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Resistance exercise training (RET) is used to improve muscular strength

and function. This study tested the hypothesis that RET alongside daily

supplementation of a Sphaeranthus indicus and Mangifera indica extract blend

(SMI) would augment bench press (BP) and leg extension (LE) strength and

repetitions to failure (RTF) compared to RET alone. Ninety-nine men (age 22 ± 3)

completed the trial after randomization into one of four groups: (A1) 425 mg

SMI plus one RET set; (A2) 850 mg SMI plus one RET set; (P1) placebo plus

one RET set; and (P2) placebo plus two RET sets. RET sets were 6–8 BP and LE

repetitions at 80% of a progressive one repetition maximum (1-RM), performed

3x/week for 8 weeks. Strength and RTF were evaluated at baseline and days 14,

28, and 56 while serum values of total testosterone (TT), free testosterone (FT),

and cortisol (C) values were evaluated at baseline and day 56. RET significantly

(p < 0.05) increased 1-RM, RTF, and T measures above baselines regardless of

group assignment, but the increases were greater in the supplemented groups.

At week 8, A1 bench pressed more than P1 (71.5.5 ± 17.5 kg vs. 62.0 ± 15.3 kg,

p = 0.003), while A2 pressed 13.8 ± 3.0 kg more (95% CI 5.7–21.8, p < 0.001)

than P1 and 9.9 ± 13.0 kg more (95% CI 1.7–18.2, p = 0.01) than P2. Also at

week 8, the mean LE 1-RM of A1 (159.4 ± 22.6 kg) and A2 (162.2 ± 22.9 kg) was

greater (p < 0.05) than that of P1 (142.2 ± 25.6 kg) and P2 (146.5 ± 19.7 kg).

Supplementation improved RTF, TT, and FT values over those measured in

exercise alone (p < 0.05), while C levels in A2 (9.3 ± 3.8 µg/dL) were lower

than P2 (11.7 ± 3.8 µg/dL, p < 0.05). Daily supplementation with SMI was well

tolerated and may help optimize muscle adaptive responses to RET in men.
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Introduction

Progressive resistance exercise training (RET) is a well-
established exercise method used to boost muscle strength and
improve athletic outcomes (1–3) but it also improves muscularity
and appearance, decreases disability, and supports better overall
health for non-athletes (4–6). Muscle fibers contract against
weighted loads during RET, creating mechanical signals that
converge alongside other intracellular signals onto the cellular
protein kinase mTOR (the mechanistic target of rapamycin) (7),
a metabolic regulator intimately involved in directing the rate
of muscle protein synthesis post-exercise (8, 9). However, RET-
generated mechanical signaling can result in dramatically different
strength outcomes between individuals despite their training being
of similar intensity (10, 11), so those engaged in weight lifting
often manipulate training variables, modify their diet, and/or use
dietary supplements in an attempt to facilitate anabolic responses to
their training efforts. High-protein diets, protein supplements (12–
14), and supplements such as beta-hydroxy beta-methyl butyrate
(HMB) and creatine (15–17) can help optimize post-exercise
muscle protein synthesis. Additionally, safe, conveniently dosed,
plant-based products are increasingly being explored for their
ability to support RET responses.

Aiming to develop a scientifically supported natural product
to impact muscle function, a series of botanical extracts were
screened for their ability to modify key mechanisms involved
in muscle metabolism. Two extracts showing efficacies across
the screening assays were those derived from Sphaeranthus
indicus (East Indian Globe Thistle) flower head and Mangifera
indica (Mango Tree) bark, both preparations that have been
widely used in Indian Ayurvedic medicine to target immune
modulation, analgesia, antioxidant, anxiolytic, anti-inflammatory,
and other activities (18, 19). When tested in a variety of
unpublished in vitro experiments, a specific 2:1 preparation of
S. indicus flower head and M. indica bark extracts consistently
activated mTOR and upregulated muscle-specific transcription
factors, including myogenin and myoD, in skeletal muscle cells,
improved measures of mitochondrial function in myoblasts,
and synergistically enhanced nitric oxide (NO) generation in
endothelial cells. After preclinical validation for dosing and safety
(20), a 650 mg dose of this botanical blend was clinically tested
in a cohort of recreationally active young men participating in
8 weeks of a training regimen incorporating chest/shoulder, back,
leg, and arm exercises. These subjects improved measures of
upper and lower body strength compared to an exercising group
given a placebo, suggesting this extract blend may improve the
processes underlying muscle adaptive responses to RET (21). It
is unknown if a comparable (850 mg) or half-dose (425 mg)
of a water-soluble version of this same 2:1 extract combination
of S. indicus L. flower head and M. indica bark (SMI) may
also modulate those signaling pathways that direct and support
muscle protein synthesis post-RET. In the present study, two doses
(850 and 425 mg) of SMI are investigated for their ability to
augment muscle strength and endurance in RET-naïve, healthy
young men undergoing eight weeks of supervised RET compared
to two exercising placebo groups, one completing an exercise
protocol matching that of the supplemented groups, and one
completing double the number of RET sets. Serum values of Free

Testosterone (FT), total testosterone (TT), and cortisol (C) were
also evaluated in this study.

