 10 tons with accuracy of 2% at the mean and 3% outside of mean for 70% of the gauge's range.

	STANDARD GAUGE DATA											
Description	Features	ltem Number										
Gauge Case ***PUPALOY PRODUCTS, INC. ***PORT OF THE PURPOSE AND THE PUPAL OF THE	 Convenient padded gauge storage/carrying case 4" D x 10" W x 10" L Fits all hydraulic gauges 	601-8019										

WELD FORCE GAUGES

Phone: 800-521-3722 Fax: 864-877-2212

Email: cmw@cmwinc.com

STANDARD GAUGE DATA

Description Features Maximum Increment Opening Extension Item													
Description	Features	Reading	Every	Required	Length	Number							
Digital-Electronic Weld Probe	• Analog output • Auto shut-off	0-1000 lbs/ 0-454 Kg	1 lb 1 Kg	1/4"	10"	601-8010MD 601-8045MD-KG							
ò.	No-weld setting- not required	0-3000 lbs/ 0-1360 Kg	1 lb 1 Kg	1/2"	10"	601-8300MD 601-8136MD-KG							
	• Accuracy 0.5% over full range	0-5000 lbs/ 0-2270 Kg	1 lb 1 Kg	1.1"	10"	601-8500MD 601-8227MD-KG							
		0-10,000 lbs/ 0-4540 Kg	1 lb 1 Kg	1.1"	10"	601-8100MD 601-8453MD-KG							
DLC Digital- Electric	Accuracy 0.50% NIST traceable certification Response time	3000 lb 1363 Kg 13344 N 13.34 KN	1 lb 1 Kg 1 N 0.01 KN	9/16"	_	601-3000DLC							
	less than 500 ms • Field selectable units switch between: Pounds Kilograms Newtons Kilonewtons • Peak hold feature	5000 lb 2272 Kg 2224 N 22.24 KN	1 lb 1 Kg 1 N 0.01 KN	9/16 "	_	601-5000DLC							
Digital- Hydraulic*	Accuracy 2% NIST traceable	0-3000 lbs. 0-1360 Kg 0-13,300 N	1 lb 1 Kg 1 N	3/4"	_	601-3000DR							
	certification • Field selectable units switch between:	0-5000 lbs 0-2270 Kg 0-22,200 N	1 lb 1 Kg 1 N	3/4"	_	601-5000DR							
	Pounds Kilograms Newtons Kilonewtons	0-10,000 lbs 0-4540 Kg 0-44,500 N	1 lb 1 Kg 1 N	3/4"	_	601-9999DR							
		0-3000 lbs 0-1360 Kg 0-13,3000 N	1 lb 1 Kg 1 N	3/4"	12"	601-3000DR-12S							
Standard- Hydraulic*	• Accuracy 3%	0-600 lbs 0-1000 lbs 0-2000 lbs 0-2000 lbs 0-3000 lbs 0-3000 lbs 0-5000 lbs 0-6000 lbs 0-6000 lbs 0-10,000 lbs 0-5000 Kg	10 lb 20 lb 50 lb 50 lb 20 lb 20 lb 100 lb 50 lb 50 lb 100 lb 50 lb	3/4" 3/4" 3/4" 3/4" 3/4" 3/4" 3/4" 3/4"	- - 12" - 12" - - - 18"	601-8006 601-8010 601-8020 601-8020-12 601-8030 601-8030-12 601-5000 601-6000 601-6000-18 601-8100 601-8101							

^{*} Hydraulic gauges should be selected to be used near mid-range.

APPLICATION DATA SHEET

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

SPOT WELDING DATA

OPTIMUM CONDITIONS
SCHEDULES FOR SPOT WELDING LOW CARBON STEEL—SAE 1010

	Electro	de Diamete	rs and Shape*							Diameter of Fused Zone	Minimum Weld Spacing	Minimum Contacting
	Flat Face	F	Radius Face							(Approx.)	Ораспід	Overlap
Thick- ness of Thinnest	30° + d + D -	-	R			Weld Time (Cycles) (60	Hold	Welding	Weld Shear Strength (For Steels Having Ultimate Tensile Strength of 90,000			
Outside Piece (Inches)	Maximum d (Inches)	Min. D (Inches)	Radius R (Inches)	Recommended Minimum Standard Electrode Size	Weld Force (Lbs.)	Cycles per Sec.)	Time (Cycles) Min.	Current (Amps.) (Approx.)	psi and below) Minimum Strength (Lbs/Weld)	Dw (Inches)	S (Inches)	L (Inches)
0.010 0.021	0.125 0.187	1/2	2 2	4RW 1MT 4RW 1MT	160 244	4	5 8	4,000 6,500	130 300	0.113 0.139	1/4	3/8 7/16
0.021	0.187	1/2	2	4RW 1MT	326		10	8,000	530	0.139	1/2	7/16
0.040	0.250	5/8	3	5RW 2MT	412	10	12	8,800	812	0.181	3/4	1/2
0.050	0.250	5/8	3	5RW 2MT	554	14	16	9,600	1,195	0.210	7/8	9/16
0.062 0.078 0.094	0.250 0.312 0.312	5/8 5/8 5/8	3 3 4	5RW 2MT 5RW 2MT 7RW 3MT	670 903 1,160	25	20 30 35	10,600 11,800 13,000	1,717 2,365 3,054	0.231 0.268 0.304	1 1-1/8 1-1/4	5/8 11/16 3/4
0.1094	0.375	7/8	4	7RW 3MT	1,440		40	14,200	3,672	0.338	1-1/4	13/16
0.125	0.375	7/8	4	7RW 3MT	1,760		45	15,600	4,300	0.375	1-1/2	7/8
0.156	0.500	7/8	6	Male or Female Threaded	2,500	93	50	18,000	6,500	0.446	1-3/4	1
0.187	0.625	1	6	Male or Female Threaded	3,340	130	55	20,500	9,000	0.516	2	1-1/2
0.250	0.750	1-1/4	6	Male or Female Threaded	5,560	230	60	26,000	18,000	0.660	4	1-1/2

