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Theme Issue Article

Matrix Gla-protein: The calcification inhibitor in need of vitamin K

Leon J. Schurgers, Ellen C. M. Cranenburg, Cees Vermeer

VitaK and Cardiovascular Research Institute (CARIM), Maastricht University, Maastricht, The Netherlands

Summary

Among the proteins involved in vascular calcium metabolism,
the vitamin K-dependent matrix Gla-protein (MGP) plays a
dominant role. Although on a molecular level its mechanism of
action is not completely understood, it is generally accepted that
MGP is a potent inhibitor of arterial calcification. Its pivotal im-
portance for vascular health is demonstrated by the fact that
there seems to be no effective alternative mechanism for calcifi-
cation inhibition in the vasculature.An optimal vitamin K intake
is therefore important to maintain the risk and rate of calcifi-
cation as low as possible.With the aid of conformation-specific

Keywords
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antibodies MGP species in both tissue and the circulation have
been detected in the healthy population, and significant differ-
ences were found in patients with cardiovascular disease (CVD).
Using ELISA-based assays, uncarboxylated MGP (ucMGP) was
demonstrated to be a promising biomarker for cardiovascular
calcification detection.These assays may have potential value for
identifying patients as well as apparently healthy subjects at high
risk for CVD and/or cardiovascular calcification and for moni-
toring the treatment of CVD and vascular calcification.

Thromb Haemost 2008; 100: 593-603

Background

Matrix Gla-protein (MGP) is a small secretory protein that can
undergo two types of posttranslational modification: y-gluta-
mate carboxylation and serine phosphorylation. The protein was
first described in 1983 by Price et al. who purified it from the
bovine bone matrix (1). The authors concluded that this approxi-
mately 14 kD protein contains five unusual amino-acids desig-
nated as y-carboxyglutamate (abbreviated as Gla), and therefore
the protein was designated as matrix Gla-protein (Fig. 1). Soon
after its discovery in bone, MGP synthesis in cartilage, lung,
heart, kidney, arteries and calcified atherosclerotic plaques was
confirmed (1-3). The mature protein consists of 84 amino-acids
and has a theoretical PI of 9.7. Of the nine glutamate residues
only five can be y-carboxylated in a vitamin K-dependent reac-
tion, and three of its five serine residues can be phosphorylated
into phosphoserine (abbreviated as Pser). The MGP gene is lo-
cated on chromosome 12 (p13.1-p12.3), consists of four exons
and three large introns and has a length of 3.9 kb. It contains
metal responsive elements and presents putative binding sites for
AP1 and AP2 and cAMP-dependent transcription factors. At
physiological levels, vitamin D3 increased MGP transcription in
VSMC whereas retinoic acid down regulates its expression (4).

The best studied posttranslational modulation of MGP is
gamma-glutamate carboxylation. Gla-residues are formed in a
unique posttranslational modification carried out by the enzyme
gamma-glutamate carboxylase (5). The only unequivocal role of
vitamin K is to provide the energy to drive the carboxylase reac-
tion. The Gla-residues formed are negatively charged and pro-
teins in which they are found are denominated as Gla-proteins. A
common characteristic of all known members of this protein
family is that the Gla-residues are absolutely required for protein
activity (6). In all Gla-proteins the affinity for gamma-glutamate
carboxylase is determined by a pro-sequence located immedi-
ately at the N-terminal site of the protein. In most Gla-proteins
the pro-sequence is cleaved off during maturation; MGP is the
exception in this respect, since the mature protein contains an in-
ternal pro-peptide which may contribute to its unique properties.

Phosphorylation, the other posttranslational modification in
MGP, may take place at serine residues in positions 3, 6 and 9
(Fig. 1). Price et al. showed that the motif in MGP recognized for
serine phosphorylation is the tandemly repeated Ser-X-Glu se-
quence (4). Phosphorylation is carried out by the Golgi casein ki-
nase (4, 7). The function of serine phosphorylation is not pre-
cisely known, but recent data suggest that it plays a role in regu-
lating the secretion of proteins into the extracellular environ-
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Figure |: Matrix Gla-pro-
tein (MGP) is a small 84aa
vitamin K-dependent pro-
tein. Although its 14 kD size,
it can undergo two posttrans-
lation modifications: at posi-
tion 3, 6, and 9 the serine resi-
dues can be phosphorylated by
a Golgi-casein kinase, and at
positions 2, 37, 41, 47 and 52
the glutamate residues can be
y-carboxylated (I 17).

ment. Wajih et al. showed that phosphorylated MGP exits vascu-
lar smooth muscle cells (VSMCs) via the secretory pathway,
whereas the non-phosphorylated MGP appears in the cytosol,
and is thus not secreted (7).

The fat-soluble vitamins A and D may modulate MGP ex-
pression. Retinoic acid is a regulator of chondrocyte maturation
and mineralization (8). Its effect on mRNA expression levels of
MGP is cell type-dependent: in fibroblasts, chondrocytes, os-
teoblasts, and type II pneumocytes, retinoic acid upregulates
MGP mRNA expression (9, 10) whereas in kidney cells and
VSMCs, retinoic acid downregulates MGP expression (11, 12).
1,25(OH)D; was shown to increase MGP expression in vitro in
VSMCs (11). In models in vitro (13), animal models (14) and hu-
mans (15), extremely high vitamin D intakes may cause vascular
calcification, most likely due to an effect on calcium-metab-
olism.