Materials and methods

Ethics approval and registration

This randomized, double-blind, placebo-controlled study was
conducted at an independent research organization according to
the Declaration of Helsinki in agreement with the International
Conference on Harmonization guidelines on Good Clinical
Practice. The study protocol was approved by the Institutional
Ethics Committee (IEC) of the Vydehi Institute of Medical Sciences
and Research Center (Bengaluru, Karnataka, India) and registered
in the Clinical Trials Registry (CTRI) of India (Registration no.
CTRI/2018/12/016641).

Study participants

Healthy men, 19–29 years, with a body mass index (BMI) of
18.5–29.9 kg/m2, with a normal electrocardiogram, and who were
previously untrained in resistance or power exercise for at least
6 months, were recruited for the study. Men with a history of
alcohol or drug abuse, sleep disorder, eating disorder, or psychiatric
condition, or those needing to fast as a personal practice, were
excluded from the study. Additional exclusions included men who
used protein or had taken any dietary supplements containing
protein, creatine, HMB, or other supplements thought to improve
muscle strength and/or muscle mass, or used corticosteroids,
testosterone, or anabolic drugs in the three months before the
study initiation. Each volunteer was aware of the study protocol
and provided written informed consent before any study-related
procedures were conducted.

Study design

A total of 120 subjects were enrolled and randomized into one
of four equal groups (n = 30) by following the randomization codes
as generated by SAS procedure PROC PLAN using block design:
(A1) 425 mg SMI plus one RET set; (A2) 850 mg SMI plus one
RET set; (P1) placebo plus one RET set; and (P2) placebo plus
two RET sets. This study involved five scheduled visits, screening
(days −14 to −1), randomization/baseline (day 1), and days 14, 28,
and 56. The study products were labeled by randomization code
and dispensed to the participants on study days 1, 14, and 28.
Subjects were instructed to consume two capsules every morning
for 56 days. Compliance with the supplementation regimen was
monitored through daily diary recordings of capsule consumption
and the collection/counting of all unused capsules. All subjects were
provided a training regimen as per their group assignment and
compliance with the training regimen was calculated as the total
number of sessions completed under the supervision of trained
instructors and study personnel per week for 8 weeks. Subjects were
instructed to maintain their habitual dietary intake and physical
activity levels, except for their assigned RET program, during the
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study. Participants completed written 3-day diet records for two
weekdays and one weekend day at pretraining and in the last
week of the training period and these diet records were evaluated
for consistent eating patterns. Adverse events, tolerance, and vital
signs—heart rate, blood pressure, temperature, respiratory rate—
were assessed throughout the study and recorded at each study visit.
Body weights were measured with a standard scale in triplicate to
the nearest 0.1 kg and the average was recorded at each visit. Fasting
blood samples were collected at screening, baseline, and day 56.
Performance testing occurred at baseline and on days 14, 28, and
56. All participants, investigators, and study personnel remained
blinded to treatment assignment for the duration of the study.

Supplementation

The botanical supplement, SMI, is a water-dispersible version
of a formulation containing a blend of extracts from S. indicus
flower heads and M. indica L. stem bark at 50.03% (w/w)
herbal blend and 49.97% (w/w) excipients. The excipients include
dewaxed shellac (33.3%), guar gum (8.33%), citric acid (6.67%),
and colloidal silicon dioxide (1.67%). The final product was
standardized to contain not less than 2.5% 7-hydroxy frullanolide
and 2% mangiferin following methods of preparation and
analytical procedures as previously described for the non-water
dispersible formulation (20). The investigational products and
placebo were manufactured under a strict Good Manufacturing
Process, packaged, and labeled by randomization code by Laila
Nutraceuticals (Vijayawada, India). SMI is commercially available
as Myotor R© and RipFACTORTM from PLT Health Solutions
(Morristown, NJ, USA).

Exercise training program

The two active groups (A1, A2) and one placebo group (P1)
completed the same exercise protocol, whereas the second placebo
group (P2) completed double the number of RET sets. A second
placebo group completing double the number of RET sets was
deployed as a type of positive control, as research supports that an
increased volume of weighted-load training can increase strength
gains in a dose-response relationship (1, 3). Given the potential for
uncaptured differences in individual work efforts within our cohort
of untrained subjects, we leveraged this four-group experimental
design with two exercise-dose comparator groups to help ensure
any measured strength differences between treatment and placebo
could be attributed to treatment effects.

All the volunteers completed RET on three non-consecutive
days per week for 8 weeks under the supervision of a certified
trainer and spotter. At each of the 24 training sessions, the subjects
appropriately warmed up and then completed one set (for groups
A1, A2, and P1) or two sets (group P2) of 6–8 repetitions of both
bench press (BP) and leg extension (LE), at 80% of their most recent
individualized muscle strength score (1-RM) assessment. The 1-
RM, determined for each subject as the heaviest lift completed
within a series of single repetitions of progressively heavier weights
until failure, was assessed at baseline, day 14, and day 28. The
number of repetitions and sets remained constant at each training
session as per the assigned group.

Outcome measures

The primary endpoint was the change in muscle strength, as
measured by 1-RM in BP and LE exercises, from baseline to the
end of the study. Each subject’s 1-RM for BP and LE was summed
to obtain a measure of total muscle strength. Secondary endpoints
were changes in muscle endurance, measured as the number of
repetitions lifted at 80% of the subject’s baseline 1-RM until failure,
and changes in serum concentrations of FT, TT, and C from
baseline to day 56.