PERMISSIBLE SCHEDULE VARIATIONS FOR SPOT WELDING LOW CARBON STEEL

Low Carbon Steel Spot Welding Data Chart—Single Impulse Welding

DAT			O ALL CLA WELDS	ASSES				-UP FOR BEST ASS A WELDS		WELDING SET-UP FOR MEDIUM QUALITY—CLASS B WELDS				WELDING SET-UP FOR GOOD QUALITY—CLASS C WELDS					
Thick- ness of Each of the Two Work	Diam. 8	trode & Shape	Min. Weld Spacing	Min. Con- tacting Overlap	Weld Time	Elec- trode	Weld- ing Cur-	Diam. of Fused Zone	Average Tensile Shear Strength ±14%	Weld Time	Elec- trode	Weld- ing Cur-	Diam. of Fused Zone	Average Tensile Shear Strength	Weld Time	Elec- trode	Weld- ing	Diam. of Fused Zone	Average Tensile Shear Strength
Pieces Inches	Min. D Inches	Max. d Inches	(Note 4) Inches	(Note 6) Inches	(Note 7) Cycles	Force Pounds	rent Amps.	Inches	Pounds	(Note 7) Cycles	Force Pounds	rent Amps.	Inches	±17% Pounds	(Note 7) Cycles	Force Pounds	Current Amps.	Inches	±20% Pounds
.010 .021 .031 .040 .050	1/2 1/2 1/2 5/8 5/8	1/8 3/16 3/16 1/4 1/4	1/4 3/8 1/2 3/4 7/8	3/8 7/16 7/16 1/2 9/16	4 6 8 10 12	200 300 400 500 650	4000 6100 8000 9200 10300	.13 .17 .21 .23 .25	235 530 980 1305 1820	5 10 15 21 24	130 200 275 360 410	3700 5100 6300 7500 8000	.12 .16 .20 .22 .23	200 460 850 1230 1700	15 22 29 38 42	65 100 135 180 205	3000 3800 4700 5600 6100	.11 .14 .18 .21	160 390 790 1180 1600
.062 .078 .094 .109 .125	5/8 5/8 5/8 7/8 7/8	1/4 5/16 5/16 3/8 3/8	1 1-1/8 1-1/4 1-5/16 1-1/2	5/8 11/16 3/4 13/16 7/8	14 21 25 29 30	800 1100 1300 1600 1800	11600 13300 14700 16100 17500	.27 .31 .34 .37 .40	2350 3225 4100 5300 6900	29 36 44 50 60	500 650 790 960 1140	9000 10400 11400 12200 12900	.26 .30 .33 .36 .39	2150 3025 3900 5050 6500	48 58 66 72 78	250 325 390 480 570	6800 7900 8800 9500 10000	.25 .28 .31 .35 .37	2050 2900 3750 4850 6150

NOTES:

- Low Carbon Steel as hot rolled, pickled, and slightly oiled with an ultimate strength of 42,000 to 45,000 PSI Similar to SAE 1005—SAE 1010.
- 2. Electrode Material is CLASS 2
- Surface of steel is lightly oiled but free from grease, scale or dirt.
- Minimum weld spacing is that distance for which no increase in welding current is necessary to compensate for the shunted current effect in adjacent welds.
- 5. Radius Face electrodes may be used: 0.010 to 0.031 2" Radius 0.031 to 0.078 3" Radius

0.078 to 0.125 - 4" Radius

- 7. Weld time is indicated in cycles of 60 cycle frequency.
- 8. Tensile shear strength values are based on recommended test sample sizes:

- 9. Tolerance for machining of electrode diameter "d" is $\pm .015$ " of specified dimension.
- Electrode force does not provide for force to press ill-fitting parts together.

