



<u>Metal Working</u>

REPRODUCTION OF THIS MANUAL IN ANY FORM WITHOUT WRITTEN APPROVAL OF BAILEIGH INDUSTRIAL HOLDINGS LLC IS PROHIBITED. Baileigh Industrial Holdings LLC, Inc. does not assume and hereby disclaims any liability for any damage or loss caused by an omission or error in this Operator's Manual, resulting from accident, negligence, or other occurrence.

© 2020 Baileigh Industrial Holdings LLC

Rev. 04/2020



# **Table of Contents**

| THANK YOU & WARRANTY              | 1  |
|-----------------------------------|----|
| INTRODUCTION                      | 3  |
| GENERAL NOTES                     | 3  |
| SAFETY INSTRUCTIONS               | 4  |
| SAFETY PRECAUTIONS                | 6  |
| Dear Valued Customer:             | 6  |
| TECHNICAL SPECIFICATIONS          | 9  |
| TECHNICAL SUPPORT                 |    |
| UNPACKING AND CHECKING CONTENTS   | 10 |
| TRANSPORTING AND LIFTING          | 13 |
| INSTALLATION                      | 13 |
| Anchoring the Machine             | 14 |
| OVERALL DIMENSIONS                |    |
| GETTING TO KNOW YOUR MACHINE      | 16 |
| Saw Blade Head Assembly           | 16 |
| Electrical Box                    |    |
| Machine Base                      | 16 |
| Vise                              | 17 |
| Material Stop                     | 17 |
| Support Roller                    | 17 |
| Stand                             | 17 |
| Coolant Pump                      | 18 |
| ASSEMBLY AND SET UP               |    |
| ELECTRICAL                        |    |
| OPERATION                         | 24 |
| Miter Angle                       | 24 |
| Vise Operation                    | 25 |
| Loading the Piece Part            |    |
| Using the stop bar                | 26 |
| Cutting Operation Cycle           | 26 |
| Metal Chip Indicators             | 27 |
| CHOOSING A SAW BLADE              |    |
| General Characteristics           | 28 |
| Determining Proper Tooth Pitch    |    |
| Cutting and Feeding Speed         | 28 |
| Breaking in a Saw Blade           | 29 |
| Coolant                           |    |
| Blade structure                   |    |
| BLADE SELECTION CHART             |    |
| MACHINE ADJUSTMENTS               |    |
| Adjustment of Saw Blade Head      |    |
| Adjusting the Mitering Lock Lever |    |
|                                   |    |



| Changing the Saw Blade                      | 33 |
|---------------------------------------------|----|
| Blade tracking adjustment                   | 34 |
| LUBRICATION AND MAINTENANCE                 |    |
| Accessing and Cleaning the Coolant System   | 36 |
| Oils for Lubricating Coolant                |    |
| Storing Machine for Extended Period of Time | 37 |
| Cleaning Coolant Path                       | 37 |
| LUBRICATION OIL TABLE 1                     |    |
| LUBRICATION OIL TABLE 2                     | 38 |
| ELECTRICAL SCHEMATIC                        | 39 |
| Electrical Parts List                       |    |
| PARTS DIAGRAM                               | 41 |
| Parts List                                  | 46 |
| TROUBLESHOOTING                             | 50 |



# THANK YOU & WARRANTY

Thank you for your purchase of a machine from Baileigh Industrial Holdings LLC. We hope that you find it productive and useful to you for a long time to come.

**Inspection & Acceptance.** Buyer shall inspect all Goods within ten (10) days after receipt thereof. Buyer's payment shall constitute final acceptance of the Goods and shall act as a waiver of the Buyer's rights to inspect or reject the goods unless otherwise agreed. If Buyer rejects any merchandise, Buyer must first obtain a Returned Goods Authorization ("RGA") number before returning any goods to Seller. Goods returned without an RGA will be refused. Seller will not be responsible for any freight costs, damages to goods, or any other costs or liabilities pertaining to goods returned without a RGA. Seller shall have the right to substitute a conforming tender. Buyer will be responsible for all freight costs to and from Buyer and repackaging costs, if any, if Buyer refuses to accept shipment. If Goods are returned in unsalable condition, Buyer shall be responsible for full value of the Goods. Buyer may not return any special-order Goods. Any Goods returned hereunder shall be subject to a restocking fee equal to 30% of the invoice price.

**Specifications.** Seller may, at its option, make changes in the designs, specifications or components of the Goods to improve the safety of such Goods, or if in Seller's judgment, such changes will be beneficial to their operation or use. Buyer may not make any changes in the specifications for the Goods unless Seller approves of such changes in writing, in which event Seller may impose additional charges to implement such changes.

Limited Warranty. Seller warrants to the original end-user that the Goods manufactured or provided by Seller under this Agreement shall be free of defects in material or workmanship for a period of twelve (12) months from the date of purchase, provided that the Goods are installed, used, and maintained in accordance with any instruction manual or technical guidelines provided by the Seller or supplied with the Goods, if applicable. The original end-user must give written notice to Seller of any suspected defect in the Goods prior to the expiration of the warranty period. The original end-user must also obtain a RGA from Seller prior to returning any Goods to Seller for warranty service under this paragraph. Seller will not accept any responsibility for Goods returned without a RGA. The original end-user shall be responsible for all costs and expenses associated with returning the Goods to Seller for warranty service. In the event of a defect, Seller, at its sole option, shall repair or replace the defective Goods or refund to the original end-user the purchase price for such defective Goods. Goods are not eligible for replacement or return after a period of 10 days from date of receipt. The foregoing warranty is Seller's sole obligation, and the original end-user's exclusive remedy, with regard to any defective Goods. This limited warranty does not apply to: (a) die sets, tooling, and saw blades; (b) periodic or routine maintenance and setup, (c) repair or replacement of the Goods due to normal wear and tear, (d) defects or damage to the Goods resulting from misuse, abuse, neglect, or accidents, (f) defects or damage to the Goods resulting from improper or unauthorized alterations, modifications, or changes; and (f) any Goods that has not been installed and/or maintained in accordance with the instruction manual or technical guidelines provided by Seller.

**EXCLUSION OF OTHER WARRANTIES.** THE FOREGOING LIMITED WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED. ANY AND ALL OTHER EXPRESS, STATUTORY OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED. NO WARRANTY IS MADE WHICH EXTENDS BEYOND THAT WHICH IS EXPRESSLY CONTAINED HEREIN.

Limitation of Liability. IN NO EVENT SHALL SELLER BE LIABLE TO BUYER OR ANY OTHER PARTY FOR ANY INCIDENTIAL, CONSEQUENTIAL OR SPECIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR DOWN TIME) ARISING FROM OR IN MANNER CONNECTED WITH THE GOODS, ANY BREACH BY SELLER OR ITS AGENTS OF THIS AGREEMENT, OR ANY OTHER CAUSE WHATSOEVER, WHETHER BASED ON CONTRACT, TORT OR ANY OTHER THEORY OF LIABILITY. BUYER'S REMEDY WITH RESPECT TO ANY CLAIM ARISING UNDER THIS AGREEMENT IS STRICTLY LIMITED TO NO MORE THAN THE AMOUNT PAID BY THE BUYER FOR THE GOODS.



**Force Majeure.** Seller shall not be responsible for any delay in the delivery of, or failure to deliver, Goods due to causes beyond Seller's reasonable control including, without limitation, acts of God, acts of war or terrorism, enemy actions, hostilities, strikes, labor difficulties, embargoes, non-delivery or late delivery of materials, parts and equipment or transportation delays not caused by the fault of Seller, delays caused by civil authorities, governmental regulations or orders, fire, lightening, natural disasters or any other cause beyond Seller's reasonable control. In the event of any such delay, performance will be postponed by such length of time as may be reasonably necessary to compensate for the delay.

**Installation.** If Buyer purchases any Goods that require installation, Buyer shall, at its expense, make all arrangements and connections necessary to install and operate the Goods. Buyer shall install the Goods in accordance with any Seller instructions and shall indemnify Seller against any and all damages, demands, suits, causes of action, claims and expenses (including actual attorneys' fees and costs) arising directly or indirectly out of Buyer's failure to properly install the Goods.

**Work By Others; Safety Devices.** Unless agreed to in writing by Seller, Seller has no responsibility for labor or work performed by Buyer or others, of any nature, relating to design, manufacture, fabrication, use, installation or provision of Goods. Buyer is solely responsible for furnishing and requiring its employees and customers to use all safety devices, guards and safe operating procedures required by law and/or as set forth in manuals and instruction sheets furnished by Seller. Buyer is responsible for consulting all operator manuals, ANSI or comparable safety standards, OSHA regulations and other sources of safety standards and regulations applicable to the use and operation of the Goods.

**Remedies.** Each of the rights and remedies of Seller under this Agreement is cumulative and in addition to any other or further remedies provided under this Agreement or at law or equity.

Attorney's Fees. In the event legal action is necessary to recover monies due from Buyer or to enforce any provision of this Agreement, Buyer shall be liable to Seller for all costs and expenses associated therewith, including Seller's actual attorney fees and costs.

**Governing Law/Venue.** This Agreement shall be construed and governed under the laws of the State of Wisconsin, without application of conflict of law principles. Each party agrees that all actions or proceedings arising out of or in connection with this Agreement shall be commenced, tried, and litigated only in the state courts sitting in Manitowoc County, Wisconsin or the U.S. Federal Court for the Eastern District of Wisconsin. Each party waives any right it may have to assert the doctrine of "forum non conveniens" or to object to venue to the extent that any proceeding is brought in accordance with this section. Each party consents to and waives any objection to the exercise of personal jurisdiction over it by courts described in this section. Each party waives to the fullest extent permitted by applicable law the right to a trial by jury.

#### Summary of Return Policy.

- 10 Day acceptance period from date of delivery. Damage claims and order discrepancies will not be accepted after this time.
- You must obtain a Baileigh issued RGA number PRIOR to returning any materials.
- Returned materials must be received at Baileigh in new condition and in original packaging.
- Altered items are not eligible for return.
- Buyer is responsible for all shipping charges.
- A 30% re-stocking fee applies to all returns.

Baileigh Industrial Holdings LLC makes every effort to ensure that our posted specifications, images, pricing and product availability are as correct and timely as possible. We apologize for any discrepancies that may occur. Baileigh Industrial Holdings LLC reserves the right to make any and all changes deemed necessary in the course of business including but not limited to pricing, product specifications, quantities, and product availability.

#### For Customer Service & Technical Support:

Please contact one of our knowledgeable Sales and Service team members at: (920) 684-4990 or e-mail us at <u>sales@baileigh.com</u>



# INTRODUCTION

The quality and reliability of the components assembled on a Baileigh Industrial Holdings LLC machine guarantee near perfect functioning, free from problems, even under the most demanding working conditions. However, if a situation arises, refer to the manual first. If a solution cannot be found, contact the distributor where you purchased our product. Make sure you have the serial number and production year of the machine (stamped on the nameplate). For replacement parts refer to the assembly numbers on the parts list drawings.

Our technical staff will do their best to help you get your machine back in working order.

#### In this manual you will find: (when applicable)

- Safety procedures
- Correct installation guidelines
- Description of the functional parts of the machine
- Capacity charts
- Setup and start-up instructions
- Machine operation
- Scheduled maintenance
- Parts lists

### **GENERAL NOTES**

After receiving your equipment remove the protective container. Do a complete visual inspection, and if damage is noted, **photograph it for insurance claims** and contact your carrier at once, requesting inspection. Also contact Baileigh Industrial Holdings LLC and inform them of the unexpected occurrence. Temporarily suspend installation.

Take necessary precautions while loading / unloading or moving the machine to avoid any injuries.

Your machine is designed and manufactured to work smoothly and efficiently. Following proper maintenance instructions will help ensure this. Try and use original spare parts, whenever possible, and most importantly; **DO NOT** overload the machine or make any modifications.



Note: This symbol refers to useful information throughout the manual.



# IMPORTANT PLEASE READ THIS OPERATORS MANUAL CAREFULLY

It contains important safety information, instructions, and necessary operating procedures. The continual observance of these procedures will help increase your production and extend the life of the equipment.



