

Drops

Love and Science Labs

1(503)734-8515

Harvest/Process Date: Sample Date: 11/28/2022 Analysis Date: 11/28/2020 Report Date: 11/30/2022 Report ID: LS-221130-3 Client Batch ID: Metrc Batch ID:

Metrc Sample ID:

Sample Type: Hemp Cannabinoid Product Sample Plan:

Sample Procedure:

160721_LAB-SOP_SampleCollection-v010

Potency

Potency Analysis Date: 11/28/2020 Potency Batch ID:CAN_112822A Potency Method: JAOAC 2015.1 Unit Potency:

1 g retail unit 9.72 mg THC/351.7 mg CBD per retail unit 9.72 mg THC per 30.0 g serving 351.7 mg CBD per 30.0 g serving

9.2 mg/g

Total CBD 0.92%

0.324 mg/g

Total THC 0.0324%

Samples: PBM-XNC-BWN

Analyte	Description	LOQ	RPD (%)	Min.	Max.	Conc.	Unit: mg/g
Д9ТНС	Delta-9 Tetrahydrocannabinol	0.0050	-	-	-	0.324	•
THCA	Tetrahydrocannabinolic acid	0.0050	-	-	-	ND	
CBD	Cannabidiol	0.0050	-	-	-	9.2	
CBDA	Cannabidiolic acid	0.0050	-	-	-	0.498	-
Д8ТНС	Delta-8 Tetrahydrocannabinol*	0.0050	-	-	_	ND	
THCV	Tetrahydrocannabivarin*	0.0050	-	-	_	ND	
CBG	Cannabigerol*	0.0050	-	-	_	0.208	•
CBGA	Cannabigerolic acid*	0.0050	-	-	-	0.0500	•
CBC	Cannabichromene*	0.0050	-	-	-	0.334	•
CBCA	Cannabichromenic acid*	0.0050	-	-	-	ND	
CBN	Cannabinol*	0.0050	-		-	0.0660	•
Total THC	$\Delta 9THC + (THCA \times 0.877)$		-	-	-	0.498	•
Total CBD	CBD + (CBDA × 0.877)		-	-	-	9.7	
Total			-	-	-	10.2	

Aaron Troyer Chief Science Officer This data cannot be used for OLCC or OHA compliance for usable marijuana or marijuana products and is provided for Research and Development purposes only.

2535 N Ross Ave Portland, OR 97227 (503) 493-2535 info@lightscale.com ORELAP #4112 OLCC #010-1003340D344

Drops

Love and Science Labs

1(503)734-8515

Harvest/Process Date: Sample Date: 11/28/2022 Analysis Date: 11/28/2020 Report Date: 11/30/2022 Report ID: LS-221130-3 Client Batch ID: Metrc Batch ID:

Metrc Sample ID:

Sample Type: Hemp Cannabinoid Product

Sample Plan:

Sample Procedure:

160721_LAB-SOP_SampleCollection-v010

Potency
Quality Control Data

Potency QC Analysis Date: 11/28/2020 Potency QC Batch ID: CAN_112822A Method: JAOAC 2015.1 Unit: μg/g (ppm)

Analyte	Blank	LOQ	LCS	LCS Spike	LCS Rec (%)	Limits (%)	Notes
Δ9ΤΗC	ND	0.0050	62.407	60.0	104	90 - 110	
THCA	ND	0.0050	57.384	60.0	95.6	90 - 110	
CBD	ND	0.0050	63.350	60.0	106	90 - 110	
CBDA	ND	0.0050	57.314	60.0	95.5	90 - 110	
Δ8ΤΗC	ND	0.0050	61.338	60.0	102	90 - 110	

POTENCY - LIMIT OF DETECTION

Verified: 060221

 $Method: 160819_LAB-SOP_MethodValidation-CannabinoidPotency-v002.docx$

Matrix	Analyte	LOD (ppm)	LOD (mg/g)
EXTRACT	Δ9ΤΗC	2.8	0.0028
	THCA	0.56	0.00056
	CBD	2.22	0.00222
	CBDA	0.52	0.00052
FLOWER	Δ9ΤΗC	1.88	0.00188
	THCA	5.32	0.00532
	CBD	1.31	0.00131
	CBDA	0.78	0.00078

3 of 3

Love and Science Labs

1(503)734-8515

Harvest/Process Date: Sample Date: 11/28/2022 Analysis Date: 11/28/2020

Report Date: 11/30/2022 Report ID: LS-221130-3

Client Batch ID: Metrc Batch ID:

Metrc Sample ID:

Sample Type: Hemp Cannabinoid Product Sample Plan:

Sample Procedure:

160721_LAB-SOP_SampleCollection-v010

Qualifier Flag Descriptions

- Reported result is an estimate the value is less than the minimum calibration level but greater than the estimated detection limit (EDL)
- U The analyte was not detected in the sample at the estimated detection limit (EDL)
- Ε Exceeds calibration range
- D Dilution data - result was obtained from the analysis of a dilution
- В Analyte found in sample and associated blank
- С Co-eluting compound
- R Relative Percent Difference (RPD) outside control limits
- NR Analyte not reported because of problems in sample preparation or analysis
- ND Non-Detect
- Results from reinjection/repeat/re-column data Х
- **EMC** Estimated maximum possible concentration - indicates that a peak is detected but did not meet the method required criteria
- Manual integration М
- Peaks split PS
- HB Control acceptance criteria are exceeded high and the associated sample is below the detection limit
- LB Control acceptance criteria are exceeded low and the associated sample exceeds the regulatory limit
- ME Marginal Exceedance
- LR Low Recovery Analyte
- LOQ Limit of Quantitation

Customer: Love & Science Labs

Product identity: LS-221206-1

Client/Metrc ID:

Laboratory ID: 22-011450-0003 Report Number: 22-011450/D002.R001

Report Date: 12/22/2022

ORELAP#: OR100028

Purchase Order:

Received: 12/20/2022 00:00

Microbiology							
Analyte	Result	Limits	Units	LOQ	Batch	Method	Status Notes
E.coli	<loq< td=""><td></td><td>cfu/g</td><td>10</td><td>2208072</td><td>AOAC 991.14 (Petrifilm)^p</td><td></td></loq<>		cfu/g	10	2208072	AOAC 991.14 (Petrifilm) ^p	
Total Coliforms	< LOQ		cfu/g	10	2208072	AOAC 991.14 (Petrifilm) ^p	
Mold (RAPID Petrifilm)	< LOQ		cfu/g	10	2208073	AOAC 2014.05 (RAPID) ^p	
Yeast (RAPID Petrifilm)	< LOQ		cfu/g	10	2208073	AOAC 2014.05 (RAPID) ^p	
Salmonella spp. by PCR	Negative		/10g		2208075	AOAC 2020.02 ^b	1

Solvents	Method:	Residual	Solve	ents by	GC/MS ^þ	Units µg/g Batch	2208221				
Analyte	Result	Limits	LOQ :	Status	Notes	Analyte	Result	Limits	LOQ S	Status	Notes
1,4-Dioxane	< LOQ	380	100	pass		2-Butanol	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
2-Ethoxyethanol	<loq< td=""><td>160</td><td>30.0</td><td>pass</td><td></td><td>2-Methylbutane (Isopentane)</td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>	160	30.0	pass		2-Methylbutane (Isopentane)	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
2-Methylpentane	<loq< td=""><td></td><td>30.0</td><td></td><td></td><td>2-Propanol (IPA)</td><td>< LOQ</td><td>5000</td><td>200</td><td>pass</td><td></td></loq<>		30.0			2-Propanol (IPA)	< LOQ	5000	200	pass	
2,2-Dimethylbutane	<loq< td=""><td></td><td>30.0</td><td></td><td></td><td>2,2-Dimethylpropane (neo-pentane)</td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>		30.0			2,2-Dimethylpropane (neo-pentane)	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
2,3-Dimethylbutane	<loq< td=""><td></td><td>30.0</td><td></td><td></td><td>3-Methylpentane</td><td>< LOQ</td><td></td><td>30.0</td><td></td><td></td></loq<>		30.0			3-Methylpentane	< LOQ		30.0		
Acetone	< LOQ	5000	200	pass		Acetonitrile	<loq< td=""><td>410</td><td>100</td><td>pass</td><td></td></loq<>	410	100	pass	
Benzene	<loq< td=""><td>2.00</td><td>1.00</td><td>pass</td><td></td><td>Butanes (sum)</td><td>< LOQ</td><td>5000</td><td>400</td><td>pass</td><td></td></loq<>	2.00	1.00	pass		Butanes (sum)	< LOQ	5000	400	pass	
Cyclohexane	< LOQ	3880	200	pass		Ethyl acetate	< LOQ	5000	200	pass	
Ethyl benzene	<loq< td=""><td></td><td>200</td><td></td><td></td><td>Ethyl ether</td><td>< LOQ</td><td>5000</td><td>200</td><td>pass</td><td></td></loq<>		200			Ethyl ether	< LOQ	5000	200	pass	
Ethylene glycol	<loq< td=""><td>620</td><td>200</td><td>pass</td><td></td><td>Ethylene oxide</td><td>< LOQ</td><td>50.0</td><td>20.0</td><td>pass</td><td></td></loq<>	620	200	pass		Ethylene oxide	< LOQ	50.0	20.0	pass	
Hexanes (sum)	<loq< td=""><td>290</td><td>150</td><td>pass</td><td></td><td>Isopropyl acetate</td><td>< LOQ</td><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	290	150	pass		Isopropyl acetate	< LOQ	5000	200	pass	
Isopropylbenzene (Cumene)	<loq< td=""><td>70.0</td><td>30.0</td><td>pass</td><td></td><td>m,p-Xylene</td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>	70.0	30.0	pass		m,p-Xylene	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
Methanol	< LOQ	3000	200	pass		Methylene chloride	< LOQ	600	60.0	pass	
Methylpropane (Isobutane)	<loq< td=""><td></td><td>200</td><td></td><td></td><td>n-Butane</td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>		200			n-Butane	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
n-Heptane	< LOQ	5000	200	pass		n-Hexane	< LOQ		30.0		
n-Pentane	< LOQ		200			o-Xylene	< LOQ		200		
Pentanes (sum)	<loq< td=""><td>5000</td><td>600</td><td>pass</td><td></td><td>Propane</td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>	5000	600	pass		Propane	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
Tetrahydrofuran	<loq< td=""><td>720</td><td>100</td><td>pass</td><td></td><td>Toluene</td><td>< LOQ</td><td>890</td><td>100</td><td>pass</td><td></td></loq<>	720	100	pass		Toluene	< LOQ	890	100	pass	
Total Xylenes	<loq< td=""><td></td><td>400</td><td></td><td></td><td>Total Xylenes and Ethy benzene</td><td>yl <loq< td=""><td>2170</td><td>600</td><td>pass</td><td></td></loq<></td></loq<>		400			Total Xylenes and Ethy benzene	yl <loq< td=""><td>2170</td><td>600</td><td>pass</td><td></td></loq<>	2170	600	pass	

Report Number: 22-011450/D002.R001

Report Date: 12/22/2022 ORELAP#: OR100028

Purchase Order:

Received: 12/20/2022 00:00

Pesticides	Method: AO	AC 200	7.01 & EN 15662 (mod) ^þ	Units mg/kg Batch	2208202			
Analyte	Result	Limits	LOQ Status Notes	Analyte	Result	Limits	LOQ Status	Notes
Abamectin*	<loq< td=""><td>0.50</td><td>0.250 pass</td><td>Acephate*</td><td><loq< td=""><td>0.40</td><td>0.250 pass</td><td></td></loq<></td></loq<>	0.50	0.250 pass	Acephate*	<loq< td=""><td>0.40</td><td>0.250 pass</td><td></td></loq<>	0.40	0.250 pass	
Acequinocyl*	<loq< td=""><td>2.0</td><td>1.00 pass</td><td>Acetamiprid[¥]</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<></td></loq<>	2.0	1.00 pass	Acetamiprid [¥]	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<>	0.20	0.100 pass	
Aldicarb¥	<loq< td=""><td>0.40</td><td>0.200 pass</td><td>Azoxystrobin*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<></td></loq<>	0.40	0.200 pass	Azoxystrobin*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<>	0.20	0.100 pass	
Bifenazate*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Bifenthrin¥</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<></td></loq<>	0.20	0.100 pass	Bifenthrin¥	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<>	0.20	0.100 pass	
Boscalid*	<loq< td=""><td>0.40</td><td>0.200 pass</td><td>Carbaryl*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<></td></loq<>	0.40	0.200 pass	Carbaryl*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<>	0.20	0.100 pass	
Carbofuran¥	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Chlorantraniliprole*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<></td></loq<>	0.20	0.100 pass	Chlorantraniliprole*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<>	0.20	0.100 pass	
Chlorfenapyr¥	<loq< td=""><td>1.0</td><td>0.500 pass</td><td>Chlorpyrifos*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<></td></loq<>	1.0	0.500 pass	Chlorpyrifos*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<>	0.20	0.100 pass	
Clofentezine¥	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Cyfluthrin¥</td><td><loq< td=""><td>1.0</td><td>0.500 pass</td><td></td></loq<></td></loq<>	0.20	0.100 pass	Cyfluthrin¥	<loq< td=""><td>1.0</td><td>0.500 pass</td><td></td></loq<>	1.0	0.500 pass	
Cypermethrin*	<loq< td=""><td>1.0</td><td>0.500 pass</td><td>Daminozide¥</td><td><loq< td=""><td>1.0</td><td>0.500 pass</td><td></td></loq<></td></loq<>	1.0	0.500 pass	Daminozide¥	<loq< td=""><td>1.0</td><td>0.500 pass</td><td></td></loq<>	1.0	0.500 pass	
Diazinon¥	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Dichlorvos¥</td><td><loq< td=""><td>1.0</td><td>0.500 pass</td><td></td></loq<></td></loq<>	0.20	0.100 pass	Dichlorvos¥	<loq< td=""><td>1.0</td><td>0.500 pass</td><td></td></loq<>	1.0	0.500 pass	
Dimethoate*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Ethoprophos*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<></td></loq<>	0.20	0.100 pass	Ethoprophos*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<>	0.20	0.100 pass	
Etofenprox*	<loq< td=""><td>0.40</td><td>0.200 pass</td><td>Etoxazole*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<></td></loq<>	0.40	0.200 pass	Etoxazole*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<>	0.20	0.100 pass	
Fenoxycarb*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Fenpyroximate*</td><td><loq< td=""><td>0.40</td><td>0.200 pass</td><td></td></loq<></td></loq<>	0.20	0.100 pass	Fenpyroximate*	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td></loq<>	0.40	0.200 pass	
Fipronil*	<loq< td=""><td>0.40</td><td>0.200 pass</td><td>Flonicamid¥</td><td><loq< td=""><td>1.0</td><td>0.400 pass</td><td></td></loq<></td></loq<>	0.40	0.200 pass	Flonicamid¥	<loq< td=""><td>1.0</td><td>0.400 pass</td><td></td></loq<>	1.0	0.400 pass	
Fludioxonil¥	<loq< td=""><td>0.40</td><td>0.200 pass</td><td>Hexythiazox*</td><td><loq< td=""><td>1.0</td><td>0.400 pass</td><td></td></loq<></td></loq<>	0.40	0.200 pass	Hexythiazox*	<loq< td=""><td>1.0</td><td>0.400 pass</td><td></td></loq<>	1.0	0.400 pass	
lmazalil [¥]	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Imidacloprid*</td><td><loq< td=""><td>0.40</td><td>0.200 pass</td><td></td></loq<></td></loq<>	0.20	0.100 pass	Imidacloprid*	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td></loq<>	0.40	0.200 pass	
Kresoxim-methyl¥	<loq< td=""><td>0.40</td><td>0.200 pass</td><td>Malathion¥</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<></td></loq<>	0.40	0.200 pass	Malathion¥	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<>	0.20	0.100 pass	
Metalaxyl*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Methiocarb*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<></td></loq<>	0.20	0.100 pass	Methiocarb*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<>	0.20	0.100 pass	
Methomyl¥	<loq< td=""><td>0.40</td><td>0.200 pass</td><td>MGK-264¥</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<></td></loq<>	0.40	0.200 pass	MGK-264¥	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<>	0.20	0.100 pass	
Myclobutanil*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Naled[¥]</td><td><loq< td=""><td>0.50</td><td>0.250 pass</td><td></td></loq<></td></loq<>	0.20	0.100 pass	Naled [¥]	<loq< td=""><td>0.50</td><td>0.250 pass</td><td></td></loq<>	0.50	0.250 pass	
Oxamyl [¥]	<loq< td=""><td>1.0</td><td>0.500 pass</td><td>Paclobutrazole*</td><td><loq< td=""><td>0.40</td><td>0.200 pass</td><td></td></loq<></td></loq<>	1.0	0.500 pass	Paclobutrazole*	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td></loq<>	0.40	0.200 pass	
Parathion-Methyl*	<loq< td=""><td>0.20</td><td>0.200 pass</td><td>Permethrin¥</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<></td></loq<>	0.20	0.200 pass	Permethrin¥	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<>	0.20	0.100 pass	
Phosmet*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Piperonyl butoxide¥</td><td><loq< td=""><td>2.0</td><td>1.00 pass</td><td></td></loq<></td></loq<>	0.20	0.100 pass	Piperonyl butoxide¥	<loq< td=""><td>2.0</td><td>1.00 pass</td><td></td></loq<>	2.0	1.00 pass	
Prallethrin*	<loq< td=""><td>0.20</td><td>0.200 pass</td><td>Propiconazole¥</td><td><loq< td=""><td>0.40</td><td>0.200 pass</td><td></td></loq<></td></loq<>	0.20	0.200 pass	Propiconazole¥	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td></loq<>	0.40	0.200 pass	
Propoxur*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Pyrethrin I (total)¥</td><td><loq< td=""><td>1.0</td><td>0.500 pass</td><td></td></loq<></td></loq<>	0.20	0.100 pass	Pyrethrin I (total)¥	<loq< td=""><td>1.0</td><td>0.500 pass</td><td></td></loq<>	1.0	0.500 pass	
Pyridaben [¥]	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Spinosad¥</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<></td></loq<>	0.20	0.100 pass	Spinosad¥	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<>	0.20	0.100 pass	
Spiromesifen¥	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Spirotetramat¥</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<></td></loq<>	0.20	0.100 pass	Spirotetramat¥	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<>	0.20	0.100 pass	
Spiroxamine ⁴	<loq< td=""><td>0.40</td><td>0.200 pass</td><td>Tebuconazole*</td><td><loq< td=""><td>0.40</td><td>0.200 pass</td><td></td></loq<></td></loq<>	0.40	0.200 pass	Tebuconazole*	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td></loq<>	0.40	0.200 pass	
Thiacloprid¥	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Thiamethoxam¥</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<></td></loq<>	0.20	0.100 pass	Thiamethoxam¥	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td></loq<>	0.20	0.100 pass	
Trifloxystrobin*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td></td><td></td><td></td><td></td></loq<>	0.20	0.100 pass					