For Additional Welding Information Go To www.HowToResistanceWeld.org

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

PROJECTION WELDING DATA

DESIGN AND WELDING DATA FOR PROJECTION WELDING LOW CARBON STEELS

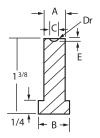
	PROJECTI	ON DESIGN	ELECTRODE	DIAMETERS							
Thickness of Thinnest	Base Diameter of	Dp Height of	30°	d I		Weld Time		Welding	Diameter of Fused Zone	Minimum Shear Strength (Single Projection Only) (For Steels Having Strength	Minimum Contacting Overlap
Outside Piece	Projection Dp	Projection H	Minimum d	Minimum D	Electrode Force	(Cycles) 60 Cycles	Hold Time (Cycles)	Current Amperes	Dw	of 100,000 psi and below)	 - L-S →
Inches	Inches	Inches	Inches	Inches	Pounds	per Sec.	Minimum	(Approx.)	Inches	Pounds	L Inches
0.010 0.012 0.014 0.016 0.021	0.055 0.055 0.055 0.067 0.067	0.015 0.015 0.015 0.017 0.017	0.125 0.125 0.125 0.187 0.187	1/2 1/2 1/2 1/2 1/2	50 80 100 115 150	33346	3 3 4 6	2,800 3,100 3,400 3,600 4,000	0.112 0.112 0.112 0.112 0.140	150 200 250 285 380	1/8 1/8 1/8 5/32 5/32
0.025 0.031 0.034 0.044 0.050	0.081 0.094 0.094 0.119 0.119	0.020 0.022 0.022 0.028 0.028	0.187 0.187 0.187 0.250 0.250	1/2 1/2 1/2 5/8 5/8	200 300 350 480 580	6 8 10 13 16	8 8 10 14 16	4,500 5,100 5,400 6,500 7,100	0.140 0.169 0.169 0.169 0.225	525 740 900 1,080 1,500	3/16 7/32 7/32 9/32 9/32
0.062 0.070 0.078 0.094 0.109	0.156 0.156 0.187 0.218 0.250	0.035 0.035 0.041 0.048 0.054	0.312 0.312 0.375 0.500 0.500	7/8 7/8 7/8 7/8 7/8	750 900 1,050 1,300 1,650	21 24 26 32 38	20 24 30 30 36	8,400 9,200 10,500 11,800 13,300	0.225 0.281 0.281 0.281 0.338	2,100 2,550 2,950 3,700 4,500	3/8 3/8 7/16 1/2 5/8
0.125 0.140 0.156 0.171 0.187	0.281 0.312 0.343 0.375 0.406	0.060 0.066 0.072 0.078 0.085	0.500 0.625 0.625 0.750 0.750	7/8 1 1 1 1	1,800 2,300 2,800 3,300 3,800	45 60 80 105 125	40 45 50 50 50	15,000 15,700 17,250 18,600 20,000	0.338 0.437 0.500 0.562 0.562	5,200 6,000 7,500 8,500 10,000	11/16 3/4 13/16 7/8 15/16
0.203 0.250	0.437 0.531	0.091 0.110	0.875 1.000	1-1/4 1-1/4	4,500 6,600	145 230	55 60	21,500 26,000	0.625 0.687	12,000 15,000	1 1-1/4

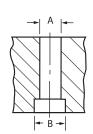
NOTES:

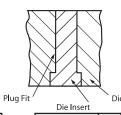
- 1. Type of Steel—Low Carbon SAE 1010—0.15% Carbon Maximum. 2. Material free of scale, oxide, paint, dirt, etc.
- 3. Size of projection determined by thickness of thinnest piece and projection should be on thickest piece.
- 4. Data is based on thickness of thinnest sheet for two thicknesses only.
- Maximum ratio between two thicknesses = 3 to 1.

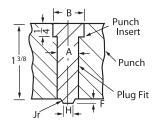
 5. See TABLE BELOW for design of punch and die for making projections.

 6. Contacting overlap does not include any radii from forming.
- 7. Projection should be located in center of overlap.
- 8. Tolerance for Projection Dimensions:


Thickness Dimension Up to 0.050' Diameter "D" ±0.003" Height "H"..... ±0.002


9. Electrode Material: CLASS 3 RWMA CLASS 11 - 10W


Thickness Over 0.050" ±0.007" ±0.005"


From American Welding Society "Recommended Practices for Resistance Welding"

PUNCH AND DIE DESIGN FOR FORMING WELDING PROJECTIONS

Mat Thickness	Pt. No.	А	В	±.002 C	Dr	±.001 E	±.001 F	±.001 H	Jr
0.010-0.015 0.016-0.021 .025 .031 .034	1 2 3 4 5	3/8 3/8 3/8 3/8 3/8	9/16 9/16 9/16 9/16 9/16	.067 .081 .094	.033 .042 .050 .062 .062	.015 .017 .020 .022 .022	.015 .020 .025 .030 .030	.035 .039 .044 .050	.005 .005 .005 .005 .005
.044 .050 .062 .070 .078	6 7 8 9 10	3/8 3/8 3/8 3/8 3/8	9/16 9/16 9/16 9/16 9/16	.119 .119 .156 .156 .187	.078 .078 .105 .105 .128	.028 .028 .035 .035 .041	.035 .035 .043 .043 .055	.062 .062 .081 .081 .104	.005 .005 .005 .005 .010

Mat Thickness	Pt. No.	А	В	±.002 C	Dr	±.001 E	±.001 F	±.001 H	Jr
.094 .109 .125 .140 .156	11 12 13 14 15	1/2 1/2 1/2 1/2 1/2 5/8	11/16 11/16 11/16 11/16 13/16	.250 .281 .312	.148 .172 .193 .217 .243	.048 .054 .060 .066 .072	.065 .075 .085 .096 .107	.115 .137 .154 .172 .191	.010 1/64 1/64 1/64 1/64
.171 .187 .203 .250	16 17 18 19	5/8 5/8 11/16 13/16			.265 .285 .308 .375	.078 .085 .091 .110	.118 .130 .143 .175	.210 .229 .240 .285	1/64 1/64 .020 .025

Material: Tool Steel. Finish all over and harden to 65-68 Rockwell "C" scale. Note: All working surfaces of die unit must be polished. From American Welding Society "Recommended Practices for Resistance Welding"