Functions of MGP

Although the precise molecular mechanisms of MGP function
are not known, accumulating data demonstrate its major role in
the inhibition of soft-tissue calcification. The first clues for a
Gla-protein being involved in the inhibition of tissue calcifi-
cation came from rats treated with the vitamin K-antagonist war-
farin (16). These animals developed massive cartilage calcifi-
cation, notably in the epiphyses and facial bones, leading to im-
paired growth, maxillonasal hypoplasia and reduction in the
length of the nasal bones (17). It was only after the identification
of MGP in cartilage that it was recognized that the cartilage cal-
cification was brought about by loss of MGP function (18). After
its discovery, it was thought for many years that the importance
of MGP was restricted to bone and cartilage metabolism. By tar-
geted deletion of the MGP gene in mice it became clear, however,
that its main function is the inhibition of medial calcification of

the arteries: MGP-deficient animals all died within six to eight
weeks after birth due to calcification of the elastic lamellae in the
tunica media, resulting in rupture of the large arteries (19). The
arterial calcification in the MGP null mice resulted from the pre-
cipitation of calcium-phosphate in a ratio similar to hydroxyapa-
tite, thus mimicking bone mineralisation. Using histochemical
techniques, the authors demonstrated that the arterial calcifi-
cation was associated with the differentiation of VSMCs into
chondrocyte-like cells. A mechanism explaining the strong cal-
cification inhibitory activity of MGP was put forward by Price,
who suggested that MGP binds tightly to the crystal nuclei thus
preventing further growth (20). Inhibition of the differentiation
of VSMCs into chondocyte- and osteoblast-like cells may be a
second function of MGP for which further support was provided
in MGP-deficient mice by demonstrating a loss of smooth
muscle markers and upregulated expression of the bone-specific
transcription factor cbfla/Runx2 and the osteogenic protein os-
teopontin (21). The ability of MGP to keep VSMCs in the con-
tractile phenotype may be accomplished by binding to the bone
morphogenetic protein-2 (BMP-2) (22, 23). BMP-2 is a member
of the transforming growth factor-beta (TGF-beta) superfamily,
and is an osteogenic growth factor. BMP-2 has been shown to be
expressed in human atherosclerotic lesions (24). Wallin et al.
demonstrated that only the carboxylated form of MGP binds to
BMP-2 (22); moreover, Bostrom et al. presented data suggesting
that MGP blocks the osteo-inductive properties of BMP-2 (25).
This inhibitory function is further supported by work of Shana-
han et al., who showed that MGP expression is lower in the media
of arteries from diabetic patients with Mdnckeberg's sclerosis
than in normal vessels (26). Via its C-terminal region, MGP can
also bind to the extra-cellular glycoprotein vitronectin, which is
present in the extra cellular matrix of the arteries (27). The C-ter-
minal part of MGP is hydrophobic and does not contain Gla- or
Pser-residues, which are all present in the more hydrophilic
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N-terminal and mid-section of the molecule. It may be hypothes-
ized that MGP’s binding to vitronectin results in a concentration
of calcification-inhibitory activity in the milieu surrounding the
elastic fibers, thereby protecting them from mineralization.

Formation of matrix vesicles (MV) and apoptotic bodies
(AB) is thought to precede and/or initiate arterial calcification.
VCSMs undergoing apoptosis provide negatively charged mem-
brane particles which —if not phagocytosed properly —play a role
in the initiation of calcification (28). The physiological function
of these extracellular membrane particles is to serve as the initial
nidus of calcification in cartilage. Also in the vessel wall, both
MYV and AB are relatively common, notably in atherosclerotic
plaques (29, 30), arterial injury (31) and Mdnckeberg's sclerosis
(32,33). When VSMCs are grown in culture they can form multi-
cellular nodules, containing a high number of AB. MGP ex-
pression is highest in this phase, suggesting an association be-
tween MGP and apoptosis. Reynolds et al. showed in cell culture
systems that VSMC derived MV and AB both contained MGP
which is thought to limit the rate of calcification (34).

The specific knock-in expression of MGP in VSMCs of
MGP-deficient mice completely rescued the calcification phe-
notype (35). In the same article the authors also expressed MGP
in the liver of MGP-deficient mice, resulting in high levels of
circulating MGP. However, the elevated systemic levels of MGP
had no effect on inhibition of arterial calcification implying that
MGP inhibits calcification by acting locally within its tissue of
synthesis, not systemically. In humans, mutations in the gene en-
coding for MGP — predicting a non-functional protein — cause
the Keutel syndrome (36), a rare disorder characterized by ab-
normal cartilage calcification and peripheral pulmonary steno-
sis (37). Post mortem examination of a young Keutel patient also
revealed extensive arterial calcification (38).

