PRK 53

Retro-reflective photoelectric sensors with polarization filter

- Polarized retro-reflective photoelectric sensor, autocollimation optics with visible red light
- 316L stainless steel housing in HYGIENEDesign
- Enclosed optics design prevents bacterial carry-overs
- ECOLAB and CleanProof+ tested
- Paperless device identification
- Scratch resistant and non-diffusive plastic front cover
- A2LS- Active Ambient Light Suppression
- High switching frequency for detection of fast events
- Easy adjustment via lockable teach button or teach input

Accessories:

(available separately)

- Cable with M8 or M12 connector (K-D ...)
- Cable for food and beverages
- Reflectors for the foods industry
- Reflectors for the pharmaceutical industry
- Reflective tapes
- Mounting devices

Dimensioned drawing

A Teach button
B Optical axis
C Indicator diodes
D Permissible clamping range

Electrical connection

Plug connection, 4-pin (with/without cable)

Cable, 4 wires

$10-30 \mathrm{~V} D C+$ Teach	br/BN
	ws/WH
	bl/BU
\bigcirc	sw/BK

Specifications

Optical data

Typ. op. range limit $(T K(S) 100 \times 100)^{1)} 0 \ldots 5 \mathrm{~m}$
Operating range ${ }^{2)}$
Light source ${ }^{3)}$
Wavelength

Timing

Switching frequency
Response time
Delay before start-up

Electrical data

Operating voltage $U_{B}{ }^{4}$)
Residual ripple
Open-circuit current
Switching output

Function characteristics
Signal voltage high/low
Output current
Operating range

Indicators

LED green
Yellow LED
Yellow LED, flashing

Mechanical data

Housing
Housing design
Housing roughness ${ }^{6)}$
Connector
Optics cover
Operation
Weight

Connection type

Fastening
Max. tightening torque

Environmental data

Ambient temp. (operation/storage) ${ }^{7}$
Protective circuit ${ }^{8)}$
VDE safety class ${ }^{9}$
Protection class
Environmentally tested acc. to
LED class
Standards applied
Certifications
Chemical resistance

Options

Teach-in input/activation input
Transmitter active/not active
Activation/disable delay
Input resistance
see tables

1000 Hz
0.5 ms
$\leq 300 \mathrm{~ms}$
$\leq 15 \%$ of U_{B}
$\leq 18 \mathrm{~mA}$
max. 100 mA
ready
light path free
$\mathrm{Ra} \leq 2.5$

2, 3
III

UL $508{ }^{4)}$

$$
\begin{aligned}
& \geq 8 \mathrm{~V} / \leq 2 \mathrm{~V} \\
& \leq 1 \mathrm{~ms} \\
& 30 \mathrm{k} \Omega
\end{aligned}
$$

LED (modulated light)
620 nm (visible red light, polarized)
10...30VDC (incl. residual ripple)
.../6.22 1 push-pull switching output
pin 4: PNP light switching, NPN dark switching
pin 2: teach input
light/dark reversible
$\geq\left(\mathrm{U}_{\mathrm{B}}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
setting via teach-in
light path free, no performance reserve ${ }^{5}$)

AISI 316L stainless steel, DIN X2CrNiMo17132, W.No1. 4404
HYGIENE-Design
AISI 316L stainless steel, DIN X2CrNiMo17132, W.No1. 4404
coated plastic (PMMA), scratch resistant and non-diffusive
plastic (TPV-PE), non-diffusive
with M8 connector: 50 g
with 200 mm cable and M8 connector: 60 g
with 5000 mm cable: 110 g
M8 connector, 4-pin or 3-pin,
0.2 m cable with M8 connector, 4-pin,

5 m cable, $4 \times 0.20 \mathrm{~mm}^{2}$
via fit (see "Remarks")
3 Nm (permissible range, see dimensioned drawing)
$-30^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C} /-30^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

IP 67, IP 69K ${ }^{10}$
ECOLAB, CleanProof+
1 (in accordance with EN 60825-1)
IEC 60947-5-2
tested in accordance with ECOLAB and CleanProof+ (see Remarks)

1) Typ. operating range limit: max. attainable range without performance reserve
2) Operating range: recommended range with performance reserve
3) Average life expectancy $100,000 \mathrm{~h}$ at an ambient temperature of $25^{\circ} \mathrm{C}$
4) For UL applications: for use in class 2 circuits according to NEC only
5) Display "no performance reserve" as yellow flashing LED is only available in standard teach setting
6) Typical value for the stainless steel housing
7) Operating temperatures of $+70^{\circ} \mathrm{C}$ permissible only briefly ($\leq 15 \mathrm{~min}$)
8) 2=polarity reversal protection, 3=short circuit protection for all transistor outputs
9) Rating voltage 50 V
10) Only with internal tube mounting of the M8 connector

Approved purpose

The photoelectric sensors are optical electronic sensors for optical, contactless detection of objects.
This product may only be used by qualified personnel and must only be used for the approved purpose. This sensor is not a safety sensor and is not to be used for the protection of persons.