For Additional Welding Information Go To www.HowToResistanceWeld.org

APPLICATION DATA SHEET

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

SCHEDULE FOR SPOT WELDING STAINLESS STEEL

THICKNESS "T" of THINNEST OUTSIDE PIECE	AND S (See N	ODE DIAMETER SHAPE Note 5)		WELD	TIME		MINIMUM CONTACTING OVERLAP	MINIMUM WELD SPACING (See Note 6 Below)	DIAMETER OF FUSED ZONE		MINIMUM SHEAR STRENGTH LB. Ultimate Tensile Strength of Metal			
(See Notes 1, 2, 3 and 4 Below)	D, IN., Min.	d, IN., Max.	ELECTRODE FORCE LB.	TIME CYCLES (60 Per Sec.)	Tensile Strength Below 150000 Psi	Tensile Strength 150000 Psi and Higher	IN.	to L IN.	IN. Approx.	70000 Up to 90000 Psi	90000 Up to 150000 Psi	150000 Psi and Higher		
0.006	3/16	3/32	180	2	2000	2000	3/16	3/16	0.045	60	70	85		
0.008	3/16	3/32	200	3	2000	2000	3/16	3/16	0.065	150	170	210		
0.012	1/4	1/8	260	3	2100	2000	1/4	1/4	0.076	185	210	250		
0.014	1/4	1/8	300	4	2500	2200	1/4	1/4	0.082	240	250	320		
0.016	1/4	1/8	330	4	3000	2500	1/4	5/16	0.088	280	300	380		
0.018	1/4	1/8	380	4	3500	2800	1/4	5/16	0.093	320	360	470		
0.021	1/4	5/32	400	4	4000	3200	5/16	5/16	0.100	370	470	500		
0.025	3/8	5/32	520	5	5000	4100	3/8	7/16	0.120	500	600	680		
0.031	3/8	3/16	650	5	6000	4800	3/8	1/2	0.130	680	800	930		
0.034	3/8	3/16	750	6	7000	5500	7/16	9/16	0.150	800	920	1100		
0.040	3/8	3/16	900	6	7800	6300	7/16	5/8	0.160	1000	1270	1400		
0.044	3/8	3/16	1000	8	8700	7000	7/16	11/16	0.180	1200	1450	1700		
0.050	1/2	1/4	1200	8	9500	7500	1/2	3/4	0.190	1450	1700	2000		
0.056	1/2	1/4	1350	10	10300	8300	9/16	7/8	0.210	1700	2000	2450		
0.062	1/2	1/4	1500	10	11000	9000	5/8	1	0.220	1950	2400	2900		
0.070	5/8	1/4	1700	12	12300	10000	5/8	1-1/8	0.250	2400	2800	3550		
0.078	5/8	5/16	1900	14	14000	11000	11/16	1-1/4	0.275	2700	3400	4000		
0.094	5/8	5/16	2400	16	15700	12700	3/4	1-1/2	0.290	3550	4200	5300		
0.109	3/4	3/8	2800	18	17700	14000	13/16	1-1/2	0.290	4200	5000	6400		
0.125	3/4	3/8	3300	20	18000	15500	7/8	2	0.300	5000	6000	7600		

NOTES:

- $1.\, {\rm Types\ of\ Steel-301,\, 302,\, 303,\, 304,\, 308,\, 309,\, 310,\, 316,\, 317,\, 321,\, 347\,\,\&\,\, 349}$
- Material should be free from scale, oxides, paint, grease and oil.
 Welding conditions determined by thickness of thinnest outside piece "T."
- 4. Data for total thickness of pile-up not exceeding 4 "T". Maximum ratio between two thicknesses 3 to 1.
- 5. Electrode Material, CLASS 2, CLASS 3 or RWMA CLASS 11 10W 6. Minimum weld spacing is that spacing for two pieces for which no special
- precautions need be taken to compensate for shunted current effect of adjacent welds. For three pieces increase spacing 30 per cent.

SCHEDULE FOR SEAM WELDING STAINLESS STEEL

THICKNESS "T" OF THINNEST OUTSIDE PIECE (See Notes 1, 2, 3 and 4 Below) INCHES	ELECTRODE WIDTH AND SHAPE (See Note 5 Below) R=3" W-W-W, IN., Min.	ELECTRODE FORCE LB.	ON TIME CYCLES	OFF T FOR MA SPE (Pressure CYCI 2 "T"	XIMUM ED e-Tight)	WELD	IMUM SPEED MINUTE 4 "T"		ELDS BINCH 4 "T"	WELDING CURRENT (Approx.)	MINIMUM CONTACTING OVERLAP (See Note 6 Below)
INCHES	vv, iiv., iviin.	LB.	(60 Per Sec.)	2 "1"	4 "1"	2 "1"	4 "1"	2 "1"	4 "1"	AMPS.	IIN.
0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.021 0.025 0.031	3/16 3/16 3/16 1/4 1/4 1/4 1/4 1/4 1/4 3/8 3/8	300 350 400 450 500 600 650 700 850 1000	2 2 3 3 3 3 3 3 3 3 3	1 2 2 2 2 2 2 2 2 3 3	1 2 2 2 3 3 3 3 4 4	60 67 45 48 51 51 55 55 50	67 56 51 55 46 50 50 55 47 47	20 18 16 15 14 14 13 13 12	18 16 14 13 13 12 12 11 11	4000 4600 5000 5600 6200 6700 7300 7900 9200 10600	1/4 1/4 1/4 5/16 5/16 5/16 5/16 3/8 7/16
0.040 0.050 0.062 0.070 0.078 0.094 0.109 0.125	3/8 1/2 1/2 5/8 5/8 5/8 3/4 3/4	1300 1600 1850 2150 2300 2550 2950 3300	3 4 4 4 4 5 5	4 4 5 5 6 6 7 6	5 5 7 7 7 7 9	47 45 40 44 40 36 38 38	45 44 41 41 41 38 37 37	11 10 10 9 9 9	10 9 8 8 8 8 7 7	13000 14200 15100 15900 16500 16600 16800 17000	1/2 5/8 5/8 11/16 11/16 3/4 13/16 7/8

NOTES:

- 1. Types of Steel—301, 302, 303, 304, 308, 309, 310, 316, 317, 321, 347 & 349.
- 2. Material should be free from scale, oxides, paint, grease and oil.
- 3. Welding conditions determined by thickness of thinnest outside piece "T." 4. Data for total thickness of pile-up not exceeding 4 "T". Maximum ratio between
- two thicknesses 3 to 1.
- 5. Electrode material, CLASS 3
- 6. For large assemblies minimum contacting overlap indicated should be increased 30 per cent.