# SAFETY INSTRUCTIONS

Δ

LEARN TO RECOGNIZE SAFETY INFORMATION

This is the safety alert symbol. When you see this symbol on your machine or in this manual, <u>BE ALERT TO THE</u> <u>POTENTIAL FOR PERSONAL INJURY!</u>



Follow recommended precautions and safe operating practices.

#### UNDERSTAND SIGNAL WORDS

A signal word – **DANGER**, **WARNING**, or **CAUTION** – is used with the safety alert symbol. **NOTICE**, which is not related to personal injury, is used without a symbol.

**DANGER**: Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

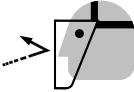
**WARNING**: Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

**CAUTION**: Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

**NOTICE**: Indicates a situation which, if not avoided, could result in property damage.






#### SAVE THESE INSTRUCTIONS. Refer to them often and use them to instruct others.



### PROTECT EYES

Wear safety glasses or suitable eye protection when working on or around machinery.



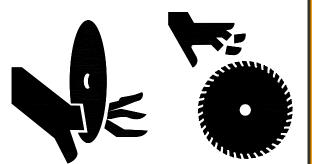




# PROTECT AGAINST NOISE

Prolonged exposure to loud noise can cause impairment or loss of hearing. Wear suitable hearing protective devices such as earmuffs or earplugs to protect against objectionable or uncomfortable loud noises.




# DUST HAZARD

Wear appropriate dust mask. Dust created while using machinery can cause cancer, birth defects, and long-term respiratory damage. Be aware of the dust hazards associated with all types of materials.



# **ROTATING BLADE HAZARD**

Moving saw blade may result in loss of fingers or limb. <u>DO NOT</u> operate with guard removed. <u>Follow lockout/tagout procedures before</u> <u>servicing.</u>





### **EMERGENCY STOP BUTTON**

In the event of incorrect operation or dangerous conditions, the machine can be stopped immediately by pressing the <u>E-STOP</u> button. Twist the emergency stop button clockwise (cw) to reset. Note: Resetting the E-Stop will not start the machine.







# SAFETY PRECAUTIONS

Metal working can be dangerous if safe and proper operating procedures are not followed. As with all machinery, there are certain hazards involved with the operation of the product. Using the machine with respect and caution will considerably lessen the possibility of personal injury. However, if normal safety precautions are overlooked or ignored, personal injury to the operator may result.

Safety equipment such as guards, hold-downs, safety glasses, dust masks and hearing protection can reduce your potential for injury. But even the best guard will not make up for poor judgment, carelessness or inattention. <u>Always use common sense</u> and exercise <u>caution</u> in the workshop. If a procedure feels dangerous, don't try it.

REMEMBER: Your personal safety is your responsibility.

### WARNING: FAILURE TO FOLLOW THESE RULES MAY RESULT IN SERIOUS PERSONAL INJURY

# **Dear Valued Customer:**

- All Baileigh machines should be used only for their intended use.
- Baileigh does not recommend or endorse making any modifications or alterations to a Baileigh machine. Modifications or alterations to a machine may pose a substantial risk of injury to the operator or others and may do substantial damage to the machine.
- Any modifications or alterations to a Baileigh machine will invalidate the machine's warranty.

#### PLEASE ENJOY YOUR BAILEIGH MACHINE! .... PLEASE ENJOY IT SAFELY!

- 1. FOR YOUR OWN SAFETY, READ INSTRUCTION MANUAL BEFORE OPERATING THE MACHINE. Learn the machine's application and limitations as well as the specific hazards.
- 2. Only trained and qualified personnel can operate this machine.
- 3. Make sure guards are in place and in proper working order before operating machinery.
- 4. **Remove any adjusting tools.** Before operating the machine, make sure any adjusting tools have been removed.
- 5. Keep work area clean. Cluttered areas invite injuries.
- 6. **Overloading machine.** By overloading the machine you may cause injury from flying parts. **DO NOT** exceed the specified machine capacities.



- 7. Dressing material edges. Always chamfer and deburr all sharp edges.
- 8. **Do not force tool.** Your machine will do a better and safer job if used as intended. **DO NOT** use inappropriate attachments in an attempt to exceed the machines rated capacity.
- Use the right tool for the job. DO NOT attempt to force a small tool or attachment to do the work of a large industrial tool. DO NOT use a tool for a purpose for which it was not intended.
- 10. **Dress appropriate. DO NOT** wear loose fitting clothing or jewelry as they can be caught in moving machine parts. Protective clothing and steel toe shoes are recommended when using machinery. Wear a restrictive hair covering to contain long hair.
- 11. **Use eye and ear protection**. Always wear ISO approved impact safety goggles. Wear a full-face shield if you are producing metal filings.
- 12. **Do not overreach**. Maintain proper footing and balance at all times. **DO NOT** reach over or across a running machine.
- 13. **Stay alert**. Watch what you are doing and use common sense. **DO NOT** operate any tool or machine when you are tired.
- 14. Check for damaged parts. Before using any tool or machine, carefully check any part that appears damaged. Check for alignment and binding of moving parts that may affect proper machine operation.
- 15. Observe work area conditions. DO NOT use machines or power tools in damp or wet locations. Do not expose to rain. Keep work area well lighted. DO NOT use electrically powered tools in the presence of flammable gases or liquids.
- 16. **Blade adjustments and maintenance**. Always keep blades sharp and properly adjusted for optimum performance.
- 17. Keep visitors a safe distance from the work area.
- 18. **Keep children away**. Children must never be allowed in the work area. **DO NOT** let them handle machines, tools, or extension cords.
- 19. **Store idle equipment**. When not in use, tools must be stored in a dry location to inhibit rust. Always lock up tools and keep them out of reach of children.
- 20. **DO NOT operate machine if under the influence of alcohol or drugs**. Read warning labels on prescriptions. If there is any doubt, **DO NOT** operate the machine.
- 21. **Do not** cut where the atmosphere might contain flammable dust, gas, or liquid vapors such as from gasoline.
- 22. DO NOT touch live electrical components or parts.
- 23. Turn off power before checking, cleaning, or replacing any parts.
- 24. Be sure **all** equipment is properly installed and grounded according to national, state, and local codes.



- 25. Keep **all** cords dry, free from grease and oil, and protected from sparks and hot metal.
- 26. Inspect power and control cables periodically. Replace if damaged or bare wires are exposed. <u>Bare wiring can kill!</u>
- 27. DO NOT bypass or defeat any safety interlock systems.
- 28. Always check that the work piece is securely clamped and that long pieces are properly supported.
- 29. DO NOT use a saw blade size that is outside the limits of the machines specifications.
- 30. Immediately release the start / run trigger button if the saw blade should get stuck in a cut. Press the red power off switch and remove the yellow lock key before raising the machine head. Then open the vise and remove the work piece. Check the blade teeth for damage. If any of the teeth are broken or missing replace the saw blade.
- 31. The operator should stand in front of the machine using a single hand to grip the feed handle.
- 32. A proper break-in period for the cold saw is recommended. Intervals of 30 minutes to be repeated two or three times, after which the cold saw may be used continuously.





# **TECHNICAL SPECIFICATIONS**

| Blade Diameter Max. (Customer<br>Supplied, must match work material) | 10" (254mm)                            |
|----------------------------------------------------------------------|----------------------------------------|
| Arbor Size                                                           | 1.26" (32mm)                           |
| Blade Speed                                                          | 54rpm                                  |
| Head Style                                                           | Pivot                                  |
| Operation                                                            | Manual                                 |
| Head Miter                                                           | 45° Left / 45° Right                   |
| Vice Style                                                           | Single Action with Cam Lock            |
| Maximum Vice Opening                                                 | 4" (101mm)                             |
| Power                                                                | 110V, 60hz                             |
| Main Motor                                                           | 1hp (.75kw) 110V, 60hz, 31A            |
| Coolant Pump                                                         | 1/8hp (93w) 110V, 60hz, 1.2A           |
| Coolant Tank                                                         | 2.1qt (2L)                             |
| Shipping Weight                                                      | 425lbs (193kg)                         |
| Shipping Dimensions                                                  | 60" x 44" x 48" (1524 x 1118 x 1220mm) |

#### **Cutting Capacities:**

|       | Solid Bars |               |             | Tubing     |               |             |  |
|-------|------------|---------------|-------------|------------|---------------|-------------|--|
| Angle |            |               |             | $\bigcirc$ |               |             |  |
| 90°   | 1.2"       | 2.5" x 2.5"   | 3.5" x 2"   | 2.5"       | 2.5" x 2.5"   | 3.5" x 2"   |  |
|       | (30.5mm)   | (63.5x63.5mm) | (90 x 51mm) | (65mm)     | (63.5x63.5mm) | (90 x 51mm) |  |
| 45°   | 1.2"       | 2.2" x 2.2"   | 2.4" x 2"   | 2.5"       | 2.2" x 2.2"   | 2.4" x 2"   |  |
|       | (30.5mm)   | (56 x 56mm)   | (61 x 51mm) | (65mm)     | (56 x 56mm)   | (61 x 51mm) |  |

### **TECHNICAL SUPPORT**

Our technical support department can be reached at 920.684.4990 and asking for the support desk for purchased machines. Tech Support handles questions on machine setup, schematics, warranty issues, and individual parts needs: (other than die sets and blades). For specific application needs or future machine purchases contact the Sales Department at: sales@baileigh.com, Phone: 920.684.4990, or Fax: 920.684.3944.



**Note**: The photos and illustrations used in this manual are representative only and may not depict the actual color, labeling or accessories and may be intended to illustrate technique only.

**Note:** The specifications and dimensions presented here are subject to change without prior notice due to improvements of our products.



# **UNPACKING AND CHECKING CONTENTS**

Your Baileigh machine is shipped complete in two boxes on one pallet. Separate all parts from the packing material and check each item carefully. Make certain all items are accounted for before discarding any packing material.

Α WARNING: SUFFOCATION HAZARD! Immediately discard any plastic bags and packing materials to eliminate choking and suffocation hazards to children and animals.

If any parts are missing, DO NOT place the machine into service until the missing parts are obtained and installed correctly.

#### **Cleaning**

WARNING: DO NOT USE gasoline or other petroleum products to clean the machine. They have low flash points and can explode or cause fire.

**CAUTION:** When using cleaning solvents work in a well-ventilated area. Many cleaning solvents are toxic if inhaled.

Your machine may be shipped with a rustproof waxy coating and/or grease on the exposed unpainted metal surfaces. Fully and completely remove this protective coating using a degreaser or solvent cleaner. Moving items will need to be moved along their travel path to allow for cleaning the entire surface. For a more thorough cleaning, some parts will occasionally have to be removed. DO NOT USE acetone or brake cleaner as they may damage painted surfaces.

Follow manufacturer's label instructions when using any type of cleaning product. After cleaning, wipe unpainted metal surfaces with a light coating of quality oil or grease for protection.

Important: This waxy coating is NOT a lubricant and will cause the machine to stick and lose performance as the coating continues to dry.







Two Person Lift. Use an assistant or lifting devise (preferred) to support the weight of the saw body. Do not lift alone.

Separate all parts from the packing material and check each item carefully. Make certain all items are accounted for before discarding any packing material.

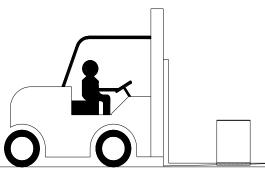




|      |      |   | d Assembly<br>(ref.)                    |
|------|------|---|-----------------------------------------|
|      | 5, 6 | 2 |                                         |
| 5, 6 |      |   | 3, 4                                    |
|      |      |   | e @ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |

| Hardware with Stand |                       |      |  |  |  |  |
|---------------------|-----------------------|------|--|--|--|--|
| Item                | Description           | Qty. |  |  |  |  |
| 1                   | Socket Bolt M8 x 35mm | 4    |  |  |  |  |
| 2                   | Rubber Washer         | 4    |  |  |  |  |
| 3                   | Hex Bolt M10 x 40mm   | 4    |  |  |  |  |
| 4                   | Hex Nut M10           | 4    |  |  |  |  |
| 5                   | Hex Bolt M10 x 20mm   | 12   |  |  |  |  |
| 6                   | Flat washer M10       | 12   |  |  |  |  |






# TRANSPORTING AND LIFTING

**NOTICE:** Lifting and carrying operations should be carried out by skilled workers, such as a truck operator, crane operator, etc. If a crane is used to lift the machine, attach the lifting chain carefully, making sure the machine is well balanced.