Safety parameters, including complete blood cell counts and
blood chemistry— liver function tests, renal function tests,
plasma total cholesterol, low- and high-density lipoprotein
(LDL, HDL) cholesterol, triglycerides, and fasting glucose—were
assessed from fasting blood samples taken at screening and
day 56. Test parameters for urine analysis included specific
gravity, pH, albumin, bile salts, bile pigment, glucose, red blood
cells, and ketones.

Muscle strength (1-RM) assessment

Muscle strength was determined by 1-RM measurements
for BP (Olympic Flat Bench) and LE (StayFit Single Station)
on days 0, 14, 28, and 56. Strength assessments followed the
American Society of Exercise Physiologists’ procedure for accurate
assessment of muscular strength (22) and were done under the
supervision of a certified athletic trainer and spotters. Standardized
instructions were provided on lifting techniques and testing
procedures, standardized weights and bars were utilized, and verbal
encouragement was provided during testing. After an appropriate
whole-body warm-up, subjects performed two practice sets of 6–8
repetitions at approximately 60 and 80% of their estimated 1-RM.
Subsequent lifts were single repetitions of progressively heavier
weights until failure. The 1-RM was determined after three to five
attempts at the heaviest single repetition weight, with a rest interval
of 2–4 min between attempts.

Muscle endurance (repetitions to failure)
assessment

Muscle endurance was measured as repetitions to failure
(RTF). RTF was determined by measuring the maximal number of
repetitions a subject completed when lifting 80% of the established
baseline 1-RM until failure. To assess a fixed measure of relative
muscular endurance, the original baseline 1-RM was always utilized
for muscular endurance testing throughout the study.

Serum hormone assessment

Serum hormones were measured from fasting blood samples
collected by direct vein puncture using standard enzyme
immunoassay (ELISA) kits. The assay procedures for measuring
TT, FT, (DRG International, Inc. Springfield, NJ; TT intra-assay
coefficient of variation [CV] 3.3–4.2%, inter-assay CV 4.7–9.9%,
sensitivity 0.083 ng/ml; FT intra-assay CV < 10%, inter-assay
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CV < 10%, sensitivity 0.06 pg/mL), and C (Cal Biotech Inc.,
El Cajon, CA; sensitivity 20 ng/mL) followed the protocols
provided by the vendor. Each serum sample was tested in
duplicate. The ELISAs were based on the principles of sandwich
immuno-enzymatic reactions. The supplied substrate solutions
developed the color reactions, and a microplate reader (Bio-Rad
Laboratories, Hercules, CA) recorded the absorbance. The analyte
concentrations in the serum samples were calculated from the
standard curves plotted in each assay. The assay variation was
calculated across 4 plates of 5 (FT) or 6 (TT and C) standards, and
the intra- and inter-assay CVs were 0.7 ± 0.4% and 4.7 ± 0.5%
for FT; 1.3 ± 0.6% and 3.8 ± 0.4% for TT; and 1.5 ± 0.9% and
10.7 ± 1.9% for C.

Clinical laboratory and safety parameter
assessment

Urine, serum, and whole blood parameters were assessed in all
participants at the baseline and final visits. Biochemical parameters
were measured using Cobas C 311 (Roche Diagnostics, Rotkreuz,
Switzerland), and hematological parameters were measured using
the auto hematology analyzer Mindray BC-20 (Shenzhen Mindray
Bio-Medical Electronics Co., Ltd, China). Urine analysis was
carried out using standard Siemens Multistix 10 SG reagent strips
and by microscopy of sediment.

Statistical analysis

The data were analyzed using SPSS Software version 29.0 (SPSS,
Inc., Chicago, IL, USA). The normality of the data was assessed
using the Shapiro-Wilk test. Where assumptions were met, data
were analyzed by a 4 × 3 mixed factorial group (A1, A2, P1,
P2) by time (14, 28, 56 days) ANCOVA or a univariate ANOVA
(day 56) with the baseline measurement held as a covariate.
Main effects (time or group) and interaction (time × group)
effects were evaluated after the degrees of freedom were corrected
by Greenhouse-Geisser for sphericity. The calculation of partial
effect size (η2) was used to clarify the magnitude of the main
effects, defined as small, 0.01; medium, 0.06; and large, 0.14.
When the F-ratio was significant for main or interaction effects,
a priori planned pairwise comparisons at each time point were
conducted using paired (intragroup) or unpaired (intergroup)
Student t-tests adjusted for multiple comparisons using the
Bonferroni correction. Data not meeting normality assumptions
were analyzed with non-parametric methods: Friedman repeated
measure ANOVA by rank for within-group effects and Kruskal–
Wallis ANOVA to compare groups at the same time point,
adjusted by Bonferroni correction for multiple tests. Effects were
considered significant at p < 0.05. General characteristics and
descriptive statistics are expressed as mean ± standard deviation
(SD), whereas the estimated marginal means and calculated mean
differences (MD) are presented as means ± standard error of
the measurement (SE) and reported in conjunction with the 95%
confidence interval (CI).

A priori analysis utilizing pilot data determined that a sample
size of at least 18 subjects per group would be required to achieve

80% power to detect a significant difference at 0.05 alpha level. With
an estimated dropout rate of 20–30%, recruitment was determined
at 120 subjects. One hundred and sixty-five participants were
assessed for eligibility, 13 failed screening, and 32 voluntarily
withdrew. After 120 subjects were randomized into 4 equal
groups (n = 30), eighteen subjects dropped out due to scheduling
difficulties before supplementation began, one dropped out during
the training phase because of a non-study-related adverse event,
and two subjects were removed due to protocol deviations. In total,
99 subjects completed the study: A1, n = 26; A2, n = 25; P1, n = 25;
and P2; n = 23. The flow of the study progress is shown in the
consort diagram (Figure 1).