Metals							
Analyte	Result	Limits	Units	LOQ	Batch	Method	Status Notes
Arsenic	< LOQ	0.200	mg/kg	0.0890	2208137	AOAC 2013.06 (mod.) ^b	pass
Cadmium	< LOQ	0.200	mg/kg	0.0890	2208137	AOAC 2013.06 (mod.) ^b	pass
Lead	< LOQ	0.500	mg/kg	0.0890	2208137	AOAC 2013.06 (mod.) ^b	pass
Mercury	<loq< td=""><td>0.100</td><td>mg/kg</td><td>0.0445</td><td>2208137</td><td>AOAC 2013.06 (mod.)^b</td><td>pass</td></loq<>	0.100	mg/kg	0.0445	2208137	AOAC 2013.06 (mod.) ^b	pass

Report Number: 22-011450/D002.R001

Report Date: 12/22/2022 **ORELAP#:** OR100028

Purchase Order:

Received: 12/20/2022 00:00

These test results are representative of the individual sample selected and submitted by the client.

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

b = ISO/IEC 17025:2017 accredited method.

* = TNI accredited analyte.

Units of Measure

cfu/g = Colony forming units per gram

g = g

 μ g/g = Microgram per gram

mg/kg = Milligram per kilogram = parts per million (ppm)

mg/0.5g = Milligram per 0.5g

/10g = Per 10 grams

% = Percentage of sample

% wt = μ g/g divided by 10,000

Glossary of Qualifiers

I: Insufficient sample received to meet method requirements.

Approved Signatory

Derrick Tanner General Manager

Acceptable

120 120 Acceptable **Report Number:** 22-011450/D002.R001

Report Date: 12/22/2022 **ORELAP#:** OR100028

Purchase Order:

12/20/2022 00:00 Received:

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

Laboratory Quality Control Results Batch ID: 2208193 J AOAC 2015 V98-6 Laboratory Control Sample Analyte CBDVA Evaluation 120 Acceptable Notes LCS Limits | % | % 0.034 0.0330 95.9 80.0 120 Acceptable CBDV 0.0369 0.037 101 0.035 Acceptable 80.0 0.0326 93.4 120 CBDA % 0.0314 0.033 Acceptable CBGA CBG % % % 0.034 120 Acceptable 0.0314 93.5 80.0 0.0324 0.034 94.5 110 Acceptable 120 Acceptable 120 Acceptable 80.0 CBD 94.6 96.0 97.6 0.0324 90.0 THCV 0.0361 0.038 % 80.0 120 Acceptable 120 Acceptable % % d8THCV 0.037 0.0358 THCVA 0.0327 0.034 80.0 110 Acceptable CBN 0.034 0.0318 94.3 90.0 exo-THC 0.0332 0.034 % 97.1 80.0 90.0 Acceptable 120 110 Acceptable 120 Acceptable 0.0328 0.0313 94.9 d8THC 0.033 % 93.4 80.0 120 Acceptable 0.033 0.0307 93.5 80.0 d10THC 0.032 % 93.8 Acceptable 80.0 0.0299 120 Acceptable 0.0354 0.0311 98.0 93.7 80.0 90.0 120 110 THCA 0.033 % Acceptable CBCA 0.035 120 Acceptable 95.4 93.7 0.0335 80.0

80.0

80.0

Method Blank				220		
Analyte	Result	LOQ	Units	Limits	Evaluation	Notes
CBDVA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBDV	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBE	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBDA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBGA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBG	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBD	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
THCV	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
d8THCV	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
THCVA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBN	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
exo-THC	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
d9THC	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
d8THC	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBL	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
d10THC	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBC	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
THCA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBCA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBLA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBT	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	

0.019

0.0175

%

Abbreviations

CBLA CBT

ND - None Detected at or above MRL

RPD - Relative Percent Difference LOQ - Limit of Quantitation

Units of Measure:

% - Percent

Report Number: 22-011450/D002.R001

12/22/2022 **Report Date:** ORELAP#: OR100028

Purchase Order:

12/20/2022 00:00 Received:

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

Laboratory Quality Control Results

J AOAC 2015 V98-6					Ba	tch ID: 2208193		
Sample Duplicate					Sam	ple ID: 22-010445-	0001	
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Evaluation	Notes
CBDVA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBDV	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBE	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBDA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBGA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBG	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBD	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
THCV	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
d8THCV	0.00460	0.00536	0.003	%	15.1	< 20	Acceptable	
THCVA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBN	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
exo-THC	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
d9THC	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
d8THC	2.92	2.90	0.003	%	0.540	< 20	Acceptable	
CBL	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
d10THC	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBC	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
THCA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBCA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBLA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBT	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	

Abbreviations ND - None Detected at or above MRL

RPD - Relative Percent Difference LOQ - Limit of Quantitation

Units of Measure:

Report Number: 22-011450/D002.R001

12/22/2022 **Report Date:** ORELAP#: OR100028

Purchase Order:

12/20/2022 00:00 Received:

Revision: 3 Document ID: 3120 Legacy ID: CFL-C21 Worksheet Validated 10/30/2020

Laboratory Pesticide Quality Control Results

AOAC 2007.1 &EN 156 Method Bank	V-	Office	: mg/Kg	Laboratory Conf	rol Samle	Da	tch ID 2	-20020	•	
	Discrete Describ	Discolation its	N 1-4	,		LCS% Re Limits				
Analyte	Blank Result	Blank Limits	Notes	LCS Result	LCSSpke	LCS% Re			N	
Abamectin	0.000	< 0.250 < 0.250		0.868 0.855	1.000	86.8 85.5	50.0 60.0	150 120	-	
cephate cequinocyl	0.000	< 1.000		2.711	4.000	67.8	40.0	160		
cetamiprid	0.000	< 0.100		0.346	0.400	86.4	60.0	120		
ldicarb	0.000	< 0.100		0.683	0.400	85.4	60.0	120		
	0.000	< 0.200		0.883	0.800	85.4	60.0	120		
zoxystrobin	0.000	< 0.100		0.341	0.400	85.2	60.0	120		
ifenazate ifenthrin	0.000	< 0.100		0.342	0.400	75.6	50.0	150		
oscalid	0.000	< 0.100		0.303	0.400	88.8	60.0	120	_	
								120		
Carbaryl	0.000	< 0.100		0.345	0.400	86.3	60.0			
arbofuran	0.000	< 0.100		0.344	0.400	86.0	60.0	120 120		
hlorantraniliprole	0.000	< 0.100		0.343	0.400	85.7	60.0			
Chlorfenapyr	0.000	< 0.500		1.751	2.000	87.6	60.0	120		
hlorpyrifos	0.000	< 0.100		0.342	0.400	85.5	60.0	120		
Clofentezine	0.000	< 0.100		0.342	0.400	85.6	60.0	120		
yfluthrin	0.000	< 0.500		1.660	2.000	83.0	50.0	150	_	
ypermethrin	0.000	< 0.500		1.585	2.000	79.3	50.0	150		
Daminozide	0.000	< 0.500		1.685	2.000	84.3	60.0	120	_	
Diazinon	0.000	< 0.100		0.358	0.400	89.5	60.0	120		
ichlorvos	0.000	< 0.500		1.743	2.000	87.2	60.0	120		
Dimethoate	0.000	< 0.100		0.346	0.400	86.4	60.0	120		
thoprophos	0.000	< 0.100		0.355	0.400	88.8	60.0	120		
tofenprox	0.000	< 0.200		0.616	0.800	76.9	50.0	150		
toxazole	0.000	< 0.100		0.339	0.400	84.8	60.0	120		
enoxycarb	0.000	< 0.100		0.346	0.400	86.6	60.0	120		
enpyroximate	0.000	< 0.200		0.649	0.800	81.2	60.0	120		
ipronil	0.000	< 0.200		0.688	0.800	86.0	60.0	120		
lonicamid	0.000	< 0.250		0.854	1.000	85.4	60.0	120		
udioxonil	0.000	< 0.200		0.684	0.800	85.5	50.0	150		
exythiazox	0.000	< 0.250		0.826	1.000	82.6	60.0	120		
mazalil	0.000	< 0.100		0.342	0.400	85.4	60.0	120		
midacloprid	0.000	< 0.200		0.692	0.800	86.5	60.0	120		
resoxim-methyl	0.000	< 0.200		0.684	0.800	85.5	60.0	120		
∕ Ialathion	0.000	< 0.100		0.346	0.400	86.5	60.0	120		
∕letalaxyl	0.000	< 0.100		0.348	0.400	86.9	60.0	120		
∕ lethiocarb	0.000	< 0.100		0.340	0.400	85.0	60.0	120		
Methomyl	0.000	< 0.200		0.738	0.800	92.3	60.0	120		
иGK-264	0.000	< 0.100		0.335	0.400	83.8	50.0	150		
∕lyclobutanil	0.000	< 0.100		0.350	0.400	87.6	60.0	120		
laled	0.000	< 0.250		0.855	1.000	85.5	50.0	150		
Dxamyl	0.000	< 0.500		1.755	2.000	87.8	60.0	120		
aclobutrazole	0.000	< 0.200		0.682	0.800	85.2	60.0	120		
arathion-Methyl	0.000	< 0.200		0.757	0.800	94.6	50.0	150		
ermethrin	0.000	< 0.100		0.320	0.400	80.0	50.0	150		
hosmet	0.000	< 0.100		0.347	0.400	86.6	50.0	150		
iperonyl butoxide	0.000	< 0.500		1.663	2.000	83.2	60.0	120		
rallethrin	0.000	< 0.100		0.340	0.400	85.1	60.0	120		
ropiconazole	0.000	< 0.200		0.687	0.800	85.8	60.0	120		
ropoxur	0.000	< 0.100		0.354	0.400	88.5	60.0	120		
yrethrin (Summe)	0.000	< 0.100		0.354	0.413	85.7	60.0	120		
yridaben	0.000	< 0.100		0.325	0.400	81.2	50.0	150		
pinosad	0.000	< 0.100		0.319	0.388	82.1	50.0	150		
piromesifen	0.000	< 0.100		0.342	0.400	85.5	60.0	120	-	
pirotetramat	0.000	< 0.100		0.341	0.400	85.3	60.0	120	-	
piroxamine	0.000	< 0.200		0.649	0.800	81.2	60.0	120	-	
ebuconazole	0.000	< 0.200		0.665	0.800	83.1	60.0	120	-	
hiacloprid	0.000	< 0.100		0.345	0.400	86.3	60.0	120		
'hiamethoxam	0.000	< 0.100		0.352	0.400	88.0	60.0	120	-	
rifloxystrobin	0.000	< 0.100	_	0.339	0.400	84.8	60.0	120	-	

Report Number: 22-011450/D002.R001

12/22/2022 **Report Date:** ORELAP#: OR100028

Purchase Order:

12/20/2022 00:00 Received:

Revision: 3 Document ID: 3120 Legacy ID: CFL-C21 Worksheet Validated 10/30/2020

Laboratory Pesticide Quality Control Results

AOAC 2007.1 & EN 15662			Units:	mg/Kg					ch ID 220820	12
Matrix Spke/Matrix Spke	Duplicate Reco							22-0114006	0001	
Analyte	Result	MSRes	MSD Res	Spike	RPD%	Limit		MSD % Re	Limits	Notes
Abamectin	0.000	0.667	0.723	1.000	7.9%	< 30	66.7%	72.3%	50 - 150	
Acephate	0.386	1.192	1.289	1.000	11.4%	< 30	80.5%	90.3%	50 - 150	_
Acequinocyl	0.000	2.216	3.004	4.000	30.2%	< 30	55.4%	75.1%	50 - 150	R
Acetamiprid	0.000	0.329	0.345	0.400	4.7%	< 30	82.4%	86.3%	50 - 150	
Aldicarb	0.000	0.674	0.721	0.800	6.6%	< 30	84.3%	90.1%	50 - 150	
Azoxystrobin	0.000	0.290	0.294	0.400	1.5%	< 30	72.5%	73.6%	50 - 150	
Bifenazate	0.000	0.358	0.385	0.400	7.4%	< 30	89.4%	96.2%	50 - 150	_
Bifenthrin	0.000	0.232	0.255	0.400	9.3%	< 30	58.1%	63.8%	50 - 150	_
Boscalid	0.000	0.580	0.601	0.800	3.6%	< 30	72.5%	75.2%	50 - 150	_
Carbaryl	0.000	0.305	0.324	0.400	5.8%	< 30	76.3%	80.9%	50 - 150	_
Carbofuran	0.000	0.316	0.333	0.400	5.2%	< 30	79.1%	83.3%	50 - 150 50 - 150	_
Chlorantraniliprole	0.000	0.314	0.327		4.0%	< 30	78.6% 65.5%	81.7%		_
Chlorfenapyr	0.000	1.309 0.354	1.569 0.355	2.000 0.400	18.1%	< 30	88.4%	78.4% 88.8%		_
Chlorpyrifos	0.000		0.355	0.400						_
Clofentezine Cyfluthrin	0.015 0.000	0.267 0.753	0.284	2.000	6.3%	< 30	63.0% 37.7%	67.1% 42.5%		_
	0.000	0.733	0.831	2.000	19.1%	< 30	33.6%	40.7%		Q
Cypermethrin Daminozide	0.000		1.335	2.000	5.5%	< 30		65.9%	50 - 150 30 - 150	_ u
Diazinon	0.000	1.265 0.186	0.185	0.400	0.6%	< 30	62.4% 46.6%	46.3%	50 - 150	Q
Dichlorvos	0.000	1.592	1.751	2.000	9.5%	< 30	79.6%	87.5%	50 - 150	_
Dimethoate	0.000	0.339	0.354	0.400	4.2%	< 30	84.8%	88.4%	50 - 150	_
Ethoprophos	0.000	0.339	0.334	0.400	12.7%	< 30	70.3%	79.9%	50 - 150	_
Etofenprox	0.000	0.281	0.571	0.800	11.1%	< 30	63.8%	71.3%	50 - 150	_
Etoxazole	0.000	0.311	0.371	0.400	5.1%	< 30	74.3%	78.2%	50 - 150	_
Fenoxycarb	0.000	0.303	0.313	0.400	5.1%	< 30	75.8%	79.7%	50 - 150	_
Fenpyroximate	0.000	0.423	0.449	0.800	6.0%	< 30	52.9%	56.1%	50 - 150	_
Fipronil	0.000	0.423	0.599	0.800	6.7%	< 30	70.0%	74.8%	50 - 150	_
Flonicamid	0.000	0.835	0.859	1.000	2.9%	< 30	83.5%	85.9%	50 - 150	_
Fludioxonil	0.000	0.833	0.833	0.800	4.1%	< 30	116.7%	121.5%	50 - 150	_
Hexythiazox	0.000	0.775	0.812	1.000	4.1%	< 30	77.5%	81.2%	50 - 150	_
Imazalil	0.000	0.773	0.331	0.400	3.9%	< 30	79.5%	82.7%	50 - 150	_
Imidacloprid	0.000	0.679	0.714	0.800	5.1%	< 30	84.9%	89.3%	50 - 150	-
Kresoxim-methyl	0.000	0.574	0.647	0.800	11.9%	< 30	71.8%	80.9%	50 - 150	-
Malathion	0.000	0.294	0.314	0.400	6.7%	< 30	73.5%	78.6%	50 - 150	-
Metalaxyl	0.000	0.305	0.317	0.400	3.8%	< 30	76.4%	79.3%	50 - 150	-
Methiocarb	0.000	0.295	0.318	0.400	7.3%	< 30	73.9%	79.5%	50 - 150	-
Methomyl	0.000	0.770	0.682	0.800	12.1%	< 30	96.3%	85.3%	50 - 150	-
MGK-264	0.000	0.179	0.210	0.400	15.7%	< 30	44.8%	52.4%	50 - 150	Q
Myclobutanil	0.000	0.232	0.267	0.400	14.1%	< 30	58.0%	66.8%	50 - 150	_ ~
Naled	0.000	0.671	0.709	1.000	5.5%	< 30	67.1%	70.9%	50 - 150	-
Oxamyl	0.000	1.748	1.735	2.000	0.7%	< 30	87.4%	86.8%	50 - 150	-
Paclobutrazole	0.000	0.585	0.598	0.800	2.2%	< 30	73.1%	74.8%	50 - 150	-
Parathion-Methyl	0.000	0.360	0.376	0.800	4.4%	< 30	45.0%	47.0%	30 - 150	_
Permethrin	0.000	0.275	0.270	0.400	2.0%	< 30	68.7%	67.4%	50 - 150	_
Phosmet	0.000	0.294	0.306	0.400	4.3%	< 30	73.4%	76.6%	50 - 150	-
Piperonyl butoxide	0.000	1.534	1.653	2.000	7.5%	< 30	76.7%	82.6%	50 - 150	_
Prallethrin	0.000	0.195	0.241	0.400	21.3%	< 30	48.7%	60.3%	50 - 150	Q
Propiconazole	0.003	0.851	0.895	0.800	5.0%	< 30	106.0%	111.5%	50 - 150	
Propoxur	0.000	0.321	0.341	0.400	6.0%	< 30	80.3%	85.2%	50 - 150	_
Pyrethrin (Summe)	0.024	0.378	0.386	0.413	2.0%	< 30	85.8%	87.5%	50 - 150	_
Pyridaben	0.000	0.310	0.342	0.400	9.8%	< 30	77.5%	85.5%	50 - 150	
Spinosad	0.000	0.267	0.265	0.388	1.0%	< 30	68.9%	68.2%	50 - 150	
Spiromesifen	0.000	0.314	0.322	0.400	2.7%	< 30	78.5%	80.6%	50 - 150	-
Spirotetramat	0.000	0.430	0.437	0.400	1.5%	< 30	107.6%	109.2%	50 - 150	
Spiroxamine	0.000	0.653	0.688	0.800	5.3%	< 30	81.6%	86.1%	50 - 150	
Tebuconazole	0.000	0.616	0.647	0.800	4.9%	< 30	77.0%	80.8%	50 - 150	
Thiacloprid	0.000	0.334	0.350	0.400	4.9%	< 30	83.4%	87.6%	50 - 150	
										_
Thiamethoxam	0.000	0.374	0.327	0.400	13.2%	< 30	93.4%	81.9%	50 - 150	