#### Follow these guidelines when lifting with truck or trolley:

- The lift truck must be able to lift at least 1.5 2 times the machines gross weight.
- Make sure the machine is balanced. While transporting, avoid rough or jerky motion, and maintain a safe clearance zone around the transport area.
- Use a forklift with sufficient lifting capacity and forks that are long enough to reach the complete width of the machine.



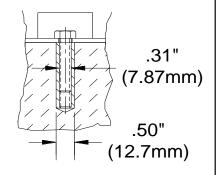
- Remove the securing bolts that attach the machine to the pallet.
- Approaching the machine from the side, lift the machine on the frame taking care that there are no cables or pipes in the area of the forks.
- Move the machine to the required position and lower gently to the floor.
- Level the machine so that all the supporting feet are taking the weight of the machine and no rocking is taking place.

### **INSTALLATION**

### **IMPORTANT:**

Consider the following when looking for a suitable location to place the machine:

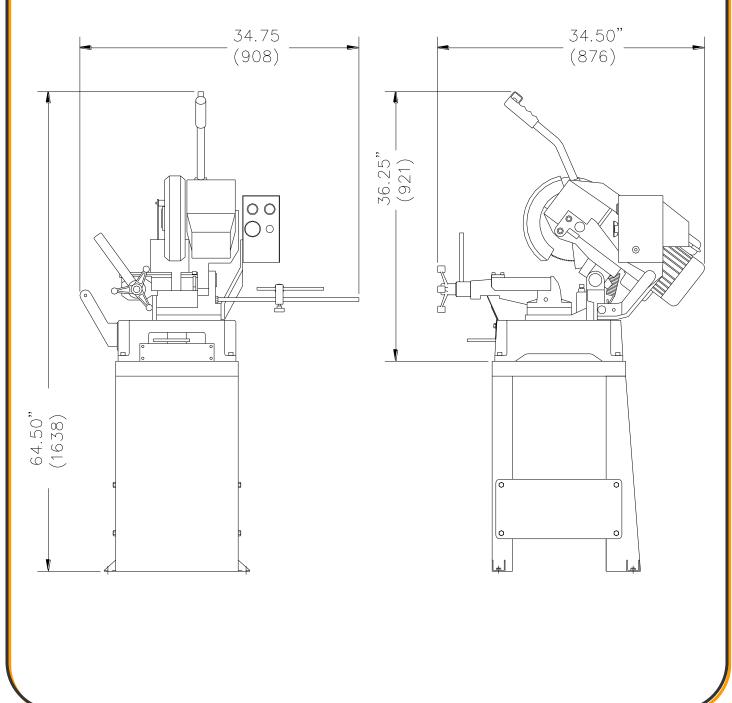
- Overall weight of the machine.
- Weight of material being processed.
- Sizes of material to be processed through the machine.
- Space needed for auxiliary stands, worktables, or other machinery.
- Clearance from walls and other obstacles.
- Maintain an adequate working area around the machine for safety.
- Have the work area well illuminated with proper lighting.
- Keep the floor free of oil and make sure it is not slippery.




- Remove scrap and waste materials regularly, and make sure the work area is free from obstructing objects.
- If long lengths of material are to be fed into the machine, make sure that they will not extend into any aisles.
- LEVELING: The machine should be sited on a level, concrete floor. Provisions for securing it should be in position prior to placing the machine. The accuracy of any machine depends on the precise placement of it to the mounting surface.
- **FLOOR:** This machine distributes a large amount of weight over a small area. Make certain that the floor is capable of supporting the weight of the machine, work stock, and the operator. The floor should also be a level surface. If the unit wobbles or rocks once in place, be sure to eliminate by using shims.
- **WORKING CLEARANCES:** Take into consideration the size of the material to be processed. Make sure that you allow enough space for you to operate the machine freely.
- **POWER SUPPLY PLACEMENT:** The power supply should be located close enough to the machine so that the power cord is not in an area where it would cause a tripping hazard. Be sure to observe all electrical codes if installing new circuits and/or outlets.

#### Anchoring the Machine

This saw can be operated as free standing if; all of the installation points are followed and the saw is solid and will not tip, rock, or move, with or without material loaded or during operation. If it does not meet these criteria, then the saw should be anchored as follows.


- Once positioned, anchor the machine to the floor, as shown in the diagram. Use bolts and expansion plugs or sunken tie rods that connect through and are sized for the holes in the base of the stand.
- This machine requires a solid floor such as concrete at a minimum of 4" (102mm) thick. 6" (153mm) minimum is preferred.





# **OVERALL DIMENSIONS**

Machine Dimensions (when assembled)





# **GETTING TO KNOW YOUR MACHINE**

#### Saw Blade Head Assembly

The section of the machine composed of the saw motor, gear case, blade and blade guard, and feed handle and trigger switch.

#### Feed Handle

A long angled tube with a grip for raising and lowering the disk head and a trigger switch to start and stop the saw motor.

#### Gear Case

The central part of the assembly, housing the gear system. The motor mounts to the back and the output to the blade is to the left side.

#### Blade Guard

The Blade guard has a stationary cover which mounts to the left side of the gear case and a movable part which has linkage connect to it to cause the guard to open and expose the lower part of the blade as the feed handle is pulled downward.

#### Saw Blade

The saw blade is mounted onto the end of the arbor shaft and positioned to be centered within the guard assembly.

#### **Electrical Box**

The electrical box is mounted to the right of the saw blade head assembly and house the electrical control system except for the trigger switch. The function of the switches will be discussed later.

#### Machine Base

A heavy cast iron structure that supports the miter system, vise system, head assembly, and holds the coolant system.







#### <u>Vise</u>

A clamping system that provides the basic support and grip for the work material. A handwheel opens and closes the vise jaws.

From the operators position in front of the saw, the left side of the vise has the jaws to clamp the material. The right side bar provides support to reduce and prevent the material from kicking out at the end of the cut.

#### Material Stop

The material stop to the right side of the vise may be used to set the cut length of the material. This is especially useful for multiple cuts of the same length.



#### Support Roller

The support roller to the left or infeed side of the vise will assist in holding the material on plane with the vise table as well as assist in feeding the material through the vise.

#### <u>Stand</u>

Support structure for the machine head assembly, machine base, vise system, and coolant pump system.





### Coolant Pump

Located within the rear of the machine base is a drawer-like self-contained coolant pump system, and includes a tank, pump, motor, filters, and hose.





# ASSEMBLY AND SET UP

**WARNING:** For your own safety, DO NOT connect the machine to the power source until the machine is completely assembled and you read and understand the entire instruction manual.

#### Prepare the machine for hoisting

1. Using a sling (A), carefully wrap it around the collar of the moveable jaw and motor mount.

#### Place the machine on the top of the stand.

 Using an overhead hoist, lift the machine unit, align and insert the four socket head cap screws M8 x 35 (B) through the saw base, rubber washers and into the threaded inserts in the stand top, while lowering into position.



**NOTE:** Insert and start the threads in all four capscrews before fully lowering the saw onto the stand.

3. Once the capscrews have been started, saw is Secure the machine onto the stand using nuts on the underside of the stand holes.

B



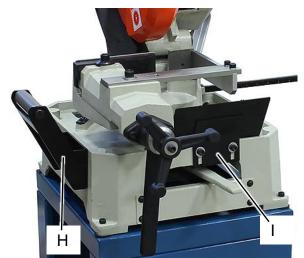
- 4. Remove the strap or cord used to hold the head in the lowered position and allow the head to raise to the up position.
- 5. Remove the oil fill transport plug from gear transfer case. Use a wrench to unscrew an M20x40 hex screw from the oil fill hole (C).

- Attach the feed handle to the head assembly by inserting the threaded end of the feed handle (D) into the gear oil fill hole.
- 7. Turn the handle clockwise (cw) until snug tight.
- 8. Turn the handle back until the trigger switch (E) points up.
- 9. Hold the handle in position and tighten jam nut (F) clockwise (**cw**) to lock the handle in position.



С





- 10. Route the switch cord from the handle over the top of the motor to the motor connector box.
- 11. Locate the socket (G) at the back of the box and plug the connector into the socket and tighten the collar (hand tight) to secure in place.
- 12. Attach the front splash guard and infeed support roller to the base using the capscrews and washers shipped in the mounting holes.
- 13. Remove and retain the M10x25 capscrews and washers from the left side of the saw base.
- 14. Position the support roller (H) up to the machine base and align the 2 slots with the screw holes in the base.
- 15. Using (2) M10 washers and (2) M10x25 socket head cap screws, attach the support roller to the base until the cap screws are snug only. (Do not tighten).
- 16. Place a level across the vise table and the top of the roller. Raise or lower the support roller until it is level.
- 17. Hold the support roller in position and tightening cap screws to secure the support roller.
- 18. Loosen the cap screws and washers at the front of the saw base.
- 19. Slide the splash guard slots (I) down onto the cap screws and behind the washers.
- 20. When fully seated, tighten the cap screws.
- 21. Attach the material stop to the right side of the vise by inserting the threaded end of the long rod into the side of the vise.
- 22. Turn clockwise (**cw**) until snug making sure graduated scale can be easily read.
- 23. Using a wrench, tighten the hex jam nut (J) to hold the rod in position for operation.
- 24. Loosen the jam nut and rotate the stop out of the way and tighten the jam nut again when the stop is not needed.





21







# ELECTRICAL

**CAUTION:** HAVE ELECTRICAL UTILITIES CONNECTED TO MACHINE BY A CERTIFIED ELECTRICIAN!

Check if the available power supply is the same as listed on the machine nameplate.

WARNING: Make sure the grounding wire (green) is properly connected to avoid electric shock. DO NOT switch the position of the green grounding wire if any electrical plug wires are switched during hookup.

#### Power Specifications

Your machine is wired for 110 volts, 60hz alternating current. Before connecting the machine to the power source, make sure the power source is OFF.

Before switching on the power, you must check the voltage and frequency of the power to see if they meet with the requirement, the allowed range for the voltage is  $\pm 5\%$ , and for the frequency is  $\pm 1\%$ .

#### **Considerations**

- Observe local electrical codes when connecting the machine.
- The circuit should be protected with a time delay fuse or circuit breaker with an amperage rating slightly higher than the full load current of machine.
- A separate electrical circuit should be used for your machines. Before connecting the motor to the power line, make sure the switch is in the "OFF" position and be sure that the electric current is of the same characteristics as indicated on the machine.
- All line connections should make good contact. Running on low voltage will damage the motor.
- In the event of a malfunction or breakdown, grounding provides a path of least resistance for electric current to reduce the risk of electric shock. This machine is equipped with an electric cord having an equipment-grounding conductor and a grounding plug. The plug must be plugged into a matching outlet that is properly installed and grounded in accordance with all local codes and ordinances.

WARNING: In all cases, make certain the receptacle in question is properly grounded. If you are not sure, have a qualified electrician check the receptacle.



- Improper connection of the equipment-grounding conductor can result in risk of electric shock. The conductor with insulation having an outer surface that is green with or without yellow stripes is the equipment-grounding conductor. If repair or replacement of the electric cord or plug is necessary, do not connect the equipment-grounding conductor to a live terminal.
- Check with qualified electrician or service personnel if the grounding instructions are not completely understood, or if in doubt as to whether the machine is properly grounded.
- Repair or replace damaged or worn cord immediately.