Results

Participant characteristics, adverse
events, safety, and compliance

The four groups were comparable in age, anthropometric
data, and baseline measures of muscle strength, endurance, and
hormones before the treatment began (Table 1). There were no
serious adverse events reported during the study. Eight subjects
experienced minor adverse events which were evenly divided
between placebo and supplement. Specific minor adverse events
in the supplemented groups included two subjects with superficial
limb pain/abrasions due to minor incidents occurring outside the
study, and two with generalized body aches, headache, fever, and
abdominal discomfort. Adverse events within the placebo groups
consisted of one subject with minor symptoms resulting from
a scorpion sting, one with complaints of itching, and two with
generalized body pain, fever, headache, and chills. These adverse
events were self-limiting and resolved fully during the study.
All subjects completed 100% of their assigned training sessions
and daily consumption of study products was > 90%. Written
diet records indicated dietary patterns did not alter from the
beginning to the end of the study, and body weights were stable or
slightly increased (Table 2). Safety parameters and vital signs were
within normal clinical ranges at baseline and the end of the study
(Supplementary Tables 1, 2).

Muscle strength

Analysis of BP strength as measured by 1-RM is presented
in Tables 2, 3. The analysis demonstrated a significant main
effect of time (p = 0.008, η2 = 0.064), group (p < 0.001,
η2 = 0.202), and time × group interaction (p < 0.001, η2 = 0.181).
All groups significantly (p < 0.05) improved BP strength from
their baseline measures (Table 2), but supplementation improved
strength compared to the exercise-only groups. Compared to P1,
A1 lifted 3.3 ± 1.1 kg (95% CI 0.5–6.2, p = 0.012) more on day
14, 5.7 ± 1.8 kg (95% CI 0.7–10.6, p = 0.016) more on day 28,
and 10.6 ± 3.0 kg (95% CI 2.6–18.6, p = 0.003) more on day 56
(Table 3). A2 increased BP strength compared to both P1 and P2.
A2 lifted 6.5 ± 1.9 kg (95% CI 1.5–11.5, p = 0.004) more on day
28, and 13.8 ± 3.0 kg (95% CI 5.7–21.8, p < 0.001) more on day
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FIGURE 1

Consort diagram of participant flow through each stage of study.

56 than P1 (Table 3). A2 bench pressed 5.5 ± 1.9 kg (95% CI 4.1–
10.6, p = 0.027) more on day 28 and 9.9 ± 3.1 kg (95% CI 1.7–18.2,
p = 0.010) more on day 56 than P2 (Table 3). The difference in
BP strength between A1 and A2 was not significant at any time
point. Likewise, P1 and P2 were not statistically different at any time
point.

Analysis of LE strength demonstrated a significant main effect
of time (p < 0.001, η2 = 0.264), group (p < 0.001, η2 = 0.245),
and time × group interaction (p = 0.007, η2 = 0.100). Measured
values and pairwise group comparisons are shown in Tables 2, 3.
All groups significantly (p < 0.05) improved over time in LE
strength from their baseline values (Table 2), but the supplemented
groups lifted more weight than the exercise-only groups. A1’s LE
strength measures were greater than that of P1 at each time point,
with A1 lifting 5.9 ± 1.6 kg (95% CI 1.5–10.3, p = 0.003) more
on day 14, 8.3 ± 1.9 kg (95% CI 3.2–13.3, p < 0.001) more on
day 28, and 8.2 ± 2.2 kg (95% CI 2.4–14.0, p < 0.001) more on
day 56 (Table 3). A1 also improved more than P2 (p < 0.05) on
days 28 and 56 (Table 3). A2, the group supplemented with the
higher amount of SMI, demonstrated significantly (p< 0.05) more
strength compared to P1 at all time points and compared to the
placebo group assigned to double RET sets, P2, on days 28 and 56
(mean difference of 6.9 ± 1.9 kg, 95% CI 1.6–12.1, p = 0.004 and
7.9 ± 2.2 kg, 95% CI 1.9–13.9, p = 0.003, respectively; Table 3).
Measures of LE strength were not statistically different between A1
and A2, nor between P1 and P2 at any time point.

There was a significant main effect of time (p < 0.001,
η2 = 0.129), group (p < 0.001, η2 = 0.322), and time × group

interaction (p < 0.001, η2 = 0.217) for total muscle strength.
Measured values and pairwise group comparisons are illustrated
in Tables 2, 3. Within-group comparisons illustrated that all
groups significantly improved over their baseline values in total
muscle strength (Table 2). Both supplemented groups, A1 and A2,
improved their total muscle strength compared to P1 (p < 0.001)
at all measured time points (Table 3). A1 improved more than
P2 on days 28 (p = 0.003) and 56 (p = 0.018). A2 also improved
(p < 0.001, Table 3) total muscle strength compared to P2 on day
28 (mean difference of 12.3 ± 3.0 kg, 95% CI 4.2–20.4) and day 56
(17.7 ± 4.1 kg, 95% CI 6.6–28.9). Total muscle strength between A1
and A2 and between P1 and P2 were not statistically different at any
time point.

