b

HA’-‘E WHITE PAPER

DynamicProxy
—

Implementing Automatic
Man-in-the-Middle Pi

4)
% R e SN
‘
l i — = i
- —i i A -

»
7&; _»

© 2023 Haks, LLC
Michael Kershaw

.

et

Introduction

Transparent Proxies:
Existing Tools and Limitations

Transparent Proxies

A transparent proxy is inserted into a
communication stream to log or manipulate
traffic between two endpoints.

Often, a transparent proxy is highly protocol
specific: For instance, tools such as Burp
Suite and MITMProxy offer advanced HTTP
proxies, but can not be used to proxy other
more generic protocols.

Protocol-specific proxies are able to act as
transparent proxies to multiple destinations
when the destination address is encoded in
the protocol: For HTTP, the original
destination and request is part of the HTTP
protocol.

For protocols where there is no internal
addressing, a proxy cannot derive the
original destination once the packets have
been redirected to the proxy service.

Proxy protocols

Proxy protocols such as SOCKS attempt to
address this problem by wrapping all
communications in an additional layer which
informs the proxy service of the true
destination.

Unfortunately, these are far from
transparent: If a system is not configured to
use SOCKS (or related), it will not be able to
communicate. Often configuring a SOCKS
proxy is at a per-application level.

Due to the invasive nature of a proxy layer
like SOCKS, typically it is only applied to
traffic leaving the local network; this further
complicates attempts to capture and proxy
intra-LAN traffic.

Haiy

DynamicProxy — Implementing Automatic Man-in-the-Middle Proxies for any TCP Connection

Introduction

Transparent Proxies:
Existing Tools and Limitations

IPTables / NFTables

The Linux Kernel packet rewriting system (iptables or nftables) can trivially manipulate traffic;
for instance redirecting all traffic destined to port 9100 to a local service is as simple as:

nft add rule ip nat prerouting 'tcp dport 9100 dnat to 127.0.0.1:9100'

However, this encounters the same difficulty as a traditional transparent proxy service: Once
the packet has passed through the destination rewriting stage of nftables, the original destina-
tion is no longer known to the proxy.

To act as a transparent proxy for arbitrary TCP data, the destinations must already be known,
and multiple proxy and multiple rewrite rules must be configured:

rule ip nat prerouting \
daddr 192.168.1.10 tcp dport 9100 dnat to 127.0.0.1:9100"
rule ip nat prerouting \

daddr 192.168.1.11 tcp dport 9100 dnat to 127.0.0.1:9101"
rule ip nat prerouting \
daddr 192.168.1.12 tcp dport 9100 dnat to 127.0.0.1:9102"

Haxsy DynamicProxy — Implementing Automatic Man-in-the-Middle Proxies for any TCP Connection

Introduction
Transparent Proxies:
Existing Tools and Limitations

In this model, when the destinations are known, an individual proxy service can be created for
each destination: The proxy no longer needs to know the original destination, as it is only
receiving traffic for that single host.

The Limitations

All of these techniques require either insight into the protocol to extract the original destination
(as in a HTTP proxy), disruptive and obvious configuration changes to the target system
(SOCKS or other proxy protocols), capture without forwarding to the original host (asin a
rewrite of all traffic to a target port), or a priori knowledge of all destinations prior to
deployment and intercept (as in a proxy per target host).

By the time a packet has been rewritten and reached the userspace proxy daemon, the original
destination has been overwritten by the DNAT rule, necessitating a proxy per previously
identified endpoint.

Hax5y DynamicProxy — Implementing Automatic Man-in-the-Middle Proxies for any TCP Connection

Transparent Proxies

| A Solution

A preferred solution should address as many of these limitations as possible, while also
minimizing external dependencies and remaining performant on embedded-scale hardware.

netfilter-queue

Fortunately, the Linux kernel has a
mechanism already available: NFQUEUE.
Coupled with the userspace
libnetfilter-queue, this allows iptables and

nftables rules a target for userspace decisions.

Packets sent to NFQUEUE are held in a
numbered queue until a userspace
application retrieves the packet via a netlink
socket, and informs the kernel of the final
packet disposition.

NFQUEUE allows userspace applications to
perform more complex decision making and
logging processes when integrated as part of
a network firewall, but also allows us an
opportunity to interact with a packet before
the kernel modifies it for local NAT.