#### Extension Cord Safety

Extension cord should be in good condition and meet the minimum wire gauge requirements listed below:

|            | LENGTH     |      |       |  |  |  |
|------------|------------|------|-------|--|--|--|
| AMP RATING | 25ft       | 50ft | 100ft |  |  |  |
| 1-12       | 16         | 16   | 14    |  |  |  |
| 13-16      | 14         | 12   | 12    |  |  |  |
| 17-20      | 12         | 12   | 10    |  |  |  |
| 21-30      | 10         | 10   | No    |  |  |  |
|            | WIRE GAUGE |      |       |  |  |  |

An undersized cord decreases line voltage, causing loss of power and overheating. All cords should use a ground wire and plug pin. Replace any damaged cords immediately.

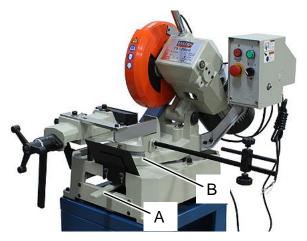
#### Power cord connection:

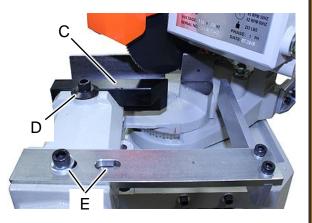
- 1. Turn the main disconnect switch on the control panel to the OFF position.
- 1. Unwrap the power cord and route the cord away from the table toward the power supply.
  - a. Route the power cord so that it will NOT become entangled in the saw, saw blade, or counterbalance assembly in any way.
  - b. Route the cord to the power supply is a way that does NOT create a trip hazard.
- 2. Connect the power cord to the power supply and check that the power cord has not been damaged during installation.
- 3. When the saw blade is clear of any obstruction and raised to the up position, the saw turned ON to test operation. Turn the saw OFF and press the E-Stop button when the saw is not in operation.



# **OPERATION**

**CAUTION:** Always wear proper eye protection with side shields, safety footwear, and leather gloves to protect from burrs and sharp edges. When handling large heavy material make sure they are properly supported.


#### Miter Angle


**CAUTION:** Check that the cutting blade clears all parts of the vise assembly before cutting. The blade can strike parts of the assembly (especially during miter cuts) if not properly adjusted.

- 1. Push the miter lock lever (A) to the left to release the disk head assembly.
- 2. Rotate the disk head assembly to the desired miter angle.
- 3. Use the indicator scale (B) to set the desired cut angle. (Fine tune the angle as needed to get the exact angle.
- 4. Pull the miter lock lever (A) back to the right to lock in the angle. ALWAYS LOCK THE LEVER BEFORE CUTTING.
- 5. Adjust the vise clamping jaw (C) to allow for the blade to clear the vise without contacting the jaw.

*Important:* Never allow the saw to cut into the vise jaws.

- Loosen the clamping bolt (D) and slide the jaw left or right as needed to clear the saw blade. The jaw should be between 0.25" and 0.5" (6 – 13mm) with out contacting the saw blade.
- Adjust the clamping support to the right side of the blade by loosening and the mounting bolt and sliding the support within the slots (E) or when





needed, changing the slots. If absolutely necessary, the clamping support may be removed.

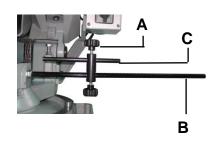


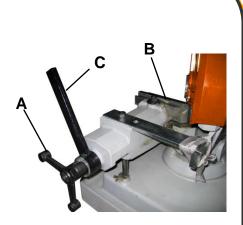
### Vise Operation

- 1. Use the hand wheel (A) to open and close the vise jaw (B) for pieces that vary in width.
  - a. Counter clockwise (ccw) to open jaws
  - b. Clockwise (cw) to close jaws
- 2. Use the vise release lever (Z) to quickly clamp and unclamp pieces of the same width. The release lever is a 1/2 turn lever, from straight up (loosen) to straight down (clamped).
  - a. Clockwise (cw) to clamp the piece
  - b. Counter clockwise (ccw) to unclamp the piece

#### Loading the Piece Part

- 1. Use the vise hand-wheel to open the jaws wider than the width of the piece.
- 2. Measure and mark off the length of material to be cut.
- 3. Place the piece on the flat surface in between the vise jaws.
- 4. Slide the piece through the jaws so the scribed length mark lines up with the blade or disk.
- 5. Push the piece up against the back vise jaw.
- 6. Turn the hand-wheel clockwise (cw) to clamp the piece.


If repetitive cuts are required for material of the same width:


- 1. Turn the vise hand-wheel clockwise (**cw**) to approach the piece part, leaving approximately 3/16" (5mm) gap between front jaw and the piece part.
- 2. Then use the vise lock lever to clamp and unclamp the piece.

#### Setting Cut Length

Setting the cut length eliminates measuring duplicate pieces. 1. Measure and mark the length of material to be cut off.

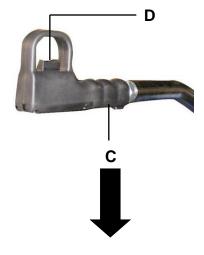
- 2. Load the piece part.
- 3. Line up the cut.
- 4. Clamp the piece part.
- 5. Loosen the hex nut at the base of the bar riser (A).
- 6. Slide the bar riser (A) along the long rod (B) so that the tip of stop bar (C) touches the end of the piece part.
- 7. Tighten the hex nut at the base of the bar riser (A).







### Using the stop bar


- 1. Cut off the first length from the clamped piece part.
- 2. Unclamp the piece part.
- 3. Slide the piece part forward until it reaches the tip of the stop bar (C).
- 4. Clamp the piece part.
- 5. Proceed with the cutting cycle.

### **Cutting Operation Cycle**

- 1. Set the miter cut angle.
- 2. Open the vise jaws.
- 3. Load and clamp the piece part.
- 4. Adjust the bar stop for cutting length.
- 5. Press button (A) to turn power on to the saw. (Green light will be lit).
- 6. Set the coolant switch (B) to on.
- 7. Grasp the feed handle (C).
- 8. Press the trigger switch (D) to start blade motor.
- 9. Pull down the feed handle (C) applying a steady and constant pressure.
- 10. After cut-off, raise feed handle slowly.
- 11. Release the trigger switch (D) to stop the blade motor.
- 12. Use vise lever to open the jaws.
- 13. Remove or advance the piece part forward for next cut.
- 14. To turn off machine power press the stop button (E)
- 15. To stop machine in an emergency situation, press the EMERGENCY STOP button (F).
- 16. Before restarting machine, emergency stop button must be reset with a clockwise (cw) twist.

**NOTICE:** Do not allow the saw to slam back up to the start position. Doing so will cause damage to the pivot block and the weight of the motor will cause damage to the gear case adaptor over time.







#### Metal Chip Indicators

Chips are the best indicator of correct material feed force. Monitor chip information and adjust feed accordingly.

- Thin or Powdered Chips increase feed rate or reduce saw speed
- Burned Chips reduce feed rate and / or saw speed
- Curly Silvery and Warm Chips optimum feed rate and saw speed

The Baileigh cold saw is now ready to start work. For quality cutting and machine performance always use the correct type of blade or disk and recommended cutting speeds. To extend the life of a new blade or disk, the first two or three cuts must be made while exerting a slight pressure on the piece part. This will double the normal cutting time.

### CHOOSING A SAW BLADE

**Note:** The saw blade included with this cold saw is a general-purpose blade. It is considered a starter blade and is intended to allow for the saw to make cut as soon as it is safely set up and ready for operation.

While this blade will cut many material profiles, the best cutting results will be achieved using a blade which is chosen to match the material to be cut.

To achieve a quality, economical, and efficient saw cut, the following points must be taken into consideration:

- Type of material being cut (ferrous or non-ferrous)
- Material hardness and physical dimensions
- Blade descent rate
- Rotational speed of blade
- Blade tooth profile

Choose a tooth pitch that is suitable for the workpiece. Thin walled profiles, including tubes and pipes require close toothing. At least 3-6 teeth should be in contact with the material while cutting. Large solid or transverse sections require widely spaced toothing to allow for greater volume of chips and better tooth penetration. Soft materials such as plastics, light alloys, mild bronze, Teflon, wood, etc., require widely spaced toothing to avoid clogging.



#### **General Characteristics**

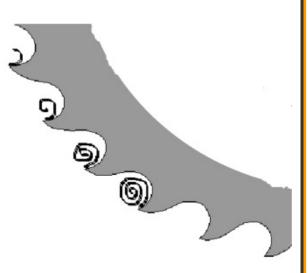
Fine Tooth Pitch – used for thin wall materials such as sheet steel, tubes and profiles. Coarse Tooth Pitch – used for large cross-sections, and for soft materials (aluminum alloys and soft alloys in general).

#### **Determining Proper Tooth Pitch**

Proper tooth pitch depends on:

The size of the section.

The hardness of the material.


Wall thickness.

Solid sections call for blades with a coarse tooth pitch, while small cross-sections require blades with finer teeth.

When cutting walls of small cross-section 0.039" – 0.275" (1–7mm) profiles, it is important that the number of teeth actually making the cut should be at least 3 teeth. Otherwise the effect obtained will be one of tearing rather than of chip removal, leading to a large increase in shearing stress.

When cutting thick materials or solid sections using an excessively fine tooth pitch, the chip collects as a spiral inside the gullet, and since fine tooth pitches have small gullets, the accumulated chip will exceed the gullet capacity and press against the walls of the workpieces, resulting in poor cutting (same situation with soft materials), greater shearing stress and hence breakage of the blade.

A larger pitch should be chosen when the shape of the piece to be cut has a cross-section at any given point which exceeds the average cross-section.



| Choice of tooth pitch T as a function of cross-section to be<br>cut for light alloy solid pieces and profiles |         |                    |         |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------|---------|--------------------|---------|--|--|--|--|--|--|
|                                                                                                               |         |                    |         |  |  |  |  |  |  |
| S in mm.                                                                                                      | Pitch T | S and sp<br>in mm. | Pitch T |  |  |  |  |  |  |
| 10                                                                                                            | 6       | 10 sp=0.5          | 3-4     |  |  |  |  |  |  |
| 30                                                                                                            | 8       | 30 sp=1.5          | 4-5     |  |  |  |  |  |  |
| 50                                                                                                            | 10      | 50 sp=2.5          | 6-7     |  |  |  |  |  |  |
| 70                                                                                                            | 12      | 70 sp=3.5          | 8-9     |  |  |  |  |  |  |
| 90                                                                                                            | 14      | 90 sp=4.5          | 8-9     |  |  |  |  |  |  |
| 130                                                                                                           | 18      | 130 sp=6.5         | 10      |  |  |  |  |  |  |

KEY:

s = diameter or width of the solid piece to be cut in mm. sp = thickness of the wall to be cut in mm. T = tooth pitch in mm.

### **Cutting and Feeding Speed**

The cutting speed and the head feeding speed are limited by the amount of heat generated near to the points of the teeth. If the head feeding speed is too high, the cut will not be straight in either the vertical or the horizontal plane.

The cutting speed depends on the strength (kg/mm2) and hardness (HRC) of the material and the dimensions of the thickest section.

The feeding speed depends on the cross-section of the material. Solid or thick-walled materials (thickness>5mm) can therefore be cut at high speed providing there is sufficient swarf removal by the blade, while thin-walled materials such as tubes or thin profiles must be cut with a low feeding speed.



#### Breaking in a Saw Blade

*Important:* A new blade requires a break- in period, during which time about half the normal feeding speed should be used.

Sharp cutting edges with extremely small edge radii are required for high cutting capacity. To achieve the optimal tool life we recommend breaking-in the blade accordingly. The correct cutting speed is determined by the material being cut and its dimensions. It is very important that the new blade is first used with only 50% of the determined feed rate. This will avoid microbreakages of the blade because of too large chip thicknesses. New saw blades may tend toward vibrations and vibration sounds. In this case a slight reduction of the cutting speed (feed rate if the saw is a single rpm machine) is helpful. With small workpiece dimensions approximately 300cm<sup>2</sup> of the material should be cut for breaking-in. If large work piece dimensions are to be cut we recommend a breaking-in period of about 15 minutes. After breaking-in you may slowly increase the feed rate up to the determined value.

#### Coolant

The cooling fluid ensures that the blade teeth and material in the area of the cut do not overheat. The fluid must be an excellent lubricant so as to prevent abrasion of the teeth and welding of the chips to the teeth (seizing).