From American Welding Society "Recommended Practices for Resistance Welding"

For Additional Welding Information Go To www.HowToResistanceWeld.org

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

Spot welding galvanized low-carbon steel

Material Thickness	And Shape			Diameter Electrode Current Time Nugget Tension-					Minimum Weld Spacing	Contacting		
notes 1, 2, & 3		note 4	4									
		D-8()d-				2	→ D _W					
	l D	d	Ос									
Inches	ln.	ln.	Deg.	Lb.	Amps.	Cycles	ln.	Lb.	Inches	Inches		
0.022	5/8	3/16	120	300	13000	8	0.15	550	5/8	5/8		
0.030	5/8	3/16	120	400	13000	10	0.16	1000	5/8	5/8		
0.036	5/8	1/4	120	500	13500	12	0.19	1180	3/4	5/8		
0.039	5/8	1/4	120	650	14000	13	0.21	1400	3/4	5/8		
0.052	5/8	1/4	120	725	14500	18	0.22	1700	7/8	11/16		
0.063	3/4	1/4	120	850	15500	22	0.24	2500	1-1/8	3/4		
0.078	3/4 5/16 120		1200	19000	24	0.28	3200	1-1/4	7/8			
0.093		3/4 3/8 120		1400	21000	30	0.34	4200	1-1/2	1		
0.108	7/8 3/8 120		1750	20000	37	0.40	5900	1-3/4	1-1/8			
0.123	7/8 3/8 120		7/8 3/8 120			2000	20000	42	0.48	7200	2	1-1/8

Projection welding galvanized low-carbon steel

Material Thickness	Diar	trode neter Shape	Net Electrode Force	Welding Current (Approx.)	Weld Time	Weld Nugget Size	Minimum Tension- Shear Strength	Projec Siz	
notes 1, 2, & 3	no	te 4					(For Single Projections Only)		
	F	D -					,,	L	
	F	d →			Ø	Dwl-		→ Dp	⊒↓ ZZI Hp
	D	l d						D:	l I latada
Inches	ln.	ln.	Lb.	Amps.	Cycles	ln.	Lb.	Diameter In.	Height In.
0.039	5/8	3/8	250	10000	15	0.15	925	0.187	0.041
0.063	5/8	7/16	400	11500	20	0.25	2050	0.218	0.048
0.078	3/4 1/2 5		550	16000	25	0.25	2700	0.250	0.054
0.093	3/4 1/2		750	16000	30	0.30	4300	0.250	0.054
0.108	7/8	1/2	950	22000	33	0.31	4900	0.250	0.054

Seam welding galvanized low-carbon steel

									Minimum
iickness					l III	ne	Speed		Contacting Overlap
	Alluc	nape	Torce	(Appiox.)				IIICII	Overlap
tes 1, 2,	note 4								
& 3	1 1 1 1 1 1								
									WHAT I
									التابات
	30^\				Time Time				2000
	1 — —								
	1				1 1 1				
	W	E							
nches	ln.	ln.	Lb.	Amps.	Cycles Cycles		In./Min.	W/In.	Inches
0.015	3/8	1/4	900	15000	2	2	120	7.5	3/8
0.036	1/2	1/4	1100	18000	4	2	60	10.0	1/2
0.039	1/2	1/4	1200	19000	4	3	60	9.0	1/2
0.052	1/2	1/4	1350	20000	5	1	90	7.0	9/16
0.063	1/2	5/16	1500	19800	8	2	54	7.0	5/8
0.078			1850	23000	10	7	30	7.0	11/16
0000	nches 0.015 0.036 0.039 0.052 0.063	we neches In. 0.015 3/8 0.039 1/2 0.063 1/2 0.063 1/2	width And Shape tes 1, 2,	Company Comp	Midth And Shape	Current Curr	Cycles C	Cool Corrent Cool Time Speed Corrent Cool Time Time Cool Time Time	Current Chapters Current Chapters Chapters

NOTES:

- 1. Material must be free from dirt, grease, paint etc. prior to welding, but may have light oil.
- 2. Two equal metal thicknesses of each gage.
- 3. Commercial coating weight is 1.25 oz. per square foot.
- 4. Electrode Material-RWMA Group A, Class 2.
- 5. Water Cooling: 2 gallons per minute.

Projections should be larger in diameter for galvanized than for uncoated material.

NOTES:

- 1. Material must be free from dirt, grease, paint etc. prior to welding, but may have light oil.
- 2. Two equal metal thicknesses of each gage.
- 3. Commercial coating weight is 1.25 oz. per square foot.
- 4. Electrode Material-RWMA Group A, Class 2.
- 5. Pressure-tight joints require stripping the zinc coating prior to welding.
- 6. Nominal electrode diameter ranges between 8 to 10 inches.

From American Welding Society "Recommended Practices for Resistance Welding."