Muscle endurance

All groups demonstrated improved muscular endurance as the
number of BP-RTF and LE-RTF increased over time (p< 0.001 for
each group, Table 4). Non-parametric Kruskal–Wallis analyzed at
each time point illustrated a significant group effect for BP-RTF on
day 28 (p = 0.040) and day 56 (p = 0.003, Table 4). A2 significantly
(p < 0.05) improved BP-RTF compared to P1 on days 28 and 56
and compared to P2 on day 56 (Table 4). For LE-RTF, a treatment
effect trended toward significance on day 28 (p = 0.071) but only
reached significance (p = 0.005) on day 56. Pairwise comparisons
illustrated that both supplemented groups, A1 and A2, improved
LE-RTF compared to P1 (p< 0.05) but not P2 at day 56 (Table 4).
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TABLE 1 Participant characteristics at baseline.

Parameters A1 A2 P1 P2

Age (years) 22.3 ± 2.7 23.2 ± 3.3 23.7 ± 3.0 23.1 ± 3.1

BMI (kg/m2) 23.0 ± 3.2 21.8 ± 3.1 23.8 ± 3.6 23.0 ± 3.7

Total testosterone (ng/dL) 628.2 ± 208.6 633.9 ± 173.9 618.8 ± 137.4 632.5 ± 197.8

Cortisol (µg/dL) 10.2 ± 4.5 10.7 ± 3.6 10.7 ± 2.6 10.6 ± 2.4

Bench press 1-RM (kg) 51.9 ± 10.0 52.5 ± 9.8 53.2 ± 15.3 53.1 ± 10.9

Leg extension 1-RM (kg) 70.4 ± 12.9 68.9 ± 10.5 71.8 ± 11.9 69.4 ± 14.5

Values are means ± standard deviation (SD) of the randomized population at study initiation (n = 30). BMI, body mass index. A1 (SMI-425), A2 (SMI-850), P1 (Placebo-1 set RET), P2
(Placebo-2 sets RET).

TABLE 2 Measures of muscle strength and body weight at baseline, 14, 28, and 56 days of treatment, interaction effects, effect sizes, within-group, and
between-group comparisons.

Parameter Group Evaluation days Time × group
interaction P-value
Partial Effect size

(η2)

Baseline ± SD Day
14 ± SD

Day
28 ± SD

Day
56 ± SD

1-RM bench press (kg) A1 52.1 ± 10.1 58.1 ± 10.7# 64.0 ± 13.3*# 71.5 ± 17.5*# P < 0.001‡

η2 = 0.181 (L)
A2 51.6 ± 8.9 57.0 ± 9.0# 64.4 ± 11.6*#ˆ 74.2 ± 16.3*#ˆ

P1 53.2 ± 15.3 55.8 ± 15.5 59.4 ± 15.2* 62.0 ± 15.3*

P2 53.5 ± 11.0 57.8 ± 11.6 60.7 ± 9.7* 66.1 ± 11.6*

1-RM leg extension (kg) A1 71.0 ± 12.1 80.0 ± 10.2# 84.4 ± 9.4*#ˆ 87.9 ± 8.5*#ˆ P = 0.007‡

η2 = 0.100 (M)
A2 68.6 ± 10.7 77.2 ± 11.4# 83.2 ± 11.2 *#ˆ 88.0 ± 9.2*#ˆ

P1 71.8 ± 11.9 74.8 ± 12.9 76.8 ± 13.5* 80.2 ± 13.7*

P2 69.1 ± 14.8 75.2 ± 14.2 76.7 ± 12.9* 80.4 ± 11.8*

Total muscle strength
(kg)

A1 123.1 ± 20.3 138.1 ± 17.8# 148.5 ± 19.3*#ˆ 159.4 ± 22.6*#ˆ P < 0.001‡

η2 = 0.217 (L)
A2 120.2 ± 17.7 134.2 ± 17.8# 147.6 ± 20.6*#ˆ 162.2 ± 22.9*#ˆ

P1 125.0 ± 24.0 130.6 ± 24.9 136.2 ± 24.9* 142.2 ± 25.6*

P2 122.6 ± 21.4 133.0 ± 22.8 137.4 ± 19.7* 146.5 ± 19.7*

Body weight (kg) A1 65.3 ± 11.8 65.5 ± 11.5 65.6 ± 11.3 65.4 ± 11.1 P = 0.231
η2 = 0.042 (S)

A2 61.7 ± 12.7 61.8 ± 12.4 61.8 ± 12.3 61.9 ± 12.0

P1 67.2 ± 13.8 67.1 ± 13.9 67.3 ± 13.8 67.4 ± 13.8

P2 63.7 ± 11.6 64.1 ± 12.4 64.2 ± 11.5 64.6 ± 11.3

Data presented as mean ± standard deviation of measured values at each time point. Significance is considered p< 0.05 after mixed factorial repeated measure ANCOVA adjusted by baseline
measure as a covariate with Bonferroni correction for multiple comparisons. ‡Indicates significant time × group interaction effect and partial effect size (η2) defined as small, 0.01 (S); moderate,
0.06 (M); and large, 0.14 (L). *Indicates within-group (time) significance on the difference from adjusted baseline mean (day 14), #indicates a significant difference of group adjusted means
compared with P1; ˆ indicates a significant difference of group adjusted means compared with P2. A1 (SMI-425, n = 26), A2 (SMI-850, n = 25), P1 (Placebo-1 set RET, n = 25), P2 (Placebo-2
sets RET, n = 23).