#### Blade structure

For non-ferrous metals, it is common to use circular saws with a brazed hard metal HM cutting edge, consisting of a disc made of alloy tool steel (71Cr1) on which the shape of the teeth and the seats for the cutting edges are made of Widia K10. These saws have shown excellent wear resistance but low resistance to impact, which is in any case a minor problem with nonferrous materials.

#### CHEMICAL COMPOSITION:

|   | Blade body          | с    | Cr   | Mn   | Мо | v | Co | HRC    |
|---|---------------------|------|------|------|----|---|----|--------|
|   | steel type<br>71Cr1 | 0,71 | 0,20 | 0,40 | -  | - | -  |        |
| ڊ |                     | ÷    | ÷    | ÷    | ÷  | ÷ | ÷  | 43+/-1 |
|   | 11011               | 0,78 | 0,30 | 0,70 | -  | - | -  |        |

#### Types of blades

In addition to the size and pitch of the teeth, the blades also have different geometric characteristics in accordance with their particular use:

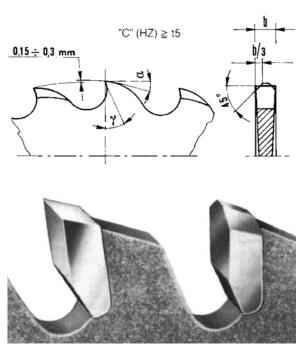
tooth cutting angle – may be negative or positive

tooth sharpening – may be BW with an alternate raked tooth or C with a roughing tooth raked on both sides and a non-raked finishing tooth

tooth pitch – the distance between the crest of one tooth and the crest of the next tooth (tooth pitch = T)



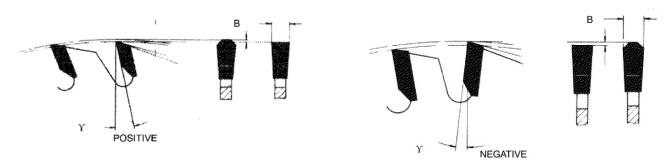
#### Teeth shape "C" TYPE SHARPENING (HZ)


Coarse toothing with roughing tooth raked on both sides and non-raked finishing tooth. The roughing tooth is about 0.3 mm higher.

Coarse toothing with roughing tooth and finishing tooth. Used in saws with pitch greater than or equal to 5 mm for cutting ferrous and non-ferrous materials with solid or solid-profiled sections.

#### <u>"BW" TYPE SHARPENING DIN 1838--UNI 4014</u>

Coarse toothing with teeth alternately raked to the right and left.

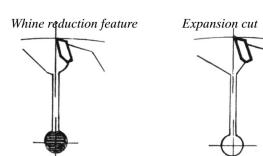

Toothing generally used on cut-off machines for cutting ferrous and alloy materials with tubular and profiled sections.



#### POSITIVE AND NEGATIVE CUTTING ANGLES

The cutting angle may vary from positive to negative depending on the cutting speed, the profile and the type of material to be cut.

A positive angle determines better penetration of the tool and hence lower shear stress and greater ease of sliding for the swarf over the cutting edge. On the other hand, the cutting edge has lower mechanical resistance, so that as the breaking load of the material to be cut increases, the cutting angle decreases from positive until it becomes negative, thus offering a cutting edge with a larger resistant section.




Short swarf material such as brass, bronze, aluminum and hard cast iron require smaller cutting angles because the swarf becomes crushed immediately and the rake angle has little effect during the cutting stage.



The cold saws use discs with positive cutting angles for cutting solid materials and with negative cutting angles for cutting hollow profiles. This is because, as a result of the high cutting speeds, even with non-ferrous materials the tool "strikes" against the wall of the profile to be cut several times, thus requiring a cutting edge with a larger resistant section.

Circular saws can also be characterized by other parameters such as the whine reduction feature, which cuts down noise at high speeds, or expansion, which compensates for the pushing of chips inside the cutting edge, thus reducing the thrust on the walls of the material to be cut.



Use the chart on the following page to help select the saw blade suitable for your application. Baileigh Industrial offers a wide selection of tooth styles for various cutting applications. Please phone Baileigh Industrial at (920.684.4990) to have one of our technicians assist you in selecting the proper cold saw blades for your cutting applications.



# **BLADE SELECTION CHART**

| Tube     | Wall       |          |                | Blade Diam    | eter-Metric (N | ormal Inch)   |           |             |
|----------|------------|----------|----------------|---------------|----------------|---------------|-----------|-------------|
| Diameter | Thickness  | 225 (9") | 250 (10")      | 275 (10-3/4") | 300 (12")      | 315 (12-1/2") | 350 (14") | 401.0 (16") |
| 1/2"     | .030"090"  | 220BW    | 240 BW         | 280 BW        | 300BW          | 300BW         | 320 BW    | 340 BW      |
| 1/2"     | .090"150"  | 200BW    | 220 BW         | 240 BW        | 280BW          | 280BW         | 300 BW    | 320 BW      |
| 1"       | .030"060"  | 220BW    | 240 BW         | 280 BW        | 300BW          | 300BW         | 320 BW    | 340 BW      |
| 1"       | .060"090"  | 220BW    | 220 BW         | 240BW         | 280BW          | 280BW         | 300 BW    | 320 BW      |
| 1"       | .090"150"  | 180BW    | 220 BW         | 220 BW        | 240BW          | 240BW         | 280 BW    | 300 BW      |
| 1-1/2"   | .030"060"  | 220BW    | 240 BW         | 260 BW        | 300BW          | 300BW         | 320 BW    | 340 BW      |
| 1-1/2"   | .060"090"  | 200BW    | 220 BW         | 240 BW        | 280BW          | 280BW         | 300 BW    | 320 BW      |
| 1-1/2"   | .090"150"  | 180BW    | 200 BW         | 220 BW        | 240BW          | 240BW         | 280 BW    | 300 BW      |
| 1-1/2"   | .150"250"  | 140C     | 160 C          | 180C          | 200C           | 220C          | 220C      | 240 BW      |
| 2"       | .030"060"  | 240BW    | 260 BW         | 280 BW        | 300BW          | 300BW         | 320 B W   | 340 BW      |
| 2"       | .060"090"  | 180BW    | 200 BW         | 220 BW        | 240BW          | 240BW         | 280 BW    | 320 BW      |
| 2"       | .090"180"  | 140C     | 160 C          | 180C          | 220C           | 220C          | 220C      | 300 BW      |
| 2"       | .180"300"  | 120C     | 140C           | 160C          | 180C           | 180C          | 200C      | 240 BW      |
| 2"       | .300"500"  | 100C     | 110C           | 120C          | 140C           | 140C          | 160C      | 180C        |
| 2-1/2"   | .030"060"  | 240BW    | 260 BW         | 280 BW        | 300BW          | 300BW         | 320 BW    | 340 BW      |
| 2-1/2"   | .060"090"  | 200BW    | 220 BW         | 240 BW        | 260BW          | 260BW         | 280 BW    | 300 BW      |
| 2-1/2"   | .090"150"  | 180BW    | 180 C          | 180C          | 2000           | 2000          | 220C      | 240 BW      |
| 2-1/2"   | .150"250"  | 120C     | 140 C          | 160C          | 180C           | 180C          | 200C      | 220 C       |
| 2-1/2"   | .250"400"  | 100C     | 110C           | 120C          | 140C           | 140C          | 160C      | 180 C       |
| 2-1/2"   | .400".500" | 90 C     | 100 C          | 110C          | 120C           | 120C          | 140C      | 160 C       |
| 3"       | .030"060"  |          |                | 280 BW        | 300BW          | 300BW         | 320 BW    | 340 BW      |
| 3"       | .060"090"  |          |                | 240 BW        | 260BW          | 260BW         | 280 BW    | 300 BW      |
| 3"       | .090"150"  |          |                | 180C          | 2000           | 2000          | 2200      | 240 BW      |
| 3"       | .150".250" |          |                | 160C          | 180C           | 180C          | 2000      | 220 C       |
| 3"       | .150"250"  |          |                | 1200          | 140C           | 140C          | 160C      | 180 C       |
| 3"       | .250"400"  |          |                | 100C          | 120C           | 120C          | 140C      | 160 C       |
| 3-1/2"   | .030"060"  |          |                |               | 300BW          | 300BW         | 320 BW    | 340 BVV     |
| 3-1/2"   | .060"090"  |          |                |               | 260BW          | 260BW         | 280 B W   | 300 BW      |
| 3-1/2"   | .090"150"  |          |                |               | 200C           | 2000          | 2200      | 240 BVV     |
| 3-1/2"   | .150".250" |          |                |               | 180C           | 180C          | 2000      | 220 C       |
| 3-1/2"   | .150"250"  |          |                |               | 140C           | 140C          | 160C      | 180 C       |
| 3-1/2"   | .250"400"  |          | d Talath V 4 0 |               | 120C           | 120C          | 140C      | 160 C       |

For Stainless Steel: Recommended Teeth X 1.2 approx. For Non-Ferrous Materials: Recommended Teeth X .75 Approx

| SOLID         |          | Blade Diameter- Metric (Normal Inch) |               |           |               |           |             |  |  |  |  |  |
|---------------|----------|--------------------------------------|---------------|-----------|---------------|-----------|-------------|--|--|--|--|--|
| Diameter      | 225 (9") | 250 (10")                            | 275 (10-3/4") | 300 (12") | 315 (12-1/2") | 350 (14") | 401.0 (16") |  |  |  |  |  |
| 1/4"-3/4"     | 180BW    | 180C                                 | 200 C         | 220 BW    | 220BW         | 280BW     | 320 BW      |  |  |  |  |  |
| 3/4"-1-1/4"   | 120C     | 1200                                 | 140C          | 180C      | 180C          | 220BW     | 240BW       |  |  |  |  |  |
| 1-1/4"-1-3/4" | 100C     | 1000                                 | 120 C         | 140C      | 140C          | 180C      | 200C        |  |  |  |  |  |
| 1-3/4"-2-1/4" | 80 C     | 80 C                                 | 100 C         | 120C      | 120C          | 120C      | 140C        |  |  |  |  |  |
| 2-1/4"-2-3/4" | 60 C     | 60 C                                 | 70C           | 80C       | 80 C          | 80 C      | 90C         |  |  |  |  |  |
| 2-3/4"-3-1/2" |          |                                      |               | 60C       | 60 C          | 60 C      | 80C         |  |  |  |  |  |

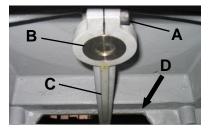


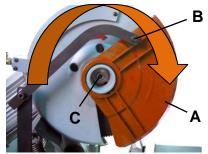
# MACHINE ADJUSTMENTS

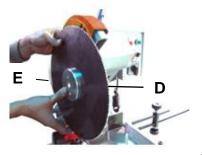
#### **WARNING:** BEFORE PERFORMING THE FOLLOWING OPERATIONS, THE ELECTRIC POWER SUPPLY AND THE POWER CABLE MUST BE COMPLETELY DISCONNECTED.

#### Adjustment of Saw Blade Head

If excessive axial play is found on the pivot hinge, it will be necessary to tighten the screws.


NOTE: Do not overtighten.


#### Adjusting the Mitering Lock Lever

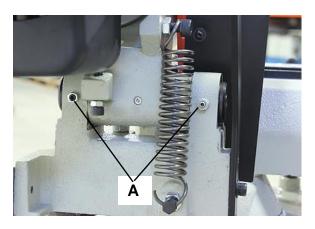

- The lock lever may require adjustment when the lever contacts the machine base and fails to lock the machine head at required angle. To re-adjust lever:
- 2. Loosen bolt (A).
- 3. Support the bushing (B) so that it does not drop.
- 4. Pivot lever (C) to unlock side (D) to allow more range of motion.
- 5. Re-tighten bolt (A).