For Additional Welding Information Go To www.HowToResistanceWeld.org

GCAP® WELD AND STEPPER SCHEDULE

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

GCAP® ELECTRODE WELD SCHEDULE FOR GALVANIZED STEEL

Metal Thickness	.020	.030	.035	.040	.050	.060	.078	.093	.125
G-CAP	244	254	254	254	255	255	266	266	266
Pressure	300	400	500	650	750	800	1000	1200	1400
Squeeze cycle	25	25	25	25	30	30	30	35	35
Up-Slope cycle					4	4	4	4	5
Upslope					2.0	2.0	2.0	2.0	2.0
Kiloamps					to S.C.*				
Weld cycle	6	8	9	10	7	8	10	12	10
Kiloamps	8.5	9.0	9.5	10.0	10.5	11.0	11.5	12.5	13.5
Cool cycle					1	1	1	1	1
Weld cycle					7	8	10	12	10
Kiloamps					10.5	11.0	11.5	12.5	13.5
Cool cycle									1
Weld cycle									10
Kiloamps									13.5
Hold cycle	3	4	4	5	5	10	10	15	20

^{*} S.C. – Starting Weld Current

GCAP® LINEAR STEPPER

Total Weld Count	500	1,000	3,000	5,000	7,500	10,000	12,000
Total Amps Boost	600	1000	3000	5000	6800	8400	9200
Amps Boost Per Weld	1.20		.88			.60	

The above schedules and stepper is only meant to be a guide and will require adjustments to fit the application.

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

RECOMMENDED ELECTRODE MATERIALS

The process of resistance welding makes it possible to join most metals, similar or dissimilar. Bonds of adequate strength are obtainable for an extremely wide range of applications. Selecting electrodes of the proper alloy is a most important consideration in producing good welds at the required speed. The chart below is a valuable guide to this selection.

The weldability of two materials as expressed in the following chart has been derived after careful laboratory study and field survey of many factors which influence the welding or resultant weld of the metals. The factors include:

1. Thermal and electrical conductivity

- Metallurgical properties Nature of resultant weld or alloy Weld strength Relative accuracy in control of welding conditions necessary

The weldability of metals as shown in the chart applies only when conventional spot welding methods are used on similar thicknesses of material. However, many metal combinations which are listed as having a "poor weldability" may be satisfactorily joined by using a special

There is a CMW® Alloy for each specific welding application. Experienced CMW engineers will provide assistance with special problems.

Electrode I	Materials For S	SPOT WELDING Sim	ilar and Dissir	milar N	l letals			
	Tungsten Molyb- denum Mag- Nickel nesium Alloys	Nickel Stainless Chrome Steel Steel Steel Plate Gad-mium Steel Plate Zn. Plate	Teme Tin Scaly C. Steel	R. Phos- phor Bronze	Silicon Nickel Bronze Silver	Cupro Brass Nickel Yellow	Brass Copper mi	Alu- ninum Alu- minum
Commercially Pure								
Titalium								
Aluminum 2S-3S		E II H I H II E I D I I I 3 I 4 I 38 I 34 9 I 34 9	D I D I E	34 I 25	D II	D II	E II H V C	1 C I
Aluminum Alloys Duralumin 52S-17S-24S	C I E II	E II H I H II E C D I I	D I D I E	II D II 34 I 25	D II I 25	D II	E II E V D	1
Copper—Pure	H II H I E II I	E II H I H II H T H I I H T T T T T T T T	H I H I H V 34 V 34 V	II D II	D II D II V 56 V 56	D II D II D 56 V 6	E II K V	
Brass—Red 5-25% Zinc	H I D II I	D	H 1 H I H	II D II	D II D II	D II D II V II -	E II II 56	
Brass—Yellow 25-40% Zinc	E I D II C	D	E	II C II	C II C II	C II C II		
Cupro-Nickel	D I C II (C VI E " E II E E I I I I I I I I I I I I	E	II C II		B II		
Nickel Silver		C VI E " E II E ' E I I	E	II C II	C II B II			
Silicon Bronze	D I C II I	D II E O E II E O E I I	E	II C II	B II			
Phosphor Bronze Grades A, C, & D	E I D II I	D	E	II B II]			
C. R. Steel H. R. Steel—Clean			B O C E O A	1				
Scaly H. R. Steel	H II		D O D I E O O O O O O O O O O O O O O O O O O					
Tin Plate	E II E I D I I	D II C 0 C II D 0 C I I	D © D I					
Terne Plate	E II E I D I I	D II C II C II C C I (
Galvanized Steel Zinc Plate			WELDABILITY As a basis for compariso rolled (mild) steel has be	en 🔪			I - RWMA C	CLASS 1 CLASS 2
Cadmium Plate	E II E I D I I		chosen and its weldabilit designated as "excellent A - Excellent E - Poor B - Very Good H - Very	."	WELD- I	PRETATION	III - RWMA (IV - RWMA (V - RWMA (VI - RWMA (CLASS 11 - CLASS 14 -
Chrome Plate			C - Good K - Impra D - Fair		ABILITY	AGAINST SPECIAL	*100W may	y be substitu CLASS 11 m
Stainless Steel 18-8 Type			ELECTRODES I - RWMA CLASS 1		AGAINST	INFORMA- TION	OElectrode second ch	materials in noice.
Nickel Grade A	25 1 1	B II II '	II - RWMA CLASS 2 III - RWMA CLASS 3 IV - RWMA CLASS 11 - V - RWMA CLASS 14 - 1 VI - RWMA CLASS 10 -	100M*			 Low well No actual 	eld strength welded und ld strength. al weld nug
Nickel Alloys Monel Nichrome	D II B II		*100W may be substitut				is obtain 5. Welding	conditions

- *100W may be substituted. \triangle RWMA CLASS 11 may be
- interchanged. OElectrode materials in circles are second choice

For Additional Welding Information Go To www.HowToResistanceWeld.org

- 10W
- 100M²
- 0 1W △ ituted
- may be
- in circles are

- nder special conditions.
- .. igget occurs, a "stick"
- Welding conditions must be accurately controlled.
 Keep electrode clean to prevent sticking

- Neep electrode death of process and to the work.
 Good practice recommends cleaning steel before welding.
 Use one flat tip to minimize distortion or discolaration.
- discoloration
- Coating may dissolve in other metals or burn away.

(High Res.)