Arterial calcification

Until a decade ago, calcification of arteries was thought to be a
passive, clinically irrelevant process, resulting from a high cal-
cium x phosphate product, inflammation, lipid accumulation or
diabetes. However, during recent years it has become increas-
ingly clear that vascular calcification is an active process and an
important, independent pathology that is strongly associated
with increased risk of cardiovascular morbidity and mortality
(39-41). Clinically, vascular calcification causes stiffening of
the vascular wall, which may result in decreased arterial com-
pliance, development of left ventricular hypertrophy and de-
creased coronary perfusion leading to an increased risk of fatal
complications (42, 43). Calcification is common in the elderly
population, and in patients suffering from diseases such as
chronic kidney disease (CKD), diabetes, aortic stenosis, and
atherosclerosis (44). Therefore, a lot of efforts have been di-
rected towards retarding or reversing the development of calcifi-
cation in the vasculature. In animal models it has been shown that
arterial calcification is reversible (45—48), demonstrating that
also the regression process is an actively regulated process. In
humans, attempts to use lipid lowering drugs (statins) to stabilize
or regress calcification have so far failed to show a significant ef-
fect (49, 50).

CKD patients have the highest incidence of arterial calcifi-
cation, and cardiovascular mortality is 20-fold higher than in the
apparently healthy population (51, 52). Moreover, moderate to
severe vascular calcifications are found in 60-80% of patients on
hemodialysis (53, 54). Recently, it was shown that vitamin
K-status in CKD patients is low (55). Circulating vitamin K lev-
els were measured and reported that some 30% of the haemo-
dialysis patients had sub-clinical vitamin K-deficiency. The au-
thors discussed the possibility of giving these patients extra vit-
amin K to reduce the risk for cardiovascular events (55). Addi-
tionally, the need for vitamin K in patients might be much higher
than in the general population. Anticoagulation therapy with vit-
amin K antagonists, which is regularly prescribed in these pa-
tients, will exacerbate the low vitamin K-status in these patients.
Together with the additional immunohistochemical evidence of
high levels of uncarboxylated MGP (ucMGP) present in calci-
fied areas (47, 56, 57), these data are suggestive for high vitamin
K intake as a novel treatment option for cardiovascular calcifi-
cation (see also below). The first clinical studies in dialysis pa-
tients are in progress.

Factors affecting MGP activity

Vitamin K / warfarin

It has been known for a long time that women receiving anti-
coagulant therapy with vitamin K antagonists (coumarin deriva-
tives) during the first trimester of pregnancy are at risk of de-
livering children with a syndrome characterized by nasal hypo-
plasia, depression of the nasal bridge and punctuate calcifi-
cations in the axial skeleton, proximal femurs and calcanei (58).
This syndrome is known as warfarin embryopathy (fetal warfarin
syndrome), and the abnormalities were first believed to be
caused by haemorrhages in the developing fetal cartilages with
subsequent calcification of these areas (58—60). However, it was
soon recognized that this was unlikely, since clotting factors
were known to be absent during the first trimester of pregnancy
(58, 61). Similarities between the facial and skeletal abnormal-
ities seen in warfarin embryopathy and the fetal phenytoin (hy-
dantoin) syndrome suggested that prenatal vitamin K-deficiency
may underlie these abnormalities (58, 62). This was confirmed
by Pauli et al. who described a congenital deficiency of the
enzyme vitamin K-epoxide reductase (VKOR, needed for recyc-
ling of vitamin K), causing prenatal vitamin K deficiency, and
resulting in a similar phenotype (63, 64). In later years it was re-
ported that also dietary vitamin K-deficiency results in com-
parable calcification abnormalities (65-69), which were remark-
ably similar to the bone and cartilage defects observed in warfa-
rin-treated rats (16). The same animal model provided the first
evidence that impairment of MGP function results in vascular
calcification (20). It was found that within two weeks of warfa-
rin treatment, the elastin fibres in the tunica media were signifi-
cantly calcified. Further evidence for the pivotal role of Gla resi-
dues for MGP function was provided by Murshed et al. who used
the MGP null mice in which MGP cannot be carboxylated, since
the glutamate residues in the Gla-domain were mutated into as-
partate; in this way it was demonstrated that only carboxylated
MGP (cMGP) exhibits anti-mineralization properties (35). Vit-
amin K antagonists are frequently used to prevent thrombosis in
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patients at increased risk for thrombosis (70). Treatment periods
range from several weeks to many years, even often life-long
(71). After demonstration in animal models that vitamin K an-
tagonists induce vascular calcification, studies in two indepen-
dent populations revealed that indeed treatment with coumarin
derivatives induces excessive calcification of the coronary ar-
teries and the aortic heart valve (72, 73). Schurgers et al. com-
pared valvular calcification in patients receiving oral anticoagu-
lant treatment for a period of between 16 and 35 months with pa-
tients not on oral anticoagulation (72). Histopathological evalu-
ation of the valves from the patients who had received oral anti-
coagulation showed partial or total valve destruction induced by
amorphous calcified deposits. Quantification of the calcium
contents of the aortic valves showed a statistically significant
difference between valves from those who had never received
oral anticoagulant treatment and those who had received this
treatment. These data were confirmed by Koos et al., who used
multislice spiral computed tomography (CT) to quantitate the
extent of aortic calcification in patients on long term oral antico-
agulant treatment (73). It was found that these patients had in-
creased coronary calcification compared to patients without
anticoagulation treatment (Agatston score 1,561 and 738, re-
spectively). The present policy is opposite, however: large
numbers of cardiovascular disease (CVD) patients receive anti-
coagulant therapy with vitamin K antagonists, which increases
their calcification tendency. The data described above suggest
that — if possible — other forms of anticoagulation (specific pro-
thrombin or factor-X inhibitors) should be employed, preferably
in combination with high vitamin K intake. This treatment could
activate MGP, and the intriguing question remains whether it de-
creases CVD in parallel. Together, these data demonstrate a hi-
therto unrecognized adverse side-effect of coumarin derivatives
which should be considered when designing optimal anti-throm-
botic treatments for patients.