#### Changing the Saw Blade

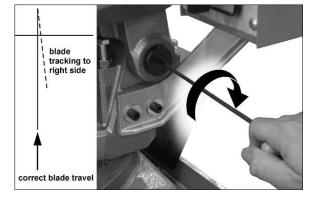
- 1. To change the saw blade:
- 2. Release and pivot the mobile guard (A) by removing the hex socket screw (B).
- 3. Place a block of wood into the vise.
- 4. Lower the machine head to rest the saw blade on the block of wood.
- 5. Using a hex wrench, remove the lock bolt (C) in a clockwise (cw) direction. (It has a left handed thread).
- 6. Remove the blade (D) and blade washer (E) from the spindle.
- 7. Remove the blade washer from the saw blade (D).
- 8. Place washer (E) onto the replacement blade and follow above procedure in reverse.
- 9. Check for proper blade rotation.



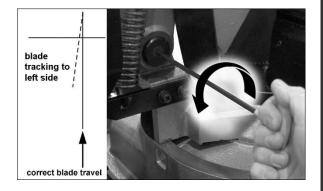








### Blade tracking adjustment

The head pivot shaft is supported by eccentric bushings. If blade tracks off center resulting in crooked cuts, adjust as follows.


1. Loosen two set screws (A) from rear of head pivot with 4mm hex wrench.



2. If blade tracks to right side (viewed from front of machine), rotate right socket screw (under the electrical box) clockwise with 5mm hex wrench.



- 3. If blade tracks to left side, rotate left socket screw counterclockwise.
- 4. Tighten set screws (A) and operate saw to verify correctness of adjustment.





# LUBRICATION AND MAINTENANCE

**WARNING:** Make sure the electrical disconnect is <u>OFF</u> before working on the machine.

Maintenance should be performed on a regular basis by qualified personnel. Always follow proper safety precautions when working on or around any machinery.

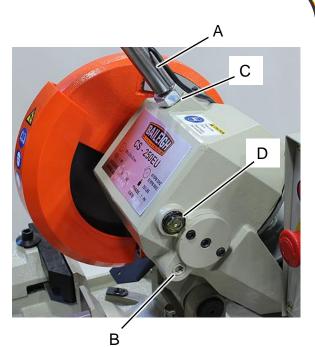
#### **Daily Maintenance**

- Check daily for any unsafe conditions and fix immediately.
- Check that all nuts and bolts are properly tightened.
- Do a general cleaning by removing dust and metal chips from the machine.
- Top off the coolant tank. (80% of full tank capacity)
- Inspect the disk/saw blade for wear.
- Check that the blade guard, shields, and emergency stops are in good working order.
- When through using machine, raise the head to reduce stress on the return spring.

#### Weekly Maintenance

- Clean the machine including the coolant tank and the area around it.
- Lubricate threaded components and sliding devices.
- Clean and grease the vise screw and sliding surfaces.
- Clean the guard housing for the disk/saw blade.
- Apply rust inhibitive lubricant to all non-painted surfaces.
- Sharpen the saw teeth.

#### Monthly Maintenance

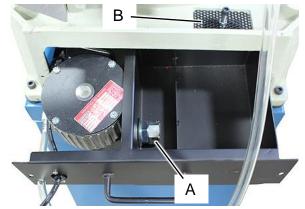

- Thoroughly clean the machine including the coolant tank.
- Check that all screws on the motor, the pump, the vise jaws, and the guard are tight and secure.
- Check that the saw guard is operating properly.
- Use an EP90 or similar oil to lubricate the saw head pivot and the saw miter pivot.



## Yearly Maintenance

Change the oil in the gear case as follows:

- 1. Lower the saw head to the horizontal (down) position.
- 2. Disconnect the trigger cord from the electrical box and unscrew the feed handle (A) from the gear case.
- 3. Place a container under the drain hole (B) and remove the drain plug allowing the oil to drain.
- 4. Install the drain plug.
- 5. Raise the head to the up position.
- Fill the gear case with oil through the feed handle mounting hole (C) to the top of the sight gauge (D).
- 7. Install the feed handle and connect the trigger cord to the electrical box connector.




## <u>Oil Disposal</u>

• Used oil products must be disposed of in a proper manner following local regulations.

### Accessing and Cleaning the Coolant System

- 1. Provide support for the coolant tray to rest on when it is removed from the saw base.
- 2. Remove the two socket head cap screws and remove the coolant tray from the machine stand.
- 3. Pour out the coolant from the tray.
- 4. Wash out the dirt and debris.
- 5. Remove and clean the filter (A). Replace if needed.
- 6. Replace tray and secure with two socket head cap screws.



7. Re-fill tray with coolant solution by pouring coolant through the chip strainer (B).



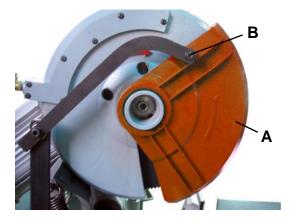
### **Oils for Lubricating Coolant**

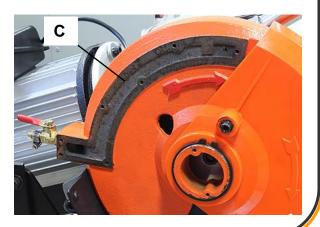
Any 10:1 (water to coolant) solution will work, however we recommend Baileigh B-Cool 20:1 (water to coolant) biodegradable metal cutting fluid. It has excellent cooling and heat transfer characteristics, is non-flammable, and extends blade and machine life. Each gallon of concentrate makes 21 gallons of coolant.

### Storing Machine for Extended Period of Time

If the Cold Saw is to be inactive for a long period of time, prepare the machine as follows:

- Detach the plug from the electrical supply panel.
- Release the head return spring.
- Empty and clean the coolant tank.
- Clean and grease the machine.
- Cover the machine





Note: Proper maintenance can increase the life expectancy of your machine.

### **Cleaning Coolant Path**

Once a year or if the coolant flow is reduced, remove the channel covers and clean the coolant flow paths.

- 1. Disconnect power to the saw.
- 2. To change the saw blade:
- 3. Release and pivot the mobile guard (A) by removing the hex socket screw (B).
- 4. Remove the screws, covers, and gaskets from each side of the saw guard.
- 5. Clean the coolant path (C) to remove all debris.
- Install the gasket and cover and secure with the screws. If the gasket has been damage, an RTV type seal may be used, however do not allow sealant to get into the coolant flow path.
- 7. When complete, connect the mobile guard pivot arm.

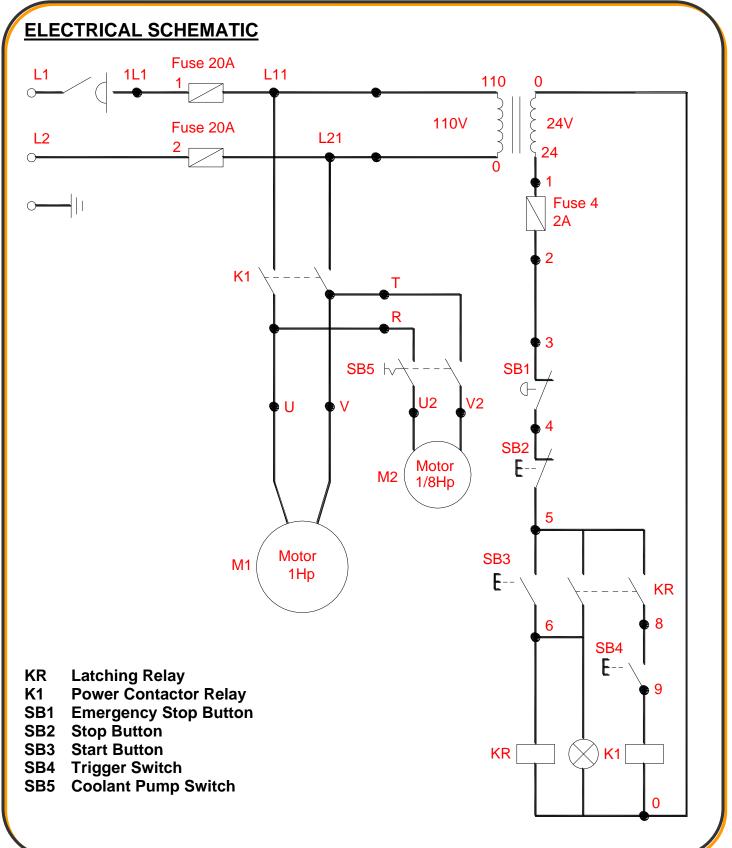






## LUBRICATION OIL TABLE 1 Above 82°F (Select from the products listed below)

| Brand | Hydraulic Tank Oil  | Gear Oil               | Slideway Oil           |
|-------|---------------------|------------------------|------------------------|
| Mobil | DTE XL 68, DTE 16M  | Mobilgear 634, SHC 460 | Mobil Vactra Oil No. 4 |
| Shell | Shell Tellus Oil 68 | Shell Omala Oil 460    | Shell Tonna Oil T220   |
| Exxon | Nuto H 68           | Spartan EP 460         | Febis K220             |

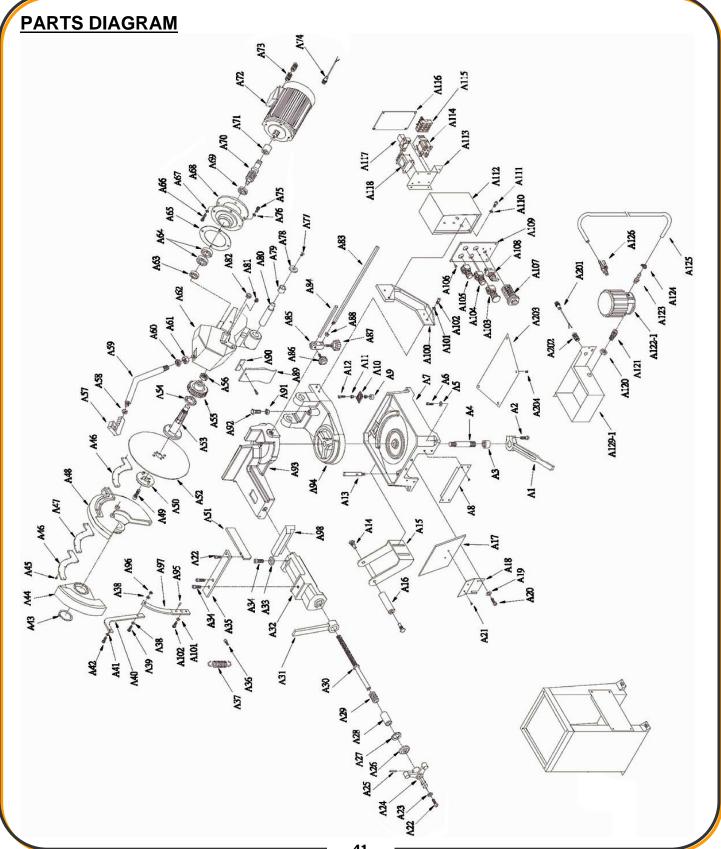

| Brand | Hydraulic Cylinder Oil | Air Lube System     | Grease Fittings   |
|-------|------------------------|---------------------|-------------------|
| Mobil | DTE 21                 | DTE 21              | Mobil UX2 EPO     |
| Shell | Shell Carnea Oil 10    | Shell Carnea Oil 10 | Aluania Greaser 1 |
| Exxon | Spinesso 10            | Spinesso 10         | Ronex MP Beacon 2 |