Serum hormones

The baseline and day 56 values of serum hormones are
presented in Table 5. Statistical analysis revealed a significant
main effect of time (p < 0.001, η2 = 0.292) and a significant
time × group interaction effect (p = 0.016, η2 = 0.103) for
FT values. There was also a significant time (p < 0.001,
η2 = 0.193) and time × group interaction effect evident
for serum TT (p = 0.017, η2 = 0.102). Both supplemented
groups (A1, A2) but neither of the exercise-only placebo groups
(P1, P2) significantly (p < 0.05) increased mean FT and

TT values from baseline to day 56 (Table 5). The final FT
and TT values for A1 and A2 were significantly (p < 0.05)
elevated compared to those of P1, but not compared to P2
(Table 5).

Analysis of mean C values demonstrated a significant
time × group interaction effect (p = 0.034, η2 = 0.087; Table 5).
There was not a significant main effect of time nor were there
significant changes from baseline values in any group. However,
the analysis revealed a significant (p< 0.05) difference between A2
and P2, as A2 decreased from measured baseline values while P2
increased.
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TABLE 3 Between-group comparisons of muscle strength mean differences at days 14, 28, and 56 of treatment.

Evaluation day

Day 14 Day 28 Day 56

Parameter Group comparisons Mean
difference ± SE

95% CI P-value Mean
difference ± SE

95% CI P-value Mean
difference ± SE

95% CI P-value

1-RM bench press (kg) A1 P1 3.3 ± 1.1* 0.5, 6.2 0.012 5.7 ± 1.8* 0.7, 10.6 0.016 10.6 ± 3.0* 2.6, 18.6 0.003

P2 1.6 ± 1.1 −0.1, 4.5 0.853 4.7 ± 1.9 −0.4, 9.7 0.087 6.8 ± 3.0 −1.4, 15.0 0.166

A2 P1 2.8 ± 1.1 −0.9, 5.6 0.063 6.5 ± 1.9* 1.5, 11.5 0.004 13.8 ± 3.0* 5.7, 21.8 < 0.001

P2 1.0 ± 1.1 −1.9, 3.9 1.000 5.5 ± 1.9* 4.1, 10.6 0.027 9.9 ± 3.1* 1.7, 18.2 0.010

1-RM leg extension (kg) A1 P1 5.9 ± 1.6* 1.5, 10.3 0.003 8.3 ± 1.9* 3.2, 13.3 < 0.001 8.2 ± 2.2* 2.4, 14.0 < 0.001

P2 3.2 ± 1.7 −1.3, 7.7 0.331 6.3 ± 1.9* 1.1, 11.5 0.009 6.3 ± 2.2* 0.4, 12.2 0.030

A2 P1 5.1 ± 1.6* 0.7, 9.6 0.014 8.9 ± 1.9* 3.7, 14.0 < 0.001 9.8 ± 2.2* 3.9, 15.7 < 0.001

P2 2.4 ± 1.7 −2.1, 6.9 0.893 6.9 ± 1.9* 1.6, 12.1 0.004 7.9 ± 2.2* 1.9, 13.9 0.003

Total muscle strength
(kg)

A1 P1 9.3 ± 2.1* 3.7, 14.8 < 0.001 14.0 ± 2.9* 6.1, 21.8 < 0.001 18.9 ± 4.0* 8.1, 29.7 < 0.001

P2 4.6 ± 2.1 −1.1, 10.3 0.191 10.7 ± 3.0* 2.6, 18.7 0.003 12.5 ± 4.1* 1.5, 23.5 0.018

A2 P1 8.1 ± 2.1* 2.5, 13.7 < 0.001 15.7 ± 3.0* 7.7, 23.6 < 0.001 24.1 ± 4.1* 13.2, 35.1 < 0.001

P2 3.4 ± 2.1 −2.3, 9.2 0.673 12.3 ± 3.0* 4.2, 20.4 < 0.001 17.7 ± 4.1* 6.6, 28.9 < 0.001

Data presented as mean difference, standard error (SE), and 95% confidence interval (CI) of marginal means after mixed factorial repeated measure ANCOVA, adjusted by baseline measure as a covariate, and Bonferroni correction for multiple comparisons. *Indicates
the mean difference between specified groups is significant at p< 0.05. A1 (SMI-425, n = 26), A2 (SMI-850, n = 25), P1 (Placebo-1 set RET, n = 25), P2 (Placebo-2 sets RET, n = 23).
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TABLE 4 Within-group and between-group comparisons of bench press and leg extension repetitions at baseline and days 14, 28, and 56 of treatment.