Vitamin K comprises a family including vitamin K, (phyllo-
quinone) and vitamin K, (menaquinones). The mechanism of
vitamin K is believed to be most important for activation of he-
patic clotting factors whereas K, also is important for proteins
synthesized in extra-hepatic tissues such as the vasculature.
Moreover, there is now scientific evidence that K, vitamins have
additional properties, including apoptosis and cell-cycle arrest
and anticancer properties (74, 75), inhibition of the synthesis of
prostaglandin E2 (PGE2) (76), osteoclast apoptosis (77), and
binding to the SXR in the osteoblast, resulting in induction of os-
teoblastic markers (78). Recently, it was shown that vitamin K,
could also down regulate osteoprotegrin and increase DT-dia-
phorase, implicating that vitamin K, is an anti-calcification
component in the vessel wall (79). For a more extensive review
on the gene regulatory functions of vitamin K,, see Shearer ar-
ticle, this volume beginning on page 530.

The question of whether high vitamin K-intake is protective
against arterial calcification was first addressed in a population-
based study among participants of the Rotterdam Study. It was
demonstrated that dietary vitamin K, intake (and not K,) was in-
versely correlated with cardiovascular calcification and cardio-
vascular death (6). Elderly people in the highest tertile of vitamin
K, intake had about 50% reduction in both aortic calcification
and cardiovascular mortality and 25% decreased all-cause mor-

tality. In a clinical intervention study in which 78 women be-
tween 55 and 65 years of age received either vitamin K (1 mg/
day) or placebo for three years, vascular characteristics were as-
sessed (elasticity and distensibility) (80). In subjects in the
placebo group vascular elasticity had decreased by 10-13%,
which is consistent with the normal decrease during the time-
period of three years; in the vitamin K group, however, vascular
characteristics had remained unchanged, suggesting that the pro-
cess of vascular aging can be retarded by increased vitamin K in-
take.

The concept of calcification inhibition by high vitamin K in-
take was confirmed in experimental animals (81). In this model
the efficacy of vitamins K; and K, in preventing arterial calcifi-
cation was compared. It was found that K, completely inhibited
tissue calcification, whereas a similar or even an eight-fold
higher dose of K, had no measurable effect. To fully understand
this model it is important to know that vitamin K, can be con-
verted into MK-4 via MK4-O, but that warfarin blocks the con-
version of MK4-O into reduced MK4, which is the active cofac-
tor (82). Buitenhuis et al. showed that K, vitamins, especially the
long chain K, vitamins such as menaquinone-7, have lower Ky
values for the enzyme y-glutamyl carboxylase, demonstrating
that they are the preferred cofactor for vascular carboxylase (83).
Additionally, recently Wallin et al. showed that specifically K,
acts as an anti-calcification component in the vessel wall by in-
creasing the gene expression with a 4.8-fold higher specific ac-
tivity of DT-diaphorase, an enzyme of the vitamin K-cycle (79).
The same animal model was used to study the effect of high vit-
amin K intake on potential regression of arterial calcification
(47). Whereas rats receiving the standard chow (control) had
very low aortic calcium during the entire experiment, a six-week
warfarin treatment led to the accrual of calcium salts up to
12-fold above the baseline values. During the following six-
week period warfarin treatment was stopped and the animals re-
ceived either standard chow or standard food fortified with a
high dose of vitamin K, or K,. It was shown that once calcium
deposits had formed, the accrual of calcium salts in the vascula-
ture increased linearly after the warfarin diet had been replaced
by the normal dose of vitamin K. At high doses of either K, or K,,
however, the process of calcification was not only stopped, but a
significant fraction (some 40%) of the previously formed cal-
cium salts had been removed within six weeks. This effect was
found both in the aorta and in the coronary arteries. Using immu-
nohistochemistry it was demonstrated that parallel to the regres-
sion of aortic calcium content, cMGP had increased and ucMGP
had decreased, suggesting a role of activated MGP in the regres-
sion of calcified plaques. The fact that vitamins K; and K, had a
similar effect in this experiment may be explained by the very
high dosages used, and by the fact that in the absence of warfarin
up to 25% of the vitamin K, may be converted into K, (84). Only
by performing dose-response studies the efficacies of both vit-
amins may be compared in this model.

