PRK 55 Retro-reflective photoelectric sensor with polarization filter for bottles

- Polarized retro-reflective photoelectric sensor, autocollimation optics with visible red light
- Particularly suited for highly transparent bottles (PET and glass)
- 316L stainless steel housing in WASH-DOWN-Design
- Enclosed optics design prevents bacterial carry-overs
- ECOLAB and CleanProof+ tested
- Paperless device identification
- Scratch resistant and non-diffusive plastic front cover

Dimensioned drawing

A Teach button
B Optical axis
C Indicator diodes

Electrical connection

Plug connection, 4-pin (with/without cable)

Connector, 3-pin

Cable, 4 wires

Specifications

Optical data

Typ. op. range limit $(T K(S) 100 \times 100)^{1)} 0.3 .5 \mathrm{~m}$
Operating range ${ }^{2)}$
Light source ${ }^{3)}$
Wavelength

Timing

Switching frequency
Response time
Delay before start-up

Electrical data

Operating voltage $U_{B}{ }^{4}$)
Residual ripple
Open-circuit current
Switching output

Environmental data

Ambient temp. (operation/storage) ${ }^{7}$
Protective circuit ${ }^{8)}$
VDE safety class ${ }^{9}$
Protection class
Environmentally tested acc. to
LED class
Standards applied
Certifications
Chemical resistance

Options

Teach-in input/activation input
Transmitter active/not active
Activation/disable delay
Input resistance
../6.42 1 push-pull switching output
pin 4: PNP light switching, NPN dark switching
pin 2: teach input
.../6D. 42 1 push-pull switching output
pin 4: PNP dark switching, NPN light switching
pin 2: teach input
light/dark reversible
$\geq\left(\mathrm{U}_{\mathrm{B}}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
max. 100 mA
setting via teach-in
ready
light path free
light path free, no performance reserve ${ }^{5)}$
AISI 316L stainless steel, DIN X2CrNiMo17132, W.No1. 4404 WASH-DOWN-Design
$\mathrm{Ra} \leq 2.5$
AISI 316L stainless steel, DIN X2CrNiMo17132, W.No1. 4404
coated plastic (PMMA), scratch resistant and non-diffusive
plastic (TPV-PE), non-diffusive
with M8 connector: 40 g
with 200 mm cable and M12 connector: 60 g
with 5000 mm cable: 110 g
M8 connector, 4-pin,
0.2 m cable with M12 connector, 4-pin, 5 m cable, $4 \times 0.20 \mathrm{~mm}^{2}$
see tables
LED (modulated light)
620 nm (visible red light, polarized)

1000 Hz
0.5 ms
$\leq 300 \mathrm{~ms}$
$10 \ldots 30 \mathrm{VDC}$
$\leq 15 \%$ of U_{B}
$\leq 15 \%$ of U_{B}
$-30^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C} /-30^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
2, 3
III
IP 67, IP 69K ${ }^{10}$
ECOLAB, CleanProof+
1 (in accordance with EN 60825-1)
IEC 60947-5-2
UL 508 4)
tested in accordance with ECOLAB and CleanProof+ (see Remarks)
$\geq 8 \mathrm{~V} / \leq 2 \mathrm{~V}$
$\leq 1 \mathrm{~ms}$
$30 \mathrm{k} \Omega$

1) Typ. operating range limit: max. attainable range without performance reserve
2) Operating range: recommended range with performance reserve
3) Average life expectancy $100,000 \mathrm{~h}$ at an ambient temperature of $25^{\circ} \mathrm{C}$
4) For UL applications: for use in class 2 circuits according to NEC only
5) Display "no performance reserve" as yellow flashing LED is only available in standard teach setting
6) Typical value for the stainless steel housing
7) Operating temperatures of $+70^{\circ} \mathrm{C}$ permissible only briefly ($\leq 15 \mathrm{~min}$)
8) $2=$ polarity reversal protection, $3=$ short circuit protection for all transistor outputs
9) Rating voltage 50 V
10) Only in combination with M12 connector

Remarks

- The light spot may not exceed the reflector.
- Preferably use MTK(S) or tape 6.
- For foil 6 , the sensor's side edge must be aligned parallel to the side edge of the reflective tape.

Approved purpose

This product may only be used by qualified personnel and must only be used for the approved purpose. This sensor is not a safety sensor and is not to be used for the protection of persons.