Parameter Group Evaluation days Friedman’s analysis
statistic χ2 P-value

Baseline Day 14 Day 28 Day 56

Bench press repetitions A1 Mean ± SD 6.7 ± 1.1 9.9 ± 2.6 11.3 ± 2.9 13.4 ± 3.8 p< 0.001‡

Median 6.0 9.0* 10.0* 12.0*

A2 Mean ± SD 6.6 ± 0.8 9.4 ± 1.6 11.5 ± 2.0 13.9 ± 2.2

Median 6.0 9.0 11.0*# 14.0*#ˆ

P1 Mean ± SD 6.6 ± 1.0 8.6 ± 2.2 10.1 ± 2.6 11.3 ± 2.9

Median 6.0 8.0 10.0* 12.0*

P2 Mean ± SD 6.6 ± 1.0 8.6 ± 1.4 9.9 ± 1.8 11.4 ± 2.0

Median 7.0 9.0 10.0* 12.0*

Kruskal–Wallis Test (H) P-value 0.998 0.141 0.040‡ 0.003‡

Leg extension repetitions A1 Mean ± SD 7.4 ± 0.6 11.1 ± 2.3 12.6 ± 2.3 15.0 ± 2.0 p< 0.001‡

Median 7.5 10.5* 12.0* 15.0*#

A2 Mean ± SD 6.8 ± 1.0 10.2 ± 2.1 12.8 ± 2.4 15.1 ± 3.2

Median 7.0 10.0 13.0* 15.0*#

P1 Mean ± SD 7.4 ± 1.3 9.7 ± 2.4 11.2 ± 2.6 12.4 ± 2.9

Median 7.0 9.0 12.0* 13.0*

P2 Mean ± SD 7.2 ± 1.1 10.0 ± 1.7 11.7 ± 1.9 13.3 ± 2.0

Median 7.0 10.0* 12.0* 14.0*

Kruskal–Wallis test (H) P-value 0.055 0.102 0.071 0.005‡

Data presented as mean ± standard deviation (SD) and median values. Significance is considered p< 0.05 after Friedman repeated measure ANOVA by ranks analysis (for time) and Kruskal–
Wallis ANOVA analysis (for group) adjusted by Bonferroni correction for multiple comparisons. ‡Indicates significant main effect. *Indicates within group significance (vs. baseline), #indicates
significance compared with P1; ˆindicates significance compared with P2; A1 (SMI-425, n = 26), A2 (SMI-850, n = 25), P1 (Placebo-1 set RET, n = 25), P2 (Placebo-2 sets RET, n = 23).

TABLE 5 Measured serum concentrations of hormones before and after 56 days of treatment, effects, effect sizes, within-group, and
between-group comparisons.

Evaluation days Time × group interaction P-value
Partial effect size = η2

Baseline Day 56

Free testosterone (ng/dL) A1 2.13 ± 0.88 2.79 ± 0.80*# P = 0.016‡

η2 = 0.103 (M)
A2 1.97 ± 0.79 2.72 ± 0.89*#

P1 2.09 ± 0.69 2.29 ± 0.41

P2 2.07 ± 0.38 2.32 ± 0.58

Total testosterone (ng/dL) A1 634.5 ± 222.8 728.3 ± 184.7*# P = 0.017‡

η2 = 0.102 (M)
A2 626.2 ± 178.4 736.8 ± 184.6*#

P1 617.0 ± 130.2 632.2 ± 126.2

P2 640.0 ± 210.3 664.0 ± 166.9

Cortisol (µg/dL) A1 10.3 ± 4.5 9.4 ± 3.2 P = 0.034‡

η2 = 0.087 (M)
A2 10.7 ± 3.7 9.3 ± 3.8ˆ

P1 10.7 ± 2.6 11.5 ± 3.2

P2 10.5 ± 2.4 11.7 ± 3.8

Data presented as mean ± standard deviation (SD) of measured values at each time point. Significance is considered p< 0.05 after repeated measure ANOVA and Bonferroni correction applied
for multiple comparisons; ‡indicates significant time × group interaction and partial effect size (η2) defined as small, 0.01 (S); moderate, 0.06 (M); and large, 0.14 (L). *Indicates within-group
(time) significance. #Indicates significance compared with P1 and ˆindicates significance compared with P2. A1 (SMI-425, n = 26), A2 (SMI-850, n = 25), P1 (Placebo-1 set RET, n = 25), P2
(Placebo-2 sets RET, n = 23).
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Discussion

This randomized, double-blind, placebo-controlled study
investigated the ability of two doses of SMI in conjunction with
8 weeks of RET to augment changes in muscle strength and
endurance when compared to non-supplemented, exercising-only,
placebo groups. As expected of untrained subjects undertaking a
systematic, progressive RET program (23), each randomized group,
regardless of assignment, demonstrated a mean improvement
in their measured muscular strength in as early as 14 days.
However, subjects randomized to receive daily supplementation of
SMI gained more muscle strength in comparison to exercising-
only placebo groups. Likewise, the mean number of RTF for BP
and LE improved in all groups over their baseline values, but
those supplemented with SMI further improved these endurance
outcomes compared to placebo groups. Overall, these results
support the notion that both doses of SMI may help improve
muscular adaptation if used alongside overload resistance training.