Carboxylase /VKOR

Mutations in the y-glutamate carboxylase gene result in bleeding
disorders due to the inability to activate sufficient vitamin K-de-
pendent clotting proteins (85, 86). Since only one gene encodes
for the enzyme, also Gla-proteins produced in extra-hepatic tis-
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sues are affected by this mutation. More recently it was shown
that patients with the y-glutamate carboxylase mutation not only
presented with haemostatic disorders, but also with soft tissue
calcifications, as is seen in patients with a pseudoxanthoma elas-
ticum (PXE)-like phenotype (87). Pseudoxanthoma elasticum is
an autosomal recessive multi-system disorder characterized by
dystrophic mineralization of soft tissues, including skin, eyes,
and arterial blood vessels (88). Whereas classic PXE is caused by
mutations in the ABCC6 gene (ATP-binding cassette subfamily
C member 6), patients with the PXE-like syndrome harboured
known y-glutamate carboxylase mutations in six out of seven pa-
tients analyzed. The involvement of MGP in classic PXE was re-
cently demonstrated by two groups, showing that fibroblasts
from PXE patients almost exclusively produce the inactive
ucMGP, which is not able to block or inhibit calcification (89,
90). The very low cMGP production in pathological fibroblasts
compared to controls suggests these cells have a deficient vit-
amin K metabolism which may play an important role in the ec-
topic calcification in PXE.

The vitamin K-epoxide reductase (VKOR) enzyme is a cru-
cial enzyme in vitamin K metabolism and ensures the re-utiliz-
ation of vitamin K after it has been oxidized in the carboxylase
reaction. Because of this recycling, human vitamin K require-
ment is extremely low (91). On a molecular level VKOR reduces
vitamin K-epoxide in two steps: first to the quinone, and subse-
quently to vitamin K hydroquinone (KH,), which is the active co-
factor for y-glutamate carboxylase. VKOR is also the target for
warfarin and related coumarin derivatives, which block the re-
cycling of vitamin K thereby decreasing the vitamin K-status.
Both vitamin K-epoxide and vitamin K quinone need to bind to
the VKOR before being reduced. Wallin et al. showed that the
enzyme DT-diaphorase in VSMCs is 100-fold less active than in
the liver. The cytoplasmic DT-diaphorase is capable of reducing
vitamin K quinones to their hydroquinone cofactors, and serves
as a rescue enzyme in case the VKOR is blocked by coumarin
(92, 93). Therefore, coumarin treatment has a detrimental effect
in the arterial vessel wall, by blocking vitamin K-metabolism
leading to impaired MGP. Moreover, the vitamin K binding site
in VKOR is thought to be close to the coumarin-binding site and
recently it was shown that the presence of various VKORCI ha-
plotypes correlates with arterial vascular disease (94).

Besides being a cofactor in the vitamin K-dependent car-
boxylation, KH, also possesses antioxidant activity (95, 96).
This is consistent with its high sensitivity to free radicals, which
may oxidize (and thus inactivate) KH, before it can take part in
the carboxylation reaction. Especially in the atherosclerotic
plaque, high levels of oxidized LDL are found, which may thus
contribute to a local vitamin K deficiency.

MGP as biomarker

As discussed above, MGP is one of the strongest inhibitors of ar-
terial calcification, its function depending on the presence of vit-
amin K. MGP is a local inhibitor of vascular calcification and it
has been demonstrated that circulating MGP has no biological
function (35). However, circulating MGP may reflect calcifi-
cation processes and inhibition of those processes in the vascular
wall. Below we will discuss the presence of MGP in vascular tis-

Table I: Matrix Gla-protein antibodies. moAb = monoclonal
antibody; W =Western blot; | = immunoprecipitation; S = section;
E = ELISA. Antibodies available atVitaK Products BV (www.vitak.org)

Amino- | Speci- | Used Directed against

acid ficity
moAb dpMGP | 3-I5 IgGla | W,I,S,E | Desphosphorylated MGP
moAb pMGP | 3-I5 IgGla | W,I,S,E | Phosphorylated MGP
moAb ucMGP | 35-54 1gGla W, 1, S, E | Uncarboxylated MGP
moAb cMGP 35-54 1gGla W, 1, S, E | Carboxylated MGP

Table 2: Possibilities of MGP ELISA’s. Four single antibody com-
petitive assays can be developed, namely dpMGP, pMGP, ucMGP and
c¢MGP conformation. Also, antibodies directed against the C-terminal
part of MGP could be used to measure the total of MGP proteins. These
monoclonal antibodies are not available yet. Combinations of the con-
formation specific antibodies could result in several MGP sandwich com-
binations. Here we hypothesise that dp-ucMGP is the inactive fraction
whereas p-cMGP represents the active MGP fraction. More research is
needed to find out the exact role of the different MGP combinations.

Phosphorylation | dpMGP pMGP
Carboxylation
ucMGP inactive MGP fraction
cMGP active MGP fraction

sue and in the circulation, and the potential of circulating MGP
as a biomarker for cardiovascular calcification.

MGP in vascular tissue

Immunohistochemical studies have shown that in healthy vessels
MGP is synthesized at relatively low rate (2, 57, 97), most likely
because the need for calcification inhibition is low. However,
Shanahan et al. showed that in arteries of diabetic patients lower
levels of MGP protein were present than in normal vessels, sug-
gesting that low MGP levels might predispose for calcification
(26). High MGP levels have been detected in arteries with cal-
cification (2, 57, 97). This may originate from increased MGP
synthesis, which has been reported in both medial and intimal ar-
terial calcification (2, 57, 97), or increased subsequent adsorp-
tion to the calcium salt crystals.