Magnesium Alloys

Molybdenum Tungsten

DΙ

| 1 1₅

DII

|| ²5

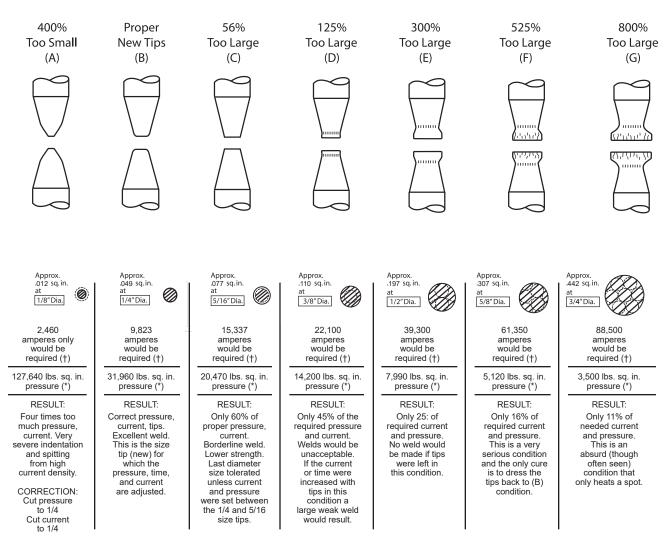
RESISTANCE WELDING ELECTRODE MAINTENANCE

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com

Buy Online

Electrodes.com

This Chart shows graphically the importance of Electrode maintenance. This is not only important from the quality of the weld, which is of first importance, also extra load added to the welding machine and equipment. Read the data on the chart, you can then draw your own conclusions.


YOU CAN'T AFFORD TO NEGLECT YOUR ELECTRODES!

Keep your Electrodes dressed for maximum production and quality welds.

A TIP DRESSER WILL PAY DIVIDENDS!

We can supply you with hand operated Tip Dressers or Pneumatic Power Driven Dressers. Design or type will depend on your production requirements. Pages 66 & 67.

RESISTANCE WELDING

(†) Current density required for this gage to be 200,000 amps per sq. in. Setting is 9,900 amps for condition (B)

(*) Five inch diameter air cylinder A 80 lbs. air pressure—1570 lbs. on ram.
Reproduced by permission of McGraw-Hill Book Company. Inc.

For Additional Welding Information Go To www.HowToResistanceWeld.org

Phone: 800-521-3722

RESISTANCE WELDING DO'S AND DON'TS

Fax: 864-877-2212 Email: cmw@cmwinc.com

DO'S AND DON'TS FOR RESISTANCE WELDING ELECTRODES

	DON'TS
rode material for	 Never use unidentified electrodes or materials. Avoid special, offset, or irregular electrodes when the
enever possible.	job can be done with standard electrodes.
eter for the mate-	3. Do not use small electrodes on heavy gauge welding jobs or large electrodes on small gauge materials.
r flow gauges on er flow.	4. Do not forget to turn the water on full force before starting to weld.
proper holder ne center cooling	5. Never use water hoses that do not fit the water fitting properly.
ectrodes is 1.5 gal-	6. Do not allow water connections to become leaky, clogged or broken.
	7. Avoid holders with leaking or deformed tapers.
ithin 0.25" of the	Never use holders that do not have adjustable water deflector tubes.
changing to an-	9. Never use pipe tape or similar product to stop a leak.
ey are not dam-	10. Do not let your electrode mushroom excessively.
end to prevent	11. Do not dress electrodes with a file.
electrode removal.	12. Do not use a steel hammer to adjust any part of a welding machine.
rs clean to ensure	13. Avoid the use of seam welder wheels too thin to stand the heat or pressure of your job.
good quality welds.	14. Do not permit seam welding wheels to run off the edge
original contour	of the work piece.
ers for alignment	15. Do not enter a work cell or reach into a welder without using your lockout.
le top and bottom	
els to insure con-	
ing any type	

WELDING ELECTRODE / CAP EVALUATION FORM

	Facility				
	Location				
Contact		Phone	Fax	Date	

Equipmen	t Plant/	Equipment Plant/Line #														
TYPE	Robot	Fixed Auto	Press	Hand	Online	Offline	Other (Specify)									
01111.077.4.5	C Gun	Pinch	Scissor	Other (Specify)		Comment										
GUN STYLE																
	New	Old	Good	Poor												
CONDITION																
STEPPER	Number of Steps	Linear	Non-linear	None												
CAPABILITY																
UP-SLOPE	Yes	No														
CAPABILITY																
PULSE	Yes	No														
CAPABILITY						·	·									
NUMBER OF	Schedules per SCR	Transformers per SCR	Guns per Transformer	Transformer Taps	Transformer KVA											
l																

			Workpie	ces (Materia	ıls)								
				CHECK ONE	(per workpiece)								
POSITION	THICKNESS	Bare Steel	Aluminized	Hot Dipped Galvanized	Organic								
Outside													
Inside													
Inside													
Outside													
FIT-UP	Good	Poor			Comments								
111-01													

			ELEC	CTRODES							
NOSE STYLE	A (Pointed)	B (Dome)	C (Flat)	D (Offset)	E (Truncated)						
MATERIAL	Class 1	Class 2	Class 20 (DSC)	Other (Specify)							
TAPER STYLE	Female	Male			Comr	nents					
ALIGN MENT	Good	Poor	Requires Backup								