A curious aspect of RET is that individuals following the same
extended, systematic training plan can experience substantially
different muscular outcomes. Studies have consistently reported
a continuum of muscular adaptation, ranging from negligible
to large muscular changes, despite all subjects completing the
same training regimen (11, 24, 25). In this study, all subjects
completed the same or a more intense training plan, and the
overall strength measure improvements ranged from 13.8% (P1)
to 34.9% (A2) over their respective baseline values. Within this
range, the highest strength gains were found exclusively within
the two supplemented groups, suggesting SMI supplementation
may increase an individual’s likelihood of responding to a
particular RET program with more effective skeletal-muscular
adaptation, at least in this subject population of untrained, healthy
young men. The precise mechanisms behind the interindividual
variability in the adaptive response to RET are not yet clearly
elucidated. Nutrition, sex, age, and training variables do not
appear to reliably override an individual’s innate muscle response
to RET (11, 25–29), suggesting the molecular underpinnings
responsible for optimizing muscle responses to RET likely exist
downstream from the mechanical loading stimulus, amongst
the complex signaling cascades that drive muscle and myofibril
protein synthesis (7, 9, 26, 30). Such signals may involve
enhancing nitric oxide (NO) release or decreasing reactive
oxygen species (ROS) to improve mitochondrial efficiencies and
better support the energy-intensive process of post-RET protein
synthesis. Few studies have investigated the effects of RET
on mitochondrial function and oxidative potential, but tighter
coupling of oxidative phosphorylation within skeletal muscle after
RET programs in untrained adults has been reported (31, 32).
Additionally, studies have shown those individuals showing the
highest mitochondrial activities also respond most effectively to
RET (33, 34) supporting the notion that improved mitochondrial
dynamics and overall improved oxidative capacity may support
better adaptive responses to RET.

Mangiferin, a prominent constituent within SMI, is a glucosyl
xanthone compound shown in rat models to support mitochondria,
assist with enhanced muscle oxidative capacity, and benefit
overall skeletal muscle competence (35, 36). Mangiferin may
also promote the activation of NO within vascular endothelial

cells (37). NO is a well-known signaling molecule that can
influence mitochondrial function and modulate skeletal muscle
activity (38, 39), while NO precursors have been suggested to
stimulate muscle protein synthesis and muscle growth, particularly
when combined with exercise (40–42). Additionally, the extracts
composing SMI, Mangifera indica and Sphaeranthus indicus, are
both known for their antioxidant properties (18, 19) and may help
scavenge oxidants generated in the actively contracting muscle.
Excessive ROS can damage mitochondrial DNA, elicit mitoptosis
and mitophagy (43), promote overall tissue dysfunction, and
accelerate skeletal muscle proteolysis (44). However, compelling
counterevidence exists showing antioxidant supplementation
negatively impacts RET-induced muscle strength and post-exercise
ROS can facilitate skeletal muscle adaptation (45, 46). A limitation
to the present study exists as there was no evaluation of ROS
or NO in the exercising subjects and further research is required
to explore potential mechanisms by which SMI might impact
skeletal muscle tissue.

SMI also appears to influence androgenic signaling within
muscle tissue as supplemented groups demonstrated significant
increases in T. T has anabolic functions within the skeletal muscle,
so a transient elevation might exert positive effects on strength
(47, 48). T can also elicit an increase in intracellular calcium (49)
to temporarily elevate the maximum force production (50) for
greater training intensity. While the elevation of TT and FT in
the supplemented groups suggests that these hormones could be
an important driver of the improved muscular adaptation apparent
after supplementation, RET has been shown to have no or limited
transient elevation of T in women (51) despite relative changes in
strength in women can match or even outperform men (11, 25, 52).
This study is limited by the fact that it only included male subjects.
As such, further study would be worthwhile to investigate how
SMI might affect muscular adaptive responses to RET in women
in general, and in peri- and post-menopausal periods characterized
by reduced basal T, specifically (53).

The effect of T in exercising muscle is also influenced by
the levels of circulating C. C is a catabolic hormone that plays
a fundamental role in skeletal muscle adaptive responses to RET
by promoting lipolysis and proteolysis (54) and a higher T/C
ratio represents an improved balance between the anabolic and
catabolic status of the body. A decreasing T/C ratio is frequently
used as a marker of exercise-induced stress, physiological strain,
and inadequate post-exercise recovery (55). Both placebo groups
showed slightly increased C levels in this study, but surprisingly,
C decreased in the supplemented groups. The overall elevated
T/C ratio in supplemented subjects suggests SMI may improve
adaptation to RET regimens. While increased carbohydrate
supplementation has been shown to help blunt cortisol response
during RET (56), profound between-group dietary differences were
unlikely to contribute to these findings considering the subjects
were randomized between four groups and three-day food diaries
obtained at the study start and end indicated stable dietary patterns.
Additionally, there were no significant weight differences between
groups at any measured time point. Nonetheless, future research
involving SMI should include capturing total caloric intake and
detailed dietary macronutrient composition.

Overall, results suggest that daily supplementation with either
425 or 850 mg of SMI was well-tolerated and accentuated muscle
adaptation when used by healthy young men participating in
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a progressive 8-week RET program. The supplemented groups
showed significant increases in muscular strength and endurance,
increased T, and reduced C in comparison to the two placebo
groups, one performing a matching number and the other
performing double the number of RET sets. Utilizing a second
placebo group lends strength to this study as it illustrates that the
significant differences between the active and placebo groups were
not simply the results of different work efforts, but rather affirms the
notion that cell signaling downstream from the mechanical loading
stimulus was altered so that the efficacy of SMI was comparable
to performing an additional set of exercises in untrained subjects.
These results suggest that SMI might be beneficial to other
populations seeking to accentuate muscle responses to RET, for
example, those individuals who habitually participate in RET
but for whom adaptive responses have stalled (2, 3). Moreover,
muscle strength and functionality improve a wide array of health
outcomes, so further research should be conducted to investigate if
similar outcomes are seen in older adults, where muscular atrophy
and sarcopenia are increasingly shown to contribute to reduced
functional capacity, increased frailty, and progressive disability
(4, 6).
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