Report Number: 22-011450/D002.R001

12/22/2022 **Report Date:** OR100028 ORELAP#:

Purchase Order:

12/20/2022 00:00 Received:

Revision: Document ID: Legacy ID: Effective:

Residual Solvents						D-I	ch ID:	220822	11			
								220822	<u>′1</u>			
Method Blank						y Control Sa						
Analyte	Result		LOQ	Notes	Result	Spike	Units	% Rec		.imi		Notes
Propane	ND	<	200		432	572	µg/g	75.5			120	
sobutane	ND	<	200		530	731	μg/g	72.5	60		120	
Butane	ND	<	200		512	731	μg/g	70.0			120	
2,2-Dimethylpropane	ND	<	200		717	936	µg/g	76.6	60		120	
Methanol	ND	<	200		1690	1650	μg/g	102.4	60		120	
thylene Oxide	ND	<	30		42.7	56.2	μg/g	76.0	60		120	
2-Methylbutane	ND	<	200		1540	1650	μg/g	93.3	60		120	
Pentane	ND	<	200		1640	1650	μg/g	99.4	60		120	
thanol	ND	<	200		1650	1660	µg/g	99.4	70		130	
thyl Ether	ND	<	200		1600	1630	μg/g	98.2	60		120	
2,2-Dimethylbutane	ND	<	30		182	189	µg/g	96.3	60		120	
Acetone	ND	<	200		1650	1650	μg/g	100.0	60		120	
2-Propanol	ND	<	200		1660	1650	µg/g	100.6	60		120	
thyl Formate	ND	<	500		1460	1610	µg/g	90.7	70		130	
Acetonitrile	ND	<	100		505	504	μg/g	100.2	60		120	
Methyl Acetate	ND	<	500		1770	1630	μg/g	108.6	70		130	
2,3-Dimethylbutane	ND	<	30		174	174	μg/g	100.0	60		120	
Dichloromethane	ND	<	60		502	521	μg/g	96.4	60		120	
2-Methylpentane	ND	<	30		193	187	μg/g	103.2	60		120	
MTBE	ND	<	500		1620	1600	µg/g	101.3	70		130	
3-Methylpentane	ND	<	30		186	188	µg/g	98.9	60		120	
lexane	ND	<	30		184	182	μg/g	101.1	60		120	
l-Propanol	ND	<	500		1860	1610	μg/g	115.5	70		130	
Methylethylketone	ND	<	500		1780	1600	µg/g	111.3	70		130	
thyl acetate	ND	<	200		1640	1630	μg/g	100.6	60		120	
2-Butanol	ND	<	200		1650	1630	µg/g	101.2	60		120	
Tetrahydrofuran	ND	<	100		504	506	µg/g	99.6	60		120	
Cyclohexane	ND	<	200		1620	1640	μg/g	98.8	60		120	
2-methyl-1-propanol	ND	<	500		1790	1620	μg/g	110.5	70		130	
Benzene	ND	<	1		4.76	4.93	µg/g	96.6	60		120	
sopropyl Acetate	ND	<	200		1640	1640	μg/g	100.0	60		120	
Heptane	ND	<	200		1630	1630	μg/g	100.0			120	
L-Butanol	ND	<	500		1880	1600	µg/g	117.5			130	
Propyl Acetate	ND	<	500		1840	1620	μg/g	113.6			130	
,4-Dioxane	ND	<	100		487	493	μg/g	98.8	60		120	
2-Ethoxyethanol	ND	<	30		172	171	μg/g	100.6			120	
Methylisobutylketone	ND	<	500		1900	1620	μg/g	117.3	70		130	
3-Methyl-1-butanol	ND	<	500		1930	1610	μg/g	119.9	70		130	
thylene Glycol	ND	<	200		580	494	μg/g	117.4			120	
oluene	ND	<	100		498	506	µg/g	98.4	60		120	
sobutyl Acetate	ND	<	500		1950	1620	μg/g	120.4	70		130	
-Pentanol	ND	<	500		1970	1610	μg/g	122.4	70		130	
Butyl Acetate	ND	<	500		1880	1610	μg/g	116.8	70		130	
thylbenzene	ND	<	200		1020	996	μg/g	102.4	60		120	
n,p-Xylene	ND	<	200		1040	1010	μg/g	103.0	60		120	
-Xylene	ND	<	200		1010	979	μg/g	103.2	60		120	
Cumene	ND	<	30		194	188	μg/g	103.2	60		120	
nisole	ND	<	500		1760	1610	μg/g	109.3	70		130	
MSO	ND	<	500		1670	1600	µg/g	104.4	70		130	
,2-dimethoxyethane	ND	<	50		216	190	μg/g	113.7	70		130	
riethylamine	ND	<	500		1650	1610	μg/g	102.5	70		130	
N,N-dimethylformamide	ND	<	150		554	496	μg/g	111.7	70		130	
I,N-dimethylacetamide	ND	<	150		577	483	μg/g	119.5	70		130	
yridine	ND	<	50		184	167	μg/g	110.2	70		130	
,2-Dichloroethane	ND	<	1		1.08	1	μg/g	108.0			130	
Chloroform	ND	<	1		1.07	1	μg/g	107.0			130	
Trichloroethylene	ND	<	1		1.03	1	μg/g	103.0	70	-	130	

