LED TYPE: P5050-60-UV-395-V12-NWP-P-P12 COLOR: ULTRA VIOLET (UV)

Specifications

Model No.:	P5050-60-UV-395-V12-NWP-P-P12
Input Voltage:	12V DC
Wattage:	14W per meter (4.5W/ft)
LED Qty:	60 LEDs per meter
Brightness:	$395-400 \mathrm{~nm}$
Color Temperature:	Ultra Violet (UV)
IP Rating:	IP20 (Indoor use only)
Dimmable:	Yes
Dimensions:	$5000 \mathrm{~mm} \times 12 \mathrm{~mm} \times 2.2 \mathrm{~mm} \mathrm{(196.8in} \mathrm{\times 0.47in} \mathrm{\times 0.08in)}$
Certification:	UL / RoHS

SKU: 666561409708

Features

- P5050-60-UV-395-V12-NWP-P-P12 Indoor LED Strip with 12 mm wide available in 5 m (16.4ft) roll.
- The LED Strip lights are manufactured with high-quality materials and designed for professional lighting.
- The strip lights come with a strong 3 M adhesive backing.
- They can be cut to any size (marked interval points) and rejoined by soldering.
- Every strip light begins with a heavy-duty dual-core copper printed circuit board (PC Board), which is then soldered with an array of chips and color options.
- Rated for 50,000 lifetime hours.
- Each strip light roll is hand-tested for quality assurance, UL Listed for Class 2 low voltage luminaries and fixtures, RoHS and CE approved.
- Our flexible PCBs are all high-quality double layers PCB, at least 2 ounces, or 3 ounces in particular models. So there is a low voltage drop and good heat dispersion too.

Disclaimer

The data and information contained in this specification sheet are subject to change without notice; the ratings supplied are provided based on the product manufacturer. The information contained in this specification sheet should not be considered a warranty, expressed or implied, including, but not limited to, a warranty of merchantability or fitness for a particular purpose. In no event shall LED Lights and Parts be liable for any incidental or consequential damages resulting from the use, misuse, or inability to use the product. This exclusion applies regardless of whether such damages are sought based on breach of warranty, breach of contract, negligence, strict liability in tort, or any other legal theory.

LED Lights and Parts
 WORLD OF LED LIGHTS

TM30: 0.0

CRI R values, only R1-R8 are used to calculate final CRI value

R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TM30 C values, 16 binned values out of total of 99 C values

C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

CQS Q values

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

CIE 1931 ZOOM
CRI: 0.0 (R1-R8)

CQS: 0.0

| | |
| :--- | :--- | :--- | :--- |
| | |
| | |

Color parameters

CCT	CRI	CRI R9	TM30 Rf	TM30 Rg	CQS	x	y	u	v	Duv
0 K	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.2	0.0	NaN

LED Lights and Parts
 WORLD OF LED LIGHTS

Intensities in $0^{\circ} \mathrm{c}$-plane

0°	9°	18°	27°	36°	45°	54°	63°	72°	81°	90°	99°	108°	117°	126°	135°	144°	153°	162°	171°
51.2 m	48.7m	48.1m	46.0m	44.5m	40.7m	35.7 m	28.4m	19.0m	10.7m	5.6 m	5.0 m	5.5 m	4.1 m	5.4 m	7.6m	5.5 m	4.7 m	5.6 m	5.1 m
100\%	95\%	94\%	90\%	87\%	80\%	70\%	55\%	37\%	21\%	11\%	10\%	11\%	8\%	11\%	15\%	11\%	9\%	11\%	10\%

Intensities in 90° c-plane

| 0° | 9° | 18° | 27° | 36° | 45° | 54° | 63° | 72° | 81° | 90° | 99° | 108° | 117° | 126° | 135° | 144° | 153° | 162° | 171° |
| :---: |
| 51.2 m | 48.7 m | 48.1 m | 46.0 m | 44.5 m | 40.7 m | 35.7 m | 28.4 m | 19.0 m | 10.7 m | 5.6 m | 5.0 m | 5.5 m | 4.1 m | 5.4 m | 7.6 m | 5.5 m | 4.7 m | 5.6 m | 5.1 m |
| 100% | 95% | 94% | 90% | 87% | 80% | 70% | 55% | 37% | 21% | 11% | 10% | 11% | 8% | 11% | 15% | 11% | 9% | 11% | 10% |

Intensities in 180° c-plane

0°	9°	18°	27°	36°	45°	54°	63°	72°	81°	90°	99°	108°	117°	126°	135°	144°	153°	162°	171°
51.2 m	48.7 m	48.1m	46.0 m	44.5m	40.7 m	35.7 m	28.4 m	19.0m	10.7m	5.6 m	5.0 m	5.5 m	4.1 m	5.4 m	7.6 m	5.5 m	4.7 m	5.6 m	5.1 m
100\%	95\%	94\%	90\%	87\%	80\%	70\%	55\%	37\%	21\%	11\%	10\%	11\%	8\%	11\%	15\%	11\%	9\%	11\%	10\%

Intensities in 270° c-plane

0°	9°	18°	27°	36°	45°	54°	63°	72°	81°	90°	99°	108°	117°	126°	135°	144°	153°	162°	171°
51.2m	48.7m	48.1m	46.0 m	44.5 m	40.7 m	35.7 m	28.4 m	19.0m	10.7m	5.6 m	5.0m	5.5m	4.1 m	5.4 m	7.6 m	5.5 m	4.7m	5.6 m	5.1 m
100\%	95\%	94\%	90\%	87\%	80\%	70\%	55\%	37\%	21\%	11\%	10\%	11\%	8\%	11\%	15\%	11\%	9\%	11\%	10\%

Beam angle 50\%	Field angle 10\%	Cutoff angle 2.5\%	Intensity ratio in 120° cone	Intensity ratio in 90° cone
131.7°	360.0°	360.0°	60.3%	38.4%