Tables

Reflectors in food quality				Operating range	
1	TK(S)	100x	100	$0 \ldots$	
2	TK		x60	$0 \ldots$	
3	MTKS	50×5	50.1	$0 \ldots$	
4	Tape 6		$\times 50$	$0 \ldots$	
5	TK		x40	$0 \ldots$	
1	0			3	3.6
2	0		2.0	2.4	
3	0	1.3	1.		
4	0	1.2	1.		
5	0	1.0	1.2		

Pharmaceutical reflectors			Operating range	
1	TK(S)	40x60.P	0... 1.2	
2	TK	BR53	$0 \ldots 1.0$	
3	TK(S)	20x40.P	$0 \ldots 0.7$	
4	TK(S)	20.P	$0 \ldots 0.5$	
5	MTK(S)	14x23.P	$0 \ldots 0.2$	
6	TK	10.P	$0 \ldots 0.2$	
1	0		1.2	1.4
2	0	1.0	1.2	
3	0	0.7 0.8		
4	0	.5 0.6		
5	0	0.3		
6	$0 \quad 0.2$	0.25		

Operating range [m]
Typ. operating range limit [m]
TK ... = adhesive
TKS ... $=$ screw type

Diagrams

Typ. response behavior

A TK 100×100
B TKS 40×60
C TKS 20×40
D Tape 4: 50×50

Remarks

A list of tested chemicals can be found in the first part of the product description.

PRK 55 Retro-reflective photoelectric sensor with polarization filter for bottles

Order guide

1) Teach input not present with 3-pin connector

Sensor adjustment (teach) via teach button

- The sensor is factory-adjusted for maximum operating range.
Recommendation: teach only if the desired objects are not reliably detected.
- Prior to teaching:

Clear the light path to the reflector!
The device setting is stored in a fail-safe way. A reconfiguration following voltage interruption or switch-off is thus not required.

Teach for 11% sensor sensitivity (highly transparent bottles and foils with thickness $>\mathbf{2 0 \mu m}$)

- Press teach button until both LEDs flash simultaneously.
- Release teach button.
- Ready.

After the teaching, the sensor switches when about 11% of the light beam are covered by the object.

Teach for 18\% sensor sensitivity (standard bottles)

- Press teach button until both LEDs flash alternatingly.
- Release teach button.
- Ready.

After the teaching, the sensor switches when about 18% of the light beam are covered by the object.

Teaching for maximum operating range (factory setting at delivery)

- Prior to teaching:

Cover the light path to the reflector!

- Press teach button until both LEDs flash simultaneously.
- Release teach button.
- Ready.

Adjusting the switching behavior of the switching output - light/dark switching

- Press teach button until the green LED flashes. The yellow LED displays the current setting of the switching output:
$\begin{array}{ll}\text { ON } & =\text { output switches on light } \\ \text { OFF } & =\text { output switches on dark }\end{array}$
OFF = output switches on dark
- Continue to press the teach button in order to change the switching behavior.
- Release teach button.
- Ready.

PRK 55 Retro-reflective photoelectric sensor with polarization filter for bottles

Locking the teach button via the teach input

A static high signal ($\geq 4 \mathrm{~ms}$) at the teach input locks the teach button on the device if required, such that no manual operation is possible (e.g., protection from erroneous operation or manipulation).
If the teach input is not connected or if there is a static low signal, the button is unlocked and can be operated freely.

Sensor adjustment (teach) via teach input

The following description applies to PNP switching logic!
$\mathbf{U}_{\text {Teach low }} \leq \mathbf{2 V}$
$\mathrm{U}_{\text {Teach high }} \geq\left(\mathrm{U}_{\mathrm{B}} \mathbf{- 2 V}\right)$
Prior to teaching: Clear the light path to the reflector!
The device setting is stored in a fail-safe way. A reconfiguration following voltage interruption or switch-off is thus not required.

Teach for 11% sensor sensitivity
(highly transparent bottles and foils with thickness $>\mathbf{2 0} \mu \mathrm{m}$)

Quick teach for 11% sensor sensitivity

(highly transparent bottles and foils with thickness $\mathbf{> 2 0 \mu m}$)

After the teaching, the sensor switches when about 11% of the light beam are covered by the object.

Teach for 18\% sensor sensitivity (standard bottles)

$\mathrm{U}_{\text {Teach high }}$			$\begin{array}{r} \mathrm{t}_{\text {Teach2 }} \\ 1000 \ldots 2000 \end{array}$			
$\mathrm{U}_{\text {Teach low }}$						
						$t \longrightarrow$

After the teaching, the sensor switches when about 18% of the light beam are covered by the object.

Adjusting the switching behavior of the switching output - light/dark switching

The teach button is disabled after
the 1st edge.
Setting the switching behavior of
the switching output:
$t_{\text {Teach Output }}=2000 \ldots 3000 \mathrm{~ms}$
Switching output switches on
light:
$t_{p \text { light }}=4 \ldots 1000 \mathrm{~ms}$
Switching output switches on
dark: dark:
$t_{p \text { dark }}=1000 \ldots \mathbf{2 0 0 0} \mathbf{m s}$