## LUBRICATION OIL TABLE 2 Below 82°F (Select from the products listed below)

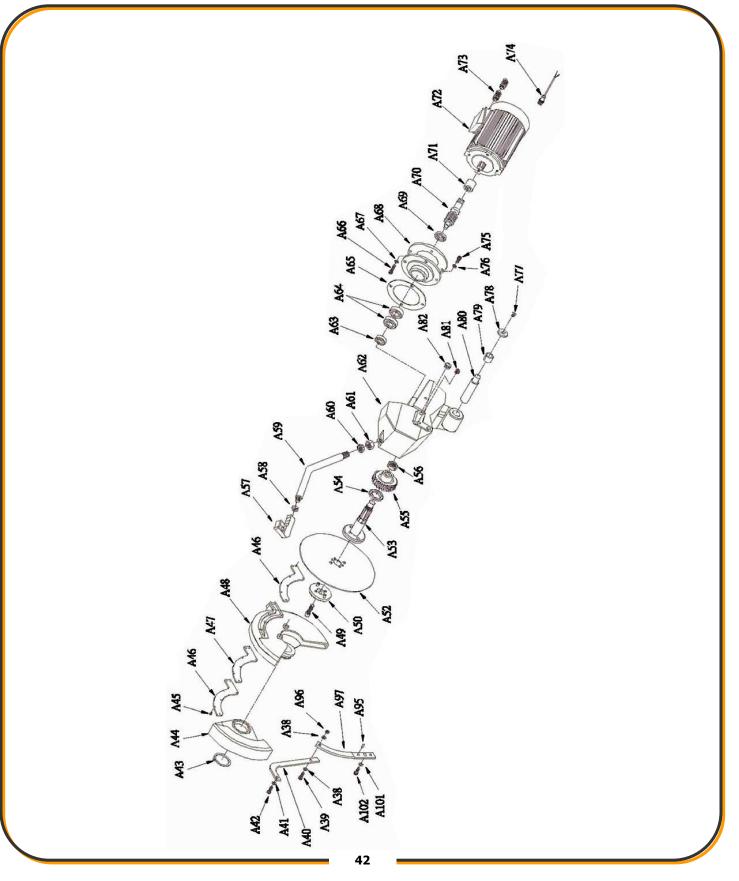
| Brand | Hydraulic Tank Oil  | Gear Oil               | Slideway Oil           |
|-------|---------------------|------------------------|------------------------|
| Mobil | DTE XL 46, SHC 525  | Mobilgear 630, SHC 220 | Mobil Vactra Oil No. 4 |
| Shell | Shell Tellus Oil 46 | Shell Omala Oil 220    | Shell Tonna Oil T220   |
| Exxon | Nuto H 46           | Spartan EP 220         | Febis K220             |

| Brand | Hydraulic Cylinder Oil | Air Lube System     | Grease Fittings   |
|-------|------------------------|---------------------|-------------------|
| Mobil | DTE 21                 | DTE 21              | Mobil UX2 EPO     |
| Shell | Shell Carnea Oil 10    | Shell Carnea Oil 10 | Aluania Greaser 1 |
| Exxon | Spinesso 10            | Spinesso 10         | Ronex MP Beacon 2 |

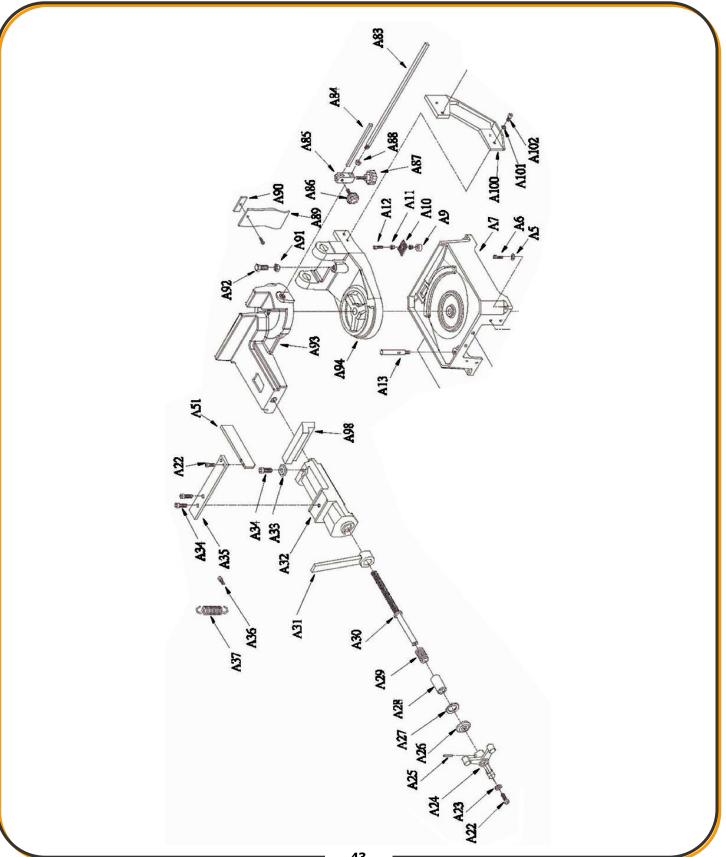




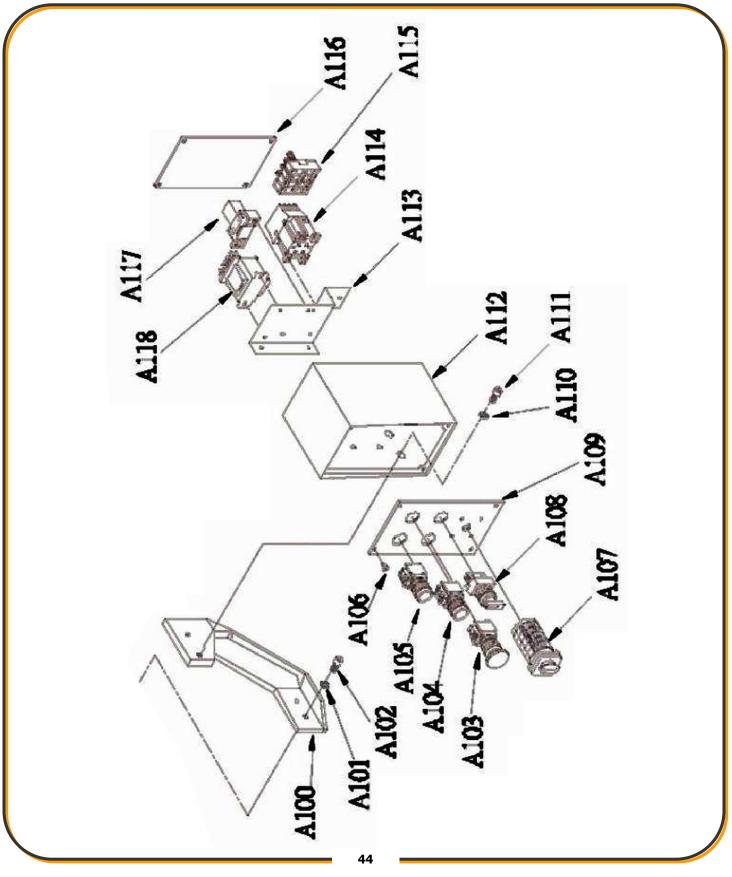




# Electrical Parts List

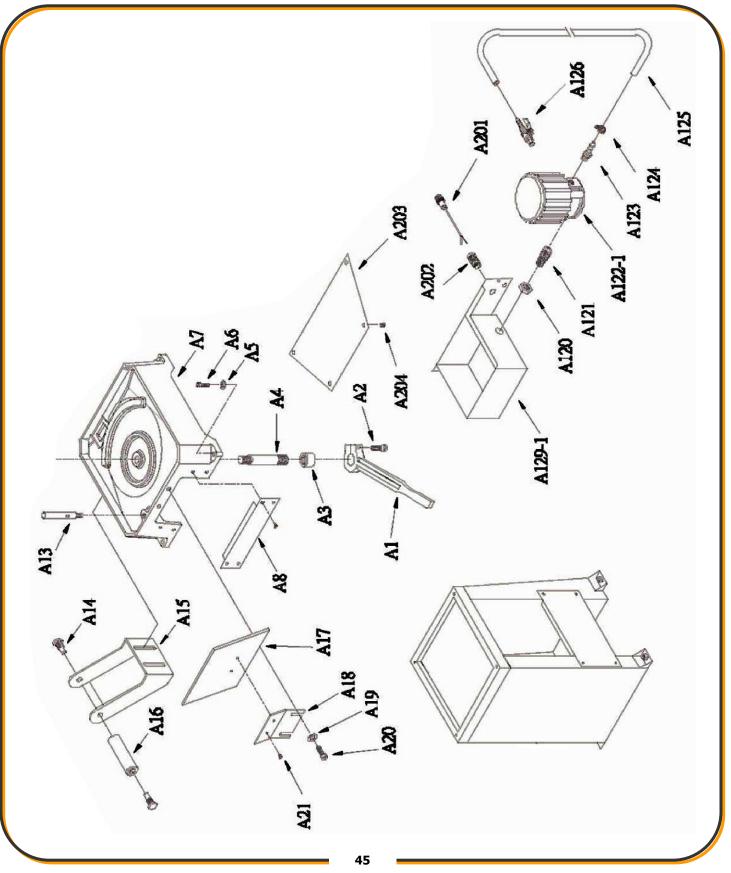
| Item              | Description and Function   | Technical Data                                                 | Qty.        |
|-------------------|----------------------------|----------------------------------------------------------------|-------------|
| FU1<br>FU2<br>FU4 | Fuses                      | 20A, 10x38 100KA<br>20A, 10x38 100KA<br>2A Gg 10.3x38          | 1<br>1<br>1 |
|                   | Fuse Base                  | 32A 10 x 38 2P<br>32A 10 x 38 1P                               | 1<br>1      |
| K1                | Contactor                  | Coil 24V, It = 25A, 220V 2.2kw, 400V<br>4.0kw, NHD C-09D       | 1           |
| KR                | Relay                      | 250 VAC, 5A, MY-2N AC 24V                                      | 1           |
| тс                | Transformer                | 35VA / 110 / 24V                                               | 1           |
| SB1               | Emergency Stop             | 250V 6A, KEDU HY57B                                            | 1           |
| SB2<br>SB3        | Off Button<br>Start Button | 250V 6A 2a<br>ABF-22Ф1b<br>ABLFS-22Ф1a 30V                     | 1<br>1      |
| SB4               | Trigger Switch             | 15A 1/2HP 125/250VAC<br>0.6A 125VDC 0.3A<br>250VDC<br>V-15-1A5 | 1           |
| SB5               | Pump Switch                | 250V<br>GIKOKA OSS-22Ф                                         | 1           |
| MB                | Protector                  | 30A, 250V                                                      | 1           |
| M1                | Motor                      | 110V / 1 HP / 1Ø / 4Pole                                       | 1           |
| M2                | Coolant Pump               | 110V / 1/8HP / 1Ø / 4 Pole                                     | 1           |




















# Parts List

| Item | Description          | Size   | Qty. |
|------|----------------------|--------|------|
| A1   | Lock Handle          |        | 1    |
| A2   | Hex Socket Cap Screw | M10x30 | 1    |
| A3   | Lock Nut             |        | 1    |
| A4   | Shaft                |        | 1    |
| A5   | Spring Washer        | 5/16"  | 4    |
| A6   | Hex Socket Cap Screw | M8x35  | 4    |
| A7   | Machine Base         |        | 1    |
| A8   | Plate                |        | 1    |
| A9   | Counter Weight       |        | 1    |
| A10  | Filter Net           |        | 1    |
| A11  | Nut                  |        | 2    |
| A12  | Hex Socket Cap Screw | M6x25  | 1    |
| A13  | Support Rod          |        | 1    |
| A14  | Roller Shaft         |        | 2    |
| A15  | Roller Bracket       |        | 1    |
| A16  | Roller               |        | 1    |
| A17  | Plate                |        | 1    |
| A18  | Plate                |        | 1    |
| A19  | Washer               | 5/16"  | 2    |
| A20  | Hex Socket Cap Screw | M8x16  | 2    |
| A21  | Screw                | M5     | 2    |
| A22  | Hex Socket Cap Screw | M8x20  | 3    |
| A23  | Washer               | 5/16"  | 1    |
| A24  | Handle Wheel         |        | 1    |
| A25  | Pin                  | 5x40   | 1    |
| A26  | Bearing Cover        |        | 1    |
| A27  | Thrust Bearing       |        | 1    |
| A28  | Bushing              |        | 1    |
| A29  | Spring               |        | 1    |
| A30  | Leading Screw        |        | 1    |
| A31  | Lock Handle          |        | 1    |
| A32  | Sliding Vise         |        | 1    |
| A33  | Washer               |        | 1    |