Tables

Pharmaceutical reflectors			Operating range$0 \ldots 1.6 \mathrm{~m}$
1	TK(S)	40x60.P	
2	TK	BR53	$0 \ldots 1.3 \mathrm{~m}$
3	TK(S)	20x40.P	0... 1.0m
4	TK(S)	20.P	$0 \ldots 0.7 \mathrm{~m}$
5	MTK(S)	14x23.P	$0 \ldots 0.4 \mathrm{~m}$
6	TK	10.P	$0 \ldots 0.3 \mathrm{~m}$
1	0		1.6 1.8
2	0		1.3 1.6
3	0	1.0	1.2
4	0	0.7 0.8	
5	0 0.4	0.5	
6	00.3	0.4	

[^0]
Diagrams

A TK 100×100
B TKS 40×60
C TKS 20×40
D Tape 4: 50×50

Remarks

A list of tested chemicals can be found in the first part of the product description.
Only secure in designated area using set screw. Max. tightening torque 3 Nm .

A Leuze electronic

PRK 53 Retro-reflective photoelectric sensors with polarization filter

Order guide

Selection table Equipment		Order code \rightarrow				
Switching output	$1 \times$ push-pull switching output		\bullet	-	\bullet	\bullet
Switching function	light/dark switching configurable		\bullet	\bullet	\bullet	\bullet
Connection	M8 connector, metal, 4-pin		\bullet			
	M8 connector, metal, 3-pin				\bullet	
	cable 200 mm with M8 connector, 4-pin			\bullet		
	cable 5000 mm , 4-wire					-
Configuration	teach-in via button (lockable) and teach input ${ }^{1)}$		\bullet	\bullet	-	\bullet
Indicators	green LED: ready + teach sequence		\bullet	\bullet	\bullet	\bullet
	yellow LED: switching output		\bullet	\bullet	\bullet	\bullet

1) Teach input not present with 3-pin connector

Sensor adjustment (teach) via teach button

- The sensor is factory-adjusted for maximum operating range.
 Recommendation: teach only if the desired objects are not reliably detected.
- Prior to teaching:

Clear the light path to the reflector!
The device setting is stored in a fail-safe way. A reconfiguration following voltage interruption or switch-off is thus not required.

Standard teaching for average sensor sensitivity

- Press teach button until both LEDs flash simultaneously.
- Release teach button.
- Ready.

After the standard teaching, the sensor switches when half of the light beam is covered by the object.

Teaching for increased sensor sensitivity

- Press teach button until both LEDs flash alternatingly.
- Release teach button.
- Ready.

After the teaching for increased sensor sensitivity, the sensor switches when about 18% of the light beam are covered by the object.

Teaching for maximum operating range (factory setting at delivery)

- Prior to teaching:

Cover the light path to the reflector!

- Procedure as for standard teaching.

Adjusting the switching behavior of the switching output - light/dark switching

- Press teach button until the green LED flashes. The yellow LED displays the current setting of the switching output:
ON $\quad=$ output switches on light
OFF = output switches on dark
- Continue to press the teach button in order to change the switching behavior.
- Release teach button.
- Ready.

PRK 53 Retro-reflective photoelectric sensors with polarization filter

Locking the teach button via the teach input

A static HIGH signal ($\geq 4 \mathrm{~ms}$) at the teach
 input locks the teach button on the device if required, such that no manual operation is possible (e.g., protection from erroneous operation or manipulation).
If the teach input is not connected or if there is a static low signal, the button is enabled and can be operated freely.

Sensor adjustment (teach) via teach input

The following description applies to PNP switching logic!
$\mathbf{U}_{\text {Teach low }} \leq \mathbf{2 V}$
$\mathrm{U}_{\text {Teach high }} \geq\left(\mathrm{U}_{\mathrm{B}} \mathbf{- 2 V}\right)$
Prior to teaching: Clear the light path to the reflector!
The device setting is stored in a fail-safe way. A reconfiguration following voltage interruption or switch-off is thus not required.

Standard teaching for average sensor sensitivity

Quick standard teach

[^1]
Teaching for increased sensor sensitivity

After the teaching for increased sensor sensitivity, the sensor switches when about 18% of the light beam are covered by the object.

Adjusting the switching behavior of the switching output - light/dark switching

After the delay before start-up
($\leq 300 \mathrm{~ms}$) has elapsed, the teach
button on the device can be
operated.
Setting the switching behavior of
the switching output:
$\mathbf{t}_{\text {Teach Output }}=2000 \ldots 3000 \mathrm{~ms}$
Switching output switches on
light:
$\mathbf{t}_{\text {plight }}=4 \ldots 1000 \mathrm{~ms}$
Switching output switches on
dark:
$\mathbf{t}_{\mathrm{p} \text { dark }}=1000 \ldots \mathbf{2 0 0 0} \mathbf{m s}$
The button remains disabled until
the next signal change.

[^0]: Operating range [m] Typ. operating range limit [m]
 TK ... = adhesive
 TKS ... = screw type

[^1]: After the standard teaching, the sensor switches when half of the light beam is covered by the object.