With the development of conformation-specific antibodies,
enabling the detection of active, carboxylated and inactive, un-
carboxylated MGP (cMGP and ucMGP, respectively), it became
clear that specifically the ucMGP conformation accumulates in
atherosclerotic and calcified arteries (56, 57, 90). The cMGP
conformation was nearly absent in these arteries. These con-
formation-specific antibodies have proven their value for MGP
detection and studying vitamin K-metabolism in several animal
models. Wajih et al. demonstrated the processing and transport
of the different MGP conformations in cultured VSMCs (7). In
this article the complexity of MGP processing and excretion was
clearly presented by using conformation specific antibodies
against MGP. Sweatt et al. demonstrated that calcified arterial
lesions in aging rats contained elevated MGP levels, which was
uncarboxylated and not able to bind BMP-2 (56). Our group
demonstrated massive accumulation of ucMGP around calcified
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Figure 2:Vitamin K-dependent regulation of vascular calcifi-
cation. A) Vitamin K-sufficiency: In the case of sufficient vitamin K
supply (either via food or supplements) and in the absence of disease, all
MGP synthesised in the VSMCs is activated to prevent calcification: the
clearance of matrix vesicles (MV) and apoptotic bodies (AB) is sup-
ported by either macrophages and/or surrounding VSMCs. In this way,
the nidus for calcification is absent. There is no hydroxyapatite matrix in
the tunica media to bind to MGP. The fraction of MGP leaking into circu-
lation is the dp-cMGP and p-cMGP. B) Vitamin K-insufficiency: Vitamin K
insufficiency is present in subjects with sustained low vitamin K intake or
patients on vitamin K-antagonist (coumarin derivatives). The expression

of MGP is normal. The inactive MGP will lead to decreased clearance of
MV and AB. The negatively charged phospholipid-remnants have the ca-
pacity to nucleate calcium and phosphate and subsequently calcify in the
absence of the calcification inhibitory function of MGP. The phosphory-
lated ucMGP fraction will bind to the vascular calcification, and thus the
p-ucMGP is lowered. The fraction easily released in the circulation is dp-
ucMGP (this fraction has no or limited affinity for vascular calcium). Vit-
amin K-insufficiency (as deduced from inactive ucMGP species in the cir-
culation) is present in the majority of the apparently healthy population.
C) Calcification triggered by disease: In diseases leading to the shedding
of high numbers of MV and AB, calcification is triggered and the need for
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active MGP is high. Also in diseases with a balance in favour of calcifi- lating MGP fraction which has no or limited affinity of calcium (dp-
cation, e.g. high calcium-phosphate product (ESRD), inflammation (lead- ucMGP) is high in this situation. D) High vitamin K-intake: Once calcifi-
ing to apoptosis), a high synthesis of MGP is needed to counteract the cations are present, and dp-ucMGP is high, high intake of vitamin K
nidus for calcification. In response, the demand for vitamin K increases. could be used as treatment option. In this way, all newly synthesised

In the majority of the population the intake of vitamin K is insufficient to MGP will be activated via the y-carboxylation reaction. This will result in
address this higher demand of vitamin K, required for the activation of dp-cMGP and p-cMGP. As the active MGP fraction will support clearance
all newly synthesised MGP. Therefore, a major part will occur in the / regression of calcification the amount of calcification will reduce. In the
ucMGP conformation, unable to stop or reverse calcification; MGP will circulation, this will be reflected by a lowered dp-ucMGP level, demon-
bind to the local vascular calcifications via the p-ucMGP conformation strating a beneficial shift in the tissue.

which will be measured by the lower plasma p-ucMGP levels. The circu-
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lesions which are rapidly formed in the arteries of rats during
treatment with warfarin. Additionally, it appeared that high vit-
amin K intake resulted in improved MGP carboxylation, regres-
sion of pre-formed calcifications and subsequent increased vas-
cular elasticity (47). The conformation-specific antibodies have
recently become commercially available, which will facilitate
the demonstration of their potential value as a diagnostic tool in
specimens of patients with cardiovascular disease (Table 1). To-
gether with expression levels of MGP, the activity-status of the
protein may help to understand the precise function of MGP in
the local inhibition of vascular calcification.