Capturing a Packet

Packets are sent to NFQUEUE using a
standard nftables rule:

chain dstnat_lan {
mark != ip daddr != .16.32.1 tcp dport {1-65535}

counter queue num bypass
}

This nftables configuration instructs the
kernel to place all TCP packets into queue
#30 (chosen arbitrarily).

Of note:

1. Packets are excluded by mark. Another
standard component of the Linux
iptables/nftables system, marking flags
packets with additional attributes.

2. Packets are excluded by destination
address. Packets destined to the device
running the dynamic proxy are not
targeted, preventing an infinite loop.

3. Thebypass option is specified. If the
userspace component is not available,
the packets are allowed to continue
normally based on kernel rules.

Hax5y DynamicProxy — Implementing Automatic Man-in-the-Middle Proxies for any TCP Connection

Transparent Proxies
| A Solution

With this nftables configuration in place, packets are queued for a userspace service on queue
#30 whenever a userspace handler is present.

This allows us to make advanced determination and manipulation of packets in userspace, via
the NFQUEUE netlink interface.

Netlink

The netlink API is a datagram-based protocol between the kernel and userspace. It can be used
for high-speed transfer of data between the kernel and userspace applications, and it is often
used to create complex APIs that replace the older, more limited IOCTL method of control.

Netlink commands consist of one or more common netlink message headers and payloads, and
a macro system for manipulating the payloads.

Fortunately, the libnetfilter-queue library abstracts most of this away for us automatically,
allowing for a relatively simple interface with the netlink API:

h = nfg_open();
nfg_unbind_pf(h, AF_INET);
nfg_bind_pf(h, AF_INET);

gh = nfg_create_queue(h, , &nfq_cb,
nfg_set_mode(qh, NFQNL_COPY_PACKET,
go(f, seed, [])

}

Hax5y DynamicProxy — Implementing Automatic Man-in-the-Middle Proxies for any TCP Connection

Transparent Proxies
| A Solution

Controlling Packets with NFQUEUE
A NFQUEUE tool can instruct the kernel to take multiple actions on a packet:

* NF_DROP to discard the packet (the same as the DROP target in iptables/nftables)

* NF_ACCEPT to pass the packet (the same as the ACCEPT target in iptables/nftables)
* NF_QUEUE to inject the packet into a different queue

* NF_REPEAT to return the packet to the kernel for re-processing

* NF_STOP to accept the packet, but block further re-processing in the kernel

Additionally, a NFQUEUE tool can set the mark on a packet, a feature we will leverage directly:

nfg_set_verdict2(qgh, id, NF_REPEAT,

Utilizing both the NF_REPEAT and mark features allows the userspace tool to return the packet
to the kernel for additional processing, while marking it to be excluded from the userspace
processor.

Hax5y DynamicProxy — Implementing Automatic Man-in-the-Middle Proxies for any TCP Connection

Transparent Proxies
| A Solution

Connection Attributes

Now that we are able to inspect packets and return verdicts to the kernel, we need a mechanism
for identifying known connections.

Fortunately, every TCP connection contains four pieces of information:

1. Source IP - the IP originating the connection

2. Source port - a random source IP on the system originating the connection

3. Destination IP - the original destination IP of the packet, prior to kernel manipulation

4. Destination port - the original destination port of the packet, prior to kernel manipulation

These four attributes are used by nearly all stateful routing systems to track a connection,
including the Linux NAT connection tables. We'll use them the same way to track connections
through the proxy system.

Inspecting and Remembering Connections

Connections in the dynamic proxy are tracked as a list of srcIP:srcPort entities, mapped to a
record containing the original destination IP and port; since the full packet is available thanks to
the NFQUEUE interface, extracting this is simple:

nfgnl_msg_packet_hdr *ph;
ph = nfq_get_msg_packet_hdr(nfa);
uint32_t id = ntohl(ph->packet_id);

ret = nfg_get_payload(nfa, (unsigned char **) &data);
IP ip((uint8_t *) data, ret);

& tcp = ip.find_pdu<TCP>();

stream =
std: :make_shared<tracked_stream>(ip.src_addr(), tcp-
>sporp(dst_addr(), tcp->dport()

Hax5y DynamicProxy — Implementing Automatic Man-in-the-Middle Proxies for any TCP Connection

Transparent Proxies
| A Solution

Rewriting Connections

Having inspected the original connection and recorded the destination IP and port, the packet
is returned to the kernel. If the target port is one the proxy is configured for, the packet is
marked with the packetmark 1337 and returned via NF_REPEAT, if it is not a port to be
proxied it is returned with a basic NF_ACCEPT:

nfg_set_verdict2(gh, id, NF_REPEAT,

nfg_set_verdict(gh, id, NF_ACCEPT,

An additional nftables rule is used to rewrite all connections marked with 1337 to localhost:

tcp ip saddr != .16.32.1 meta mark dnat ip to

.16.32.1
.