| Item | Description                | Size    | Qty. |
|------|----------------------------|---------|------|
| A34  | Hex Socket Cap Screw       |         | 2    |
| A35  | Plate                      |         | 1    |
| A36  | Screw                      | M10x30  | 1    |
| A37  | Spring                     |         | 1    |
| A38  | Washer                     | 1/4"    | 2    |
| A39  | Hex Socket Cap Screw       | M6x25   | 1    |
| A40  | Switching Handle           |         | 1    |
| A41  | Washer                     | 1/4"    | 1    |
| A42  | Hex Socket Cap Screw       | M6x12   | 1    |
| A43  | C-Clip                     | S60     | 1    |
| A44  | Blade Shield               |         | 1    |
| A45  | Screw                      | M5x10   | 7    |
| A46  | Plate                      |         | 2    |
| A47  | Rubber Sheet               |         | 2    |
| A48  | Blade Cover                |         | 1    |
| A49  | Hex Socket Cap Screw       | M12x35  | 1    |
| A50  | Fixing Flange              |         | 1    |
| 451  | Stopper                    |         | 1    |
| 452  | Saw Blade                  |         | 1    |
| 453  | Spindle Shaft              |         | 1    |
| A54  | Oil Seal                   | 35x47x8 | 1    |
| A55  | Worm Gear                  |         | 1    |
| A56  | Lock Nut                   |         | 1    |
| A57  | Trigger Switch With Handle |         | 1    |
| A58  | Nut                        | M10     | 1    |
| A59  | Control Handle Rod         |         | 1    |
| A60  | Nut                        | M20     | 1    |
| A61  | Nut                        | M20     | 1    |
| A62  | Machine Head               |         | 1    |
| A63  | Ball Bearing               | 6205zz  | 1    |
| 464  | Ball Bearing               | 6301zz  | 2    |
| A65  | Rubber Sheet               |         | 1    |
| A66  | Hex Cap Screw              | M8x20   | 4    |
| A67  | Washer                     | 5/16"   | 4    |
| A68  | Flange                     |         | 1    |



| tem  | Description                | Size     | Qty. |
|------|----------------------------|----------|------|
| 469  | Oil Seal                   | 25x45x10 | 1    |
| ٩70  | Worm Shaft                 |          | 1    |
| 471  | Coupling                   |          | 1    |
| 472  | Motor 1HP                  |          | 1    |
| 473  | Wire Terminal Clamp        |          | 2    |
| 474  | Control Wire               |          | 1    |
| 475  | Hex Cap Screw              | M8x20    | 4    |
| 476  | Washer                     | 5/16"    | 4    |
| 477  | Screw                      | M8       | 2    |
| 478  | Cover                      |          | 2    |
| 479  | Bushing                    |          | 1    |
| 480  | Shaft                      |          | 1    |
| \81  | Set Screw                  | PT1/4"   | 2    |
| \82  | Oil Pilot                  | 20m/m    | 1    |
| 483  | Lower Length Setting Rod   |          | 1    |
| \84  | Upper Length Setting Rod   |          | 1    |
| \85  | Length Setting Rods Holder |          | 1    |
| 486  | Lock Bolt With Knob        |          | 1    |
| \87  | Lock Bolt With Knob        |          | 1    |
| 488  | Nut                        | M12      | 1    |
| 489  | Anti-Dust Plate            |          | 1    |
| 490  | Holder Plate               |          | 1    |
| \91  | Nut                        | M12      | 1    |
| 492  | Hex Cap Screw              |          | 1    |
| 493  | Vise Bench                 |          | 1    |
| \94  | Swing Arm (Base)           |          | 1    |
| 495  | Pin                        | 5x14     | 2    |
| 496  | Nut                        | M6       | 1    |
| 497  | Switching Supporter        |          | 1    |
| 498  | Vise Clamp                 |          | 1    |
| A100 | Supporter                  |          | 1    |
| A101 | Washer                     | 5/16"    | 2    |
| 102  | Hex Socket Cap Screw       | M8x20    | 2    |
| 103  | Emergency Switch           |          | 1    |
| 104  | Start Button               |          | 1    |



| ltem   | Description              | Size    | Qty. |
|--------|--------------------------|---------|------|
| A105   | Stop Button              |         | 1    |
| A106   | Screw                    | M5      | 4    |
| A107   | Select Switch            |         | 1    |
| A108   | Pump Selection Switch    |         | 1    |
| A109   | Control Panel            |         | 1    |
| A110   | Washer                   | 5/16"   | 2    |
| A111   | Hex Socket Cap Screw     | M8x20   | 2    |
| A112   | Electric Control Box     |         | 1    |
| A113   | Control Box Bottom Plate |         | 1    |
| A114   | Magnetic Contactor       |         | 1    |
| A115   | Fuse Set                 |         | 1    |
| A116   | Cover Plate              |         | 1    |
| A117   | Relay                    |         | 1    |
| A118   | Transformer              |         | 1    |
| A120   | Nut                      | M20x1.5 | 1    |
| A121   | PT Screw                 |         | 1    |
| A122-1 | Coolant Pump             |         | 1    |
| A123   | Connecting Bolt          |         | 1    |
| A124   | Hose Clamp               |         | 2    |
| A125   | Hose                     |         | 1    |
| A126   | Valve                    |         | 1    |
| A129-1 | Coolant Tank             |         | 1    |
| A201   | Control Wire             |         | 1    |
| A202   | Wire Terminal Clamp      |         | 1    |
| A203   | Support Plate            |         | 1    |
| A204   | Hex. Cap Screw           | M6x10   | 4    |



# TROUBLESHOOTING

**WARNING:** Make sure the electrical disconnect is <u>OFF</u> before working on the machine.

### **Blade and Cut Diagnosis**

| FAULT                                     | PROBABLE CAUSE                                                                                                | REMEDY                                                                                                                                                                 |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Wrong tooth pitch.                                                                                            | Choose a suitable disk.                                                                                                                                                |
| DISK VIBRATION                            | Unsuitable tooth profile.                                                                                     | Choose a suitable disk.                                                                                                                                                |
|                                           | Ineffective gripping of the part in the vise.                                                                 | Check the gripping of the part.                                                                                                                                        |
|                                           | Dimensions of the solid section<br>too large with respect to the<br>maximum admissible cutting<br>dimensions. | Abide by the instructions.                                                                                                                                             |
|                                           | Disk diameter incorrect and/or too large.                                                                     | Decrease the disk diameter,<br>adapting it to the dimensions of<br>the part to be cut.                                                                                 |
|                                           | Ineffective gripping of the part in the vise.                                                                 | Check the gripping of the part.                                                                                                                                        |
| RIDGES ON THE<br>CUTTING SURFACE          | Too fast advance.                                                                                             | Decrease advance, exerting less cutting pressure.                                                                                                                      |
|                                           | Disk teeth are worn.                                                                                          | Sharpen the tool.                                                                                                                                                      |
| And a | Insufficient lubricating coolant.                                                                             | Check the level of the liquid in<br>the tank.<br>Increase the flow of lubricating<br>coolant, checking that the hole<br>and the liquid outlet pipe are not<br>blocked. |
|                                           | Teeth do not unload shavings<br>well.                                                                         | Choose a blade with a larger<br>tooth pitch that allows better<br>unloading of shavings and that<br>holds more lubricating coolant.                                    |



| FAULT               | PROBABLE CAUSE                                | REMEDY                                                                                                                                                                 |
|---------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CUT OFF THE         | Too fast advance.                             | Decrease advance, exerting less cutting pressure.                                                                                                                      |
| STRAIGHT            | Ineffective gripping of the part in the vise. | Check the gripping of the part which may be moving sideways.                                                                                                           |
|                     | Disk head off the straight.                   | Adjust the head.                                                                                                                                                       |
|                     | Disk sides differently sharpened.             | Choose proper tool quality, type, and construction characteristics.                                                                                                    |
|                     | Dirt on the gripping device.                  | Carefully clean the laying and contact surfaces.                                                                                                                       |
|                     | Too fast advance.                             | Decrease advance, exerting less cutting pressure.                                                                                                                      |
|                     | Low cutting speed.                            | Increase speed.                                                                                                                                                        |
| BLADE STICKS IN THE | Wrong tooth pitch.                            | Choose a suitable disk.                                                                                                                                                |
| CUT                 | Sticky accumulation of material on the disk.  | Check the blend of lubricating coolant and choose a better-<br>quality disk.                                                                                           |
|                     | Insufficient lubricating refrigerant.         | Check the level of the liquid in<br>the tank.<br>Increase the flow of lubricating<br>coolant, checking that the hole<br>and the liquid outlet pipe are not<br>blocked. |



| FAULT          | PROBABLE CAUSE                                     | REMEDY                                                                                                                                                                 |
|----------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Too fast advance                                   | Decrease advance, exerting less cutting pressure.                                                                                                                      |
|                | Wrong cutting speed                                | Change disk speed and/or diameter.                                                                                                                                     |
|                | Wrong tooth pitch                                  | Choose a suitable disk.                                                                                                                                                |
|                | Low quality disk                                   | Use a better-quality disk.                                                                                                                                             |
| TOOTH BREAKAGE | Ineffective gripping of the part in the vise.      | Check the gripping of the part.                                                                                                                                        |
| And            | Previously broken tooth left in the cut.           | Accurately remove all the parts left in.                                                                                                                               |
|                | Cutting resumed on a groove made previously.       | Make the cut elsewhere, turning the part.                                                                                                                              |
|                | Insufficient lubricating coolant or wrong coolant. | Check the level of the liquid in<br>the tank.<br>Increase the flow of lubricating<br>coolant, checking that the hole<br>and the liquid outlet pipe are not<br>blocked. |
|                | Sticky accumulation of material on the disk.       | Check the blend of lubricating coolant and choose a better-<br>quality disk.                                                                                           |



| FAULT                  | PROBABLE CAUSE                                 | REMEDY                                                                                                                                                                 |
|------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | Wrong running in of the disk.                  | When cutting for the first time<br>run in the tool, making a series<br>of cuts at a low advance speed,<br>spraying the cutting area with<br>lubricating coolant.       |
| PREMATURE DISK<br>WEAR | Wrong cutting speed.                           | Change disk speed and / or diameter.                                                                                                                                   |
| CHIPPED DISK           | Unsuitable tooth profile.                      | Choose a suitable disk.                                                                                                                                                |
|                        | Wrong tooth pitch.                             | Choose a suitable disk.                                                                                                                                                |
|                        | Low quality disk.                              | Use a better-quality disk.                                                                                                                                             |
|                        | Insufficient lubricating refrigerant.          | Check the level of the liquid in<br>the tank.<br>Increase the flow of lubricating<br>coolant, checking that the hole<br>and the liquid outlet pipe are not<br>blocked. |
|                        | Hardness, shape or flaws in the material       | Reduce the cutting pressure and/or the advance.                                                                                                                        |
|                        | Wrong cutting speed.                           | Change disk speed and/or diameter.                                                                                                                                     |
|                        | Wrong tooth pitch.                             | Choose a suitable disk.                                                                                                                                                |
|                        | Vibrations                                     | Check gripping of the part.                                                                                                                                            |
|                        | Disk incorrectly sharpened.                    | Replace the disk with one that is more suitable and correctly sharpened.                                                                                               |
|                        | Low quality disk.                              | Use a better-quality disk.                                                                                                                                             |
|                        | Incorrect emulsion of the lubricating coolant. | Check the percentage of water and oil in the emulsion.                                                                                                                 |



# <u>NOTES</u>



# <u>NOTES</u>



# <u>NOTES</u>



BAILEIGH INDUSTRIAL HOLDINGS LLC 1625 DUFEK DRIVE MANITOWOC, WI 54220 PHONE: 920. 684. 4990 FAX: 920. 684. 3944 www.baileigh.com

BAILEIGH INDUSTRIAL HOLDINGS LTD. UNIT D SWIFT POINT SWIFT VALLEY INDUSTRIAL ESTATE, RUGBY WEST MIDLANDS, CV21 1QH UNITED KINGDOM PHONE: +44 (0)24 7661 9267 FAX: +44 (0)24 7661 9276 WWW.BAILEIGH.CO.UK