Report Number: 22-011450/D002.R001

12/22/2022 **Report Date:** ORELAP#: OR100028

Purchase Order:

12/20/2022 00:00 Received:

Revision: Document ID: Legacy ID: Effective:

QC-Sample Duplicate						: 22-011413-0003	
Analyte		Org. Reult	LOQ Units	RRD	Limits	Accept/Fail	Notes
Propane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
sobutane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Butane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
2,2-Dimethylpropane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Methanol	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Ethylene Oxide	ND	ND	30 μg/g	0.0	< 20	Acceptable	
2-Methylbutane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Pentane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Ethanol	280	274	200 μg/g	2.2	< 20	Acceptable	
Ethyl Ether	ND	ND	200 μg/g	0.0	< 20	Acceptable	
2.2-Dimethylbutane	ND	ND	30 μg/g	0.0	< 20	Acceptable	
Acetone	ND	ND	200 μg/g	0.0	< 20	Acceptable	
2-Propanol	ND ND	ND	200 μg/g	0.0	< 20	Acceptable	
Ethyl Formate	ND ND	ND	500 μg/g	0.0	< 20	Acceptable	
Acetonitrile	ND ND	ND	100 μg/g	0.0	< 20	Acceptable	
Methyl Acetate	ND ND	ND ND	500 μg/g	0.0	< 20	Acceptable	
2,3-Dimethylbutane	ND ND	ND ND	30 μg/g	0.0	< 20	Acceptable	
Dichloromethane	ND ND	ND ND		0.0	< 20	Acceptable	
2-Methylpentane	ND ND	ND ND		0.0	< 20	Acceptable	
MTBE	ND ND	ND	500 μg/g	0.0	< 20	Acceptable	-
3-Methylpentane	ND	ND	30 μg/g	0.0	< 20	Acceptable	
Hexane	ND	ND	30 μg/g	0.0	< 20	Acceptable	
1-Propanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Methylethylketone	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Ethyl acetate	ND	ND	200 μg/g	0.0	< 20	Acceptable	
2-Butanol	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Tetrahydrofuran	ND	ND	100 μg/g	0.0	< 20	Acceptable	
Cyclohexane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
2-methyl-1-propanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Benzene	ND	ND	1 μg/g	0.0	< 20	Acceptable	
Isopropyl Acetate	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Heptane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
1-Butanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Propyl Acetate	ND	ND	500 μg/g	0.0	< 20	Acceptable	
1,4-Dioxane	ND	ND	100 μg/g	0.0	< 20	Acceptable	
2-Ethoxyethanol	ND	ND	30 μg/g	0.0	< 20	Acceptable	
Methylisobutylketone	ND	ND	500 μg/g	0.0	< 20	Acceptable	
3-Methyl-1-butanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Ethylene Glycol	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Toluene	ND	ND	100 μg/g	0.0	< 20	Acceptable	
sobutyl Acetate	ND	ND	500 μg/g	0.0	< 20	Acceptable	
1-Pentanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Butyl Acetate	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Ethylbenzene	ND ND	ND	200 μg/g	0.0	< 20	Acceptable	l
m,p-Xylene	ND ND	ND	200 μg/g	0.0	< 20	Acceptable	
o-Xylene	ND ND	ND	200 μg/g	0.0	< 20	Acceptable	l
Cumene	ND ND	ND ND	30 μg/g	0.0	< 20	Acceptable	
Anisole	ND ND	ND ND	500 μg/g	0.0	< 20	Acceptable	
OMSO	ND ND	ND ND	500 μg/g	0.0	< 20	Acceptable	
1,2-dimethoxyethane	ND ND	ND ND	500 μg/g 50 μg/g	0.0	< 20	Acceptable	-
Friethylamine	ND ND	ND ND		0.0	< 20	Acceptable	
		ND ND		0.0	< 20		
N,N-dimethylformamide	ND ND		150 μg/g			Acceptable	
N,N-dimethylacetamide	ND ND	ND	150 μg/g	0.0	< 20	Acceptable	
Pyridine	ND	ND	50 μg/g	0.0	< 20	Acceptable	
1,2-Dichloroethane	ND	ND	1 μg/g	0.0	< 20	Acceptable	
Chloroform	ND	ND	1 μg/g	0.0	< 20	Acceptable	
Trichloroethylene	ND	ND	1 μg/g	0.0	< 20	Acceptable	

Abbreviations

ND - None Detected at or above MRL

RPD - Relative Percent Difference LOQ - Limit of Quantitation

Units of Measure:

μg/g- Microgram per gram or ppm

Report Number: 22-011450/D002.R001

12/22/2022 **Report Date:** ORELAP#: OR100028

Purchase Order:

12/20/2022 00:00 Received:

Explanation of QC Flag Comments:

Code	Explanation					
Q	Matrix interferences affecting spike or surrogate recoveries.					
Q1	Quality control result biased high. Only non-detect samples reported.					
Q2	Quality control outside QC limits. Data considered estimate.					
Q3	Sample concentration greater than four times the amount spiked.					
Q4	Non-homogenous sample matrix, affecting RPD result and/or % recoveries.					
Q5	Spike results above calibration curve.					
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.					
R	Relative percent difference (RPD) outside control limit.					
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.					
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.					
LOQ1	Quantitation level raised due to low sample volume and/or dilution.					
LOQ2	Quantitaion level raised due to matrix interference.					
В	Analyte detected in method blank, but not in associated samples.					
B1	The sample concentration is greater than 5 times the blank concentration.					
B2	The sample concentration is less than 5 times the blank concentration.					