Colour: 3000K

Distributor:
Type: \qquad

\section*{| WARM |
| :---: |
| WRITE |
| 3000 K | \\ | WARM |
| :---: |
| WRITE |
| 3000 K | \\ | WARM |
| :---: |
| WRITE |
| 3000 K |}

DIMENSIONS

610 mm
(24 in)

Package also includes:

- $2 \times 1.6^{\text {" }}$ Connectors
- 2×6 " Connectors
- 6 x Screws
- $8 \times$ Silicon Bumpers

Disclaimer:
The data and information contained in this specification sheet are subject to change without notice; the ratings supplied are provided based on the product manufacturer. The information contained in this specification sheet should not be considered a warranty, expressed or implied, including, but not limited to, a warranty of merchantability or fitness for a particular purpose. In no event shall Veroboard be liable for any incidental or consequential damages resulting from the use, misuse, or inability to use the product. This exclusion applies regardless of whether such damages are sought based on breach of warranty, breach of contract, negligence, strict liability in tort, or any other legal theory.

Prior to installing the LED sheets, please take note and read each instruction attentively.

Ensure to check the polarity of the connectors; otherwise, the light will not turn on (pay attention to the input and output decals on each sheet). Those decals must be removed after installation.

Use the 6 " cables to link the LED sheet to the power supply.

ATTENTION: To prevent electrical shortages, leave a 2 mm gap between each LED sheets during assembly.

Easily tailor the LED sheet to suit your requirements by cutting it in any direction.

Use the $1.6^{\prime \prime}$ connectors to interconnect the LED sheets with each other.

The LED sheet comes with 3M double-sided tape backing, making it easy to apply on flat or curved surfaces such as wood, metal, stone.

Employing silicon bumpers to prevent direct contact between the stone marble and the LED sheet.

The flexibility of the LED sheet allows you to bend it on all directions.

Light Measurement Report

Print date: 2023-07-31
Measurement date and time: 2023-07-31 1:11:05 PM - Measurement no. VFR-230731-0286-MS

Main Values
Output (total Lumen) 1200 Im
Lumen Up\% / Down\% 0.91\% / 99.09\%
Peak Intensity 385 cd
Beam Angle (50\%) 120°
Beam Angle (90\%) 119°
Beam Angle (10\%) 119°

Cut-off Angle
Average 2,5\%

Field Angle
Average 10\%

Intensity Ratio
In 120° cone
76.4\% In 90° cone 51.0\%

C000-C180
C090-C270

Linear distribution diagram - Intensity (candela) vs γ-angle

POWERED BY VISEOM:

Color details

Correlated Color Temperature, Target
Correlated Color Temperature, Measured Color Rendering Index
Color Rendering Index, R9 (red component)
Color Rendering TM30-18
Color Quality Scale

CCT $=3000 \mathrm{~K}$
$C C T=2935 \mathrm{~K}$
CRI 91.5
$\mathrm{R9}=67.9$
$\mathrm{R}_{\mathrm{f}} 88.6$ - $\mathrm{R}_{\mathrm{g}} 96.3$
CQS $=91.2$

Color Rendering Index per reference color (CIE 1995)

CRI R values, only R1-R8 are used to calculate final CRI value | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | R11 | R12 | R13 | R14 | R15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 97.9 | 95.2 | 90.8 | 94.0 | 96.5 | 88.9 | 86.8 | 81.9 | 67.9 | 90.3 | 97.5 | 77.4 | 97.9 | 95.9 | 94.0 |

TM30-18 Rf-values per hue bin

[^0]MacAdam Steps
Color coordinates CIE 1931
Color coordinate CIEs 1960
Color deviation from BBL
Color coordinate CIEs 1976 (CIELUV)

SDCM $=4.6$
$(x ; y)=(0.437 ; 0.404)$
$(u ; v)=(0.251 ; 0.348)$
Duv $=-0.0046$
$\left(u^{\prime} ; v^{\prime}\right)=(0.251 ; 0.521)$

CIE 1931 - zoomed on Planckian locus

Spectral power distribution (SPD) / W/nm - 0-100\%

Color Quality Scale by reference color

CQS Q value

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15
85.4	92.4	95.0	91.0	89.4	90.3	95.7	93.3	94.1	97.5	96.4	93.4	91.4	88.5	87.6

Beam Details

Intensities in $0^{\circ} \mathrm{c}$-plane

0°	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60°	65°	70°	75°	80°	85°	90°	95°	γ	
385	384	380	373	364	352	337	320	300	277	251	221	189	156	121	85	52	25	8	2	cd	
100%	100%	99%	97%	95%	91%	88%	83%	78%	72%	65%	57%	49%	40%	31%	22%	14%	6%	2%	1%	of 0° val	

Intensities in 90° c-plane

0°	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60°	65°	70°	75°	80°	85°	90°	95°	γ	
385	384	380	373	364	352	337	320	300	277	251	221	189	156	121	85	52	25	8	2	cd	
100%	100%	99%	97%	95%	91%	88%	83%	78%	72%	65%	57%	49%	40%	31%	22%	14%	6%	2%	1%	of 00° val	

Intensities in 180° c-plane

| 0° | 5° | 10° | 15° | 20° | 25° | 30° | 35° | 40° | 45° | 50° | 55° | 60° | 65° | 70° | 75° | 80° | 85° | 90° | 95° | γ |
| :---: |
| 385 | 384 | 380 | 373 | 364 | 352 | 337 | 320 | 300 | 277 | 251 | 221 | 189 | 156 | 121 | 85 | 52 | 25 | 8 | 2 | cd |
| 100% | 100% | 99% | 97% | 95% | 91% | 88% | 83% | 78% | 72% | 65% | 57% | 49% | 40% | 31% | 22% | 14% | 6% | 2% | 1% | of $00^{\circ} v a l$ |

Intensities in 270° c-plane

0°	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60°	65°	70°	75°	80°	85°	90°	95°	γ	
385	384	380	373	364	352	337	320	300	277	251	221	189	156	121	85	52	25	8	2	cd	
100%	100%	99%	97%	95%	91%	88%	83%	78%	72%	65%	57%	49%	40%	31%	22%	14%	6%	2%	1%	of 00° val	

[^0]: TM30 C values, 16 binned values out of total of 99 C values | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 88.3 | 92.8 | 95.2 | 88.0 | 91.5 | 92.5 | 84.9 | 91.9 | 86.1 | 85.8 | 89.1 | 86.8 | 85.5 | 84.9 | 87.0 | 83.2 |