Circulating MGP

MGP can also be detected in the circulation with ELISA-based
techniques. The use of a circulating biomarker for CVD and/or
vascular calcification is an attractive possibility. Its value in the
diagnostic area might be the pre-screening of patients before
subjecting them to electron beam or multislice CT scanning.
This technique is widely used to screen patients for coronary cal-
cifications (98—100) but has the disadvantages of being expens-
ive and posing an increased cancer risk due to the radiation load
(101). The latter is especially important for regular follow-up
during treatment. The crusade for finding biomarkers represent-
ing or predicting vascular disease has led to the development of
ELISA’s measuring proteins involved in the calcification process
(20, 102—104). Of these proteins, only the function of MGP can
be modulated, by either vitamin K or vitamin K-antagonists.
Circulating levels of MGP will depend on the rate of MGP syn-
thesis in vascular tissue, its secretion from VSMCs and sub-
sequent binding of MGP to calcified areas that may be present
within the arterial wall. Currently it is not known in which forms
MGP circulates. Mature MGP is highly insoluble and it is not
fully understood how and whether it circulates as a free protein or
associated with a carrier. Full-length MGP has been purified
from the plasma of rats as a complex including calcium, phos-
phate, carboxylated MGP and fetuin (105). On the other hand,
uncarboxylated MGP was purified from the plasma as mature 11
kD protein (106). Additionally, it is likely that also a substantial
fraction of plasma MGP occurs as fragments.

MGP can undergo two posttranslational modifications: the
aminoacid sequence 3—15 with three serine (ser) residues which
can be phosphorylated, and aminoacid sequence 35-53 contain-
ing four glutamate residues (glu) which can be carboxylated into
v-carboxylglutamate (gla) (Fig. 1 and Table 1). These modifica-
tions result in several possible MGP conformations which can be
set free in the circulation (Table 2). In the literature three assays
for circulating MGP have been described. All three tests de-
scribed are single antibody assays that do not discriminate be-
tween the full length molecule and fragments thereof (107—109).

The first published assay is a single antibody ELISA using a
monoclonal antibody specific for the non-phosphorylated N-ter-
minal MGP aminoacid sequence 3—15 (107, 108). This assay
only measures non-phosphorylated MGP (dpMGP), and does
not discriminate between cMGP and ucMGP. It has been re-
ported the the dpMGP fraction is only a minority of the total
MGP produced (4). Using a proteomics approach, Wajih et al.
proposed that the phosphorylated fraction is secreted into the
extra-cellular environment, whereas the non-phosphorylated

form is only secreted as matrix vesicles or apopotic bodies (7).
Thus, non-phosphorylated MGP may predict the VSMC stress
locally. Increased levels of serum MGP were measured in pa-
tients with severe atherosclerosis and with type I diabetes melli-
tus using this assay (107). The same assay was used in collabor-
ation with Jono et al. (110). In this study the severity of coronary
artery calcification (CAC) was measured with electron beam CT
(EBCT) in subjects with suspected coronary artery disease, and
MGP was measured in serum samples from these subjects. The
serum levels of MGP were significantly lower in subjects with
CAC compared to those without CAC. Moreover, serum MGP
levels were inversely correlated with the severity of CAC. This is
consistent with data obtained in experimental animals in which
significantly lower MGP levels were measured in animals with
massive arterial calcifications (20, 47). An explanation for this
can be the phenotypically change of VSMCs into osteoblast-like
cells as response to the calcification, and subsequent down-regu-
lation of MGP synthesis.

The second MGP assay, which is not commercially available,
is a radioimmunoassay using polyclonal antibodies directed
against MGP purified from human bone (109). With this assay it
is not possible to discriminate between the different MGP con-
formations. Using this assay, O’Donnell et al. found a significant
positive correlation between circulating MGP levels and coron-
ary heart disease risk factors (Framingham CHD risk score) in
both men and women. Especially the traditional lipid-risk factors
correlated significantly with serum MGP levels. However, no
significant correlation was found between MGP levels and CAC.

Recently, a competitive ELISA using monoclonal antibodies
directed against the non-carboxylated MGP sequence 35-53 to
measure circulating ucMGP levels was described (106, 111).
Since this is also a single antibody assay, it does not discriminate
between 1. full length MGP or fragments or 2. phosphorylated
MGP (pMGP) and dpMGP. The assay was validated in a wide
range of patient populations prone to develop arterial calcifi-
cation, including patients with atherosclerosis and renal dys-
function (106). All patient groups had significantly lower
ucMGP values than healthy subjects of comparable age. This
assay was particularly successful in identifying patients with
end-stage renal disease (ESRD) and calciphylaxis, a condition
characterized by extensive calcification of cutaneous arterioles.
MGP levels in these patients were almost without exceptions
below the normal range (106). Additionally, it was demonstrated
that circulating ucMGP levels were inversely associated with the
aortic augmentation index (111). Moreover, in a well character-
ized cohort of ESRD patients we found an inverse correlation be-
tween circulating MGP levels and CAC scores measured by
MSCT (E. C. M. Cranenburg et al., submitted for publication).
These results could indicate that low MGP levels may be a
marker of active calcification. The low MGP levels in these pa-
tient populations could be explained by the accumulation of
ucMGP at sites of arterial calcification (14, 56, 57), suggesting
that ucMGP is not set free into the circulation. An additional ex-
planation for the low ucMGP levels could be that the majority of
ucMGHP is in the p-ucMGP form and that phosphorylation alone
is sufficient for the binding of MGP to vascular calcifications
(Fig. 2C). Indeed, previously we found no correlation between
the dpMGP and ucMGP measurements in patients (R2 0.008, p =
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0.385) (106). To interpret these data, one could speculate that
MGHP is processed in a phosphorylated form, and that also the
vitamin K-metabolism is impaired (as deduced from the ucMGP
levels).