W Electrodes.com QUOTE REQUEST SPECIALS AND CUSTOMS

IOI	ie: d	OUU	-32	1-3	3/22 Fax: 804-8//-2212									Email: cmw@cmwinc.com												
Con	tact	Nar	ne:										 _ c	omp	any	:										
Add	ress	:											 													
Pho	ne: _								Fa	x:			 				En	nail:								
Part	Info	rma	ition	:									 				Ma	teria	al/All	oy:						
Part	Nur	nbe	r or	Des	cript	ion:																				
			Ι	Ι		Ι			Ι			Ι														
_			\vdash	\vdash	\vdash	\vdash			\vdash			\vdash														
			_		H																					
		_	_	_	_	_			_			_														
			_	_	_	_			_			_														
			г	Г									П													

Please send a photo of part laying on the grid area of this completed page to - customerservice@cmwinc.com

QUOTE REQUEST SPECIALS AND CUSTOMS

Phone: 800-521-3722 Fax: 864-877-2212 Email: cmw@cmwinc.com Contact Name: _____ Company: ____ Address: Phone: _____ Fax: _____ Email: _____ Part Information: _____ Material/Alloy: _____ Part Number or Description:

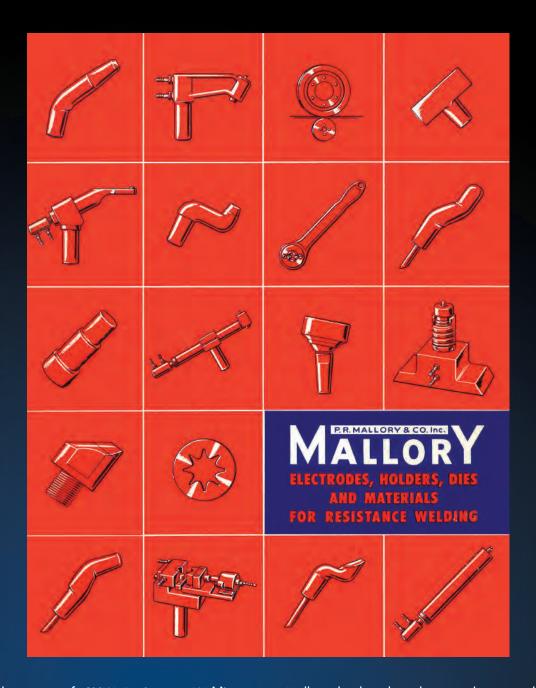
Please send a photo of part laying on the grid area of this completed page to - customerservice@cmwinc.com

78

QUOTE REQUEST SPECIALS AND CUSTOMS

M

Email: cmw@cmwinc.com Phone: 800-521-3722 Fax: 864-877-2212 Contact Name: _____ Company: ____ Address: Phone: _____ Fax: _____ Email: _____ Part Information: _____ Material/Alloy: _____ Part Number or Description: _____


Please send a photo of part laying on the grid area of this completed page to - customerservice@cmwinc.com

	Contact Name: Company: _													:														
Address:																												
Phone:									Fax:										Email:									
Part Information:																			Material/Alloy:									
Part Number or Description:																												
г	1																											
_																											_	
<u> </u>																											\dashv	
_																											_	
_																												
_																											\neg	
_																											\dashv	
_																												
_																												
_																												
_																											-	
_																												
																										\Box	\neg	
	\vdash																											

Please send a photo of part laying on the grid area of this completed page to – customerservice@cmwinc.com

The development of CMW Resistance Welding Products traces back to the early Twentieth Century and Phillip Rogers Mallory during the period of the expansion of the use of assembly line mass production techniques in America.

Mallory Metallurgical Company, founded by P. R. Mallory, began to develop and manufacture resistance welding products utilizing the elements copper, silver and tungsten, to provide industry with improved ways to bond metals and create lighter, more cost effective products for consumers. Mallory worked with Henry Ford on the first automotive application for resistance welding.

Mallory established itself as a leading contributor to the Allied war effort during WWII, producing products for a range of applications on the battlefield, in the air and on the ocean. Of particular note, Mallory developed revolutionary battery technology, perfecting the alkaline dry-cell battery to be known as the Duracell® battery.

In the late 1970s, as part of the larger corporate strategy, Mallory sold select assets of the Mallory Metallurgical Co. to its divisional management team lead by Howard D. Johnston, who formed a new corporation and named it CMW Inc. CMW solidified its reputation for product innovation, quality and service in all its specialty metals business and became further ingrained as the supplier of choice in American Industry for resistance welding products.

Today CMW Resistance Welding Products is a division of Tuffaloy Products, Inc. and continues to serve CMW customers worldwide, exporting to over 40 countries and across a variety of industries.

- Resistance Welding Consumables
- Resistance Welding Hardware
- RWMA Group A & B Materials
- Cold Heading
- Custom Machining

Experience • Technology • Results

RESISTANCE
WELDING PRODUCTS

CMW Resistance Welding Products 1400 S. Batesville Road Greer, SC 29650

Toll Free Phone: 800-521-3722

Fax: 864-877-2212

Email: cmw@cmwinc.com

Website: www.cmwinc.com

The information contained herein is believed to be correct, but no guarantee or warranty with respect to accuracy, completeness or results is implied and no liability is assumed. Nothing herein is to be construed as advising or authorizing practice of any invention covered by existing patents owned by Tuffaloy Products Inc.or others without license from the owners thereof. The names FIN CAPTM, "NU-TWIST"®, GCAP®, MCAP®, and CHAMELEON / MAXLIFETM, are federally registered trademarks owned by Tuffaloy Products Inc. and are used herein to identify respective series of alloys and products which Tuffaloy Products Inc. manufactures and sells. Any unauthorized or improper use of such marks without the express written consent of Tuffaloy Products Inc. is prohibited. In the interest of improved design and performance, Tuffaloy Products Inc. reserved the right to make changes in any specification, data or material contained herein.