This is a traditional DNAT destination rewrite: It replaces the original destination IP with the
address of the device running the proxy.

Hax5y DynamicProxy — Implementing Automatic Man-in-the-Middle Proxies for any TCP Connection

Transparent Proxies
| A Solution

Closing the Loop

To complete the proxy, the userspace needs the final step of creating a listening service. The
target packets crossing the proxy device have been identified, tagged, and rewritten by the
DNAT layer to re-target the local service.

A standard TCP socket is created via Listen(), and each incoming connection is inspected.

The DNAT process alters the destination host, but does not change the original source host and
source port: The original values are passed as part of the accept () system call.

conn_fd = accept4(fd, (sockaddr *) &addr, &len,

SOCK_NONBLOCK) ;
- —

Inside the addr struct is the source address and port (addr.sin_addr and addr.sin_port), which
are the same values used to make the connection key in the previous phase.

Using the source address and port, the dynamic proxy resolves the original connection
destination, and creates a standard TCP connection:

sockaddr_in cli;
stream->targetside_fd = socket(AF_INET, SOCK_STREAM, 0);

bzero(&cli, (cli));

cli.sin_family = AF_INET;
cli.sin_addr.s_addr = inet_addr(stream->orig dst.to_string().c_str());
cli.sin_port = htons(stream->orig_port);

= connect(stream->targetside_fd, (sockaddr *) &cli,
(cli));
R

Hax5y DynamicProxy — Implementing Automatic Man-in-the-Middle Proxies for any TCP Connection

Transparent Proxies
| A Solution

The dynamic proxy now maintains the original connection to the target device, and the proxied
connection to the original destination, and is now able to log or rewrite arbitrary TCP traffic
within the connection.

The Complete Proxy Cycle

Client Proxy Kernel Proxy Userspace Proxy Listener Destination

Incoming Packet

NFQUEUE
Userspace

|
s
|
|
:

| MARK 1337

)

Y ____

I
DNAT marked packets l
I

Log request

I
I
I
I
I
I
I
I
I
I
, I
Pass unmarked packelts and bypass userspace serwccle |
I
I
I
I
I
I
I
I
I
I

Proxy TCP

Response

- — T —

Log response

Response

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| .
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
< I

- _]__Y

Hax5y DynamicProxy — Implementing Automatic Man-in-the-Middle Proxies for any TCP Connection

Transparent Proxies
| Implementation

The TCP dynamic proxy is available now as the DYNAMICPROXY command on the
Packet Squirrel Mark II:

root@squirrel:~
Expected DYNAMICPROXY [CLIENT|SERVER|ANY] [prefix] [port1] ... [portN]
DYNAMICPROXY (Hak5 Network Payload Commands)

Capture TCP streams to file by acting as a dynamic proxy,

capable of logging client traffic, server traffic, or

btoh types.Usage:

DYNAMICPROXY [CLIENT|SERVER|ANY] [prefix] [port] ... [portN]

The DYNAMICPROXY system is deployed as a default payload for capturing traffic from PCL
printers, but can be used for any other TCP stream as well.

LED SETUP
NETMODE NAT

USB_WAIT

mkdir /usb/printer/
LED ATTACK

DYNAMICPROXY CLIENT /usb/printer/print_ 91

Hax5y DynamicProxy — Implementing Automatic Man-in-the-Middle Proxies for any TCP Connection

About Hak5

Founded in 2005, Hak5's mission is to advance the InfoSec industry. This is done through award
winning podcasts, leading pentest gear, and inclusive community — where all hackers belong.

Hak5 gear have found their way into the hearts and tool-kits of enthusiasts and red-teams alike.

They're notable for being effective and accessible. The design philosophy is simple — make it do
the thing.

Haxy DynamicProxy — Implementing Automatic Man-in-the-Middle Proxies for any TCP Connection