All MGP assays described above have in common that — if
analysed on a group level — patients with CVD can be identified.
However, further research is necessary to establish the value of
this assay.

Ongoing research and future perspectives of MGP as
biomarker

We aimed to develop an MGP ELISA to follow-up vitamin
K-status after intervention (e.g. supplementation with vitamin
K, or treatment with coumarin derivatives). Additionally, we in-
tended to measure MGP species which are most readily set free
in the circulation, independent of the presence of vascular cal-
cification. It can be hypothesized that all forms of MGP contain-
ing the very negatively charged carboxylated or phosphorylated
domains have a high affinity for precipitated calcium and will
accumulate in and around calcified lesions in the vasculature
(Fig. 2). As we found that in patients prone for vascular disease/
calcification both the pMGP and ucMGP where decreased (see
above), we hypothesise that only the non-phosphorylated, non-
carboxylated MGP conformation will be easily set free in the cir-
culation, independent of the vascular tissue calcium content,
since this conformation has the lowest affinity for calcium (Fig.
2). Therefore, we developed a sandwich ELISA measuring non-
phosphorylated, non-carboxylated MGP (dp-ucMGP).

We first tested the dp-ucMGP assay in a healthy control
population, divided into groups aged 20 to 45 years and 50 years
and older. The dp-ucMGP fraction was indeed measurable in
plasma of these apparently healthy subjects (data not shown).
The presence of inactive MGP in healthy subjects is consistent
with data on osteocalcin, another vitamin K-dependent protein
produced exclusively in bone (112, 113). It is generally accepted
that the vitamin K-status is sufficient for normal haemostasis,
but that extra-hepatic tissues such as bone and vascular are mar-
ginal in vitamin K (93, 112, 114). Secondly, we measured dp-
ucMGP in two groups with extremes in vitamin K status: patients
receiving vitamin K-antagonists (coumarin derivatives) as oral
anticoagulant therapy and healthy volunteers receiving supple-
ments with vitamin K (Fig. 3). Significantly increased circu-
lating dp-ucMGP levels were found in patients receiving vitamin
K-antagonists, whereas low levels of dp-ucMGP were present in
healthy volunteers on vitamin K-supplementation. When MGP
status was measured before and after a period of high vitamin K
intake it was found that the dp-ucMGP level even decreased
below the detection limit. These data indicate that this assay may
become a marker for vitamin K-status of the arterial vessel wall.
The dp-ucMGP assay is currently under validation, the details of
which will be published elsewhere.

Conclusions

Vascular calcification is a major determinant of cardiovascular
mortality and recent data demonstrate that one of the main cal-
cification inhibitors in the vasculature is MGP. Although the vas-
cular calcification is associated with poor cardiovascular out-
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Figure 3: The dp-ucMGP assay is based on the sandwich ELISA-
principle. In brief, monoclonal anti-dpMGP was coated to the micro-
titer plate. After blocking, either sample (citrated plasma or EDTA) or
standard was incubated. The standard peptide was synthetic MGP, based
on the non-phosphorylated 3—15aa sequence and the non-carboxylated
35-54aa sequence, linked with a hydrophilic spacer (Pepscan, Lelystad,
the Netherlands). After incubation and washing, the standard or sample
was detected using a biotinylated monoclonal ucMGP antibody. Plasma
dp-ucMGP levels in the reference subjects, patients on oral anticoagulant
treatment and subjects receiving vitamin K supplements are depicted.
The reference group was divided into two groups: age less than 40
years, and age 50 or more. Mean + SD ucMGP values of young healthy
controls, elderly healthy controls, patients on coumarins and subjects re-
ceiving vitamin K-supplements were 389 + 182, 312 + 109, 172 + 82,
and 140 £ 55 nM, respectively (depicted as horizontal bars).

come, Huang et al. showed in post-mortem coronary arteries that
massive calcification is not related to plaque stress (115). In-
spection of human atherosclerotic lesions revealed an associ-
ation between plaque rupture and punctated intimal calcium de-
position, possibly originated from small cell membrane frag-
ments (116). Thus, the exact role of calcification in unstable
plaque development is still unknown. The value of the calcifi-
cation score (assessed by multislice CT scan) is therefore still
under debate. Although calcification is regarded as an actively
regulated process, it is likely that the massive arterial calcifi-
cations represent an end-stage process. The measurement of
biomarkers, which can reflect the early signs of vascular disease
could be of great importance. Both cardiovascular calcification
and MGP activity are directly correlated with vitamin K, intake
(6, 47, 81). Remarkably, most subjects in the healthy population
are not optimally protected against calcification, since part of
their MGP occurs in an uncarboxylated, inactive form (93, 106).
The presence of MGP can now be detected accurately, and could
be regarded as an independent risk factor for CVD; fortunately,
this risk factor can be annihilated by increased vitamin K intake.
Experiments in rats suggest this possibility by regression of cal-
cification (47), but presently no data in humans are available to
suggest that high vitamin K intake may contribute to regression
of vascular calcification in CVD patients. Accumulating data
suggest, however, that a high vitamin K, intake may be an effec-
tive interventional strategy to decrease the calcification risk in
the general population.
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