

EG21-G Hardware Design

LTE Standard Module Series

Rev. EG21-G_Hardware_Design_V1.1

Date: 2020-04-10

Status: Released

www.quectel.com

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China 200233 Tel: +86 21 5108 6236 Email: <u>info@quectel.com</u>

Or our local office. For more information, please visit: http://www.quectel.com/support/sales.htm

For technical support, or to report documentation errors, please visit: http://www.quectel.com/support/technical.htm Or email to: support@quectel.com

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT WITHOUT PERMISSION ARE FORBIDDEN. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2020. All rights reserved.

About the Document

Revision History

Version	Date	Author	Description				
1.0	2019-11-19	Lorry XU/ Ethan SHAN	Initial				
1.1	2020-04-10	Ward WANG/ Ethan SHAN	 Updated current consumption and GNSS current consumption (Table 33 and 34). Updated notes (Chapter 6.5). Added the note about the standard that the package warpage level of the module conforms to (Chapter 7.1). Updated module storage information (Chapter 8.1). Updated module manufacturing and soldering information (Chapter 8.2). 				

Contents

Abo	out the	Docume	nt	2
Cor	ntents.			
Fig	ure Ind	lex		7
1	Introd	uction		9
	1.1.	Safety I	nformation	
2	Produ	ict Conce	ept	11
2	2.1.		Description	
	2.2.		atures	
	2.3.	,	nal Diagram	
	2.4.		ion Board	
3	Applic	cation Int	erfaces	16
Ŭ	3.1.		Description	
	3.2.		ignment	
	3.3.	Pin Des	cription	
	3.4.	Operatii	ng Modes	
	3.5.	Power S	Saving	
	3.	5.1. SI	eep Mode	
		3.5.1.1	UART Application	
		3.5.1.2	2. USB Application with USB Remote Wakeup Function	
		3.5.1.3	B. USB Application with USB Suspend/Resume and RI Function	
		3.5.1.4	I. USB Application without USB Suspend Function	
	3.	.5.2. Ai	rplane Mode	
	3.6.	Power S	Supply	
	3.	6.1. Po	ower Supply Pins	
	3.	6.2. D	ecrease Voltage Drop	
	3.		eference Design for Power Supply	
	3.	6.4. M	onitor the Power Supply	
	3.7.	Power-c	on/off Scenarios	
	3.	7.1. Tu	urn on Module Using the PWRKEY	
	3.	.7.2. Tu	urn off Module	
		3.7.2.1	Turn off Module Using the PWRKEY Pin	
		3.7.2.2	5	
	3.8.		lodule	
	3.9.	· · /	Interface	
	3.10.		erface	
	3.11.		nterfaces	
	3.12.		nd I2C Interfaces	
	3.13.		d Interface	
	3.14.	ADC Int	erfaces	

	3.15.	SGMII Interface	50
	3.16.	Network Status Indication	52
	3.17.	STATUS	54
	3.18.	Behaviors of RI	54
	3.19.	USB_BOOT Interface	
4	GNSS	Receiver	
	4.1.	General Description	57
	4.2.	GNSS Performance	57
	4.3.	Layout Guidelines	
5		na Interfaces	
	5.1.	Main/Rx-diversity Antenna Interfaces	59
	5.1	1.1. Pin Definition	
	5.1	1.2. Operating Frequency	59
	5.1	1.3. Reference Design of RF Antenna Interface	61
	-	1.4. Reference Design of RF Layout	
	5.2.	GNSS Antenna Interface	
	5.3.	Antenna Installation	
		3.1. Antenna Requirement	
	5.3	3.2. Recommended RF Connector for Antenna Installation	66
6	Electri	ical, Reliability and Radio Characteristics	68
	6.1.	Absolute Maximum Ratings	68
	6.2.	Power Supply Ratings	69
	6.3.	Operation and Storage Temperatures	
	6.4.	Current Consumption	70
	6.5.	RF Output Power	75
	6.6.	RF Receiving Sensitivity	76
	6.7.	Electrostatic Discharge	77
	6.8.	Thermal Consideration	78
7	Mecha	anical Dimensions	80
	7.1.	Mechanical Dimensions of the Module	80
	7.2.	Recommended Footprint	82
	7.3.	Recommended Compatible Footprint	83
	7.4.	Design Effect Drawings of the Module	
8	Storag	ge, Manufacturing and Packaging	85
	8.1.	Storage	85
	8.2.	Manufacturing and Soldering	86
	8.3.	Packaging	
9	Appen	ndix A References	
10		ndix B GPRS Coding Schemes	
11		ndix C GPRS Multi-slot Classes	
12	Appen	ndix D EDGE Modulation and Coding Schemes	96

Table Index

Table 1: Supported Frequency Bands and GNSS Function of EG21-G Module	11
Table 2: Key Features of EG21-G Module	. 12
Table 3: I/O Parameters Definition	. 18
Table 4: Pin Description	. 18
Table 5: Overview of Operating Modes	. 28
Table 6: VBAT and GND Pins	. 32
Table 7: Pin Definition of PWRKEY	. 35
Table 8: Pin Definition of RESET_N	. 38
Table 9: Pin Definition of (U)SIM Interface	. 39
Table 10: Pin Description of USB Interface	. 41
Table 11: Pin Definition of Main UART Interface	. 43
Table 12: Pin Definition of Debug UART Interface	. 43
Table 13: Logic Levels of Digital I/O	. 44
Table 14: Pin Definition of PCM and I2C Interfaces	. 46
Table 15: Pin Definition of SD Card Interface	. 48
Table 16: Pin Definition of ADC Interfaces	. 49
Table 17: Characteristic of ADC	. 50
Table 18: Pin Definition of SGMII Interface	. 50
Table 19: Pin Definition of Network Connection Status/Activity Indicator	. 53
Table 20: Working State of Network Connection Status/Activity Indicator	. 53
Table 21: Pin Definition of STATUS	. 54
Table 22: Behaviors of RI	. 55
Table 23: Pin Definition of USB_BOOT Interface	
Table 24: GNSS Performance	. 57
Table 25: Pin Definition of RF Antennas	. 59
Table 26: Module Operating Frequencies	. 59
Table 27: Pin Definition of GNSS Antenna Interface	. 63
Table 28: GNSS Frequency	. 64
Table 29: Antenna Requirements	. 65
Table 30: Absolute Maximum Ratings	. 68
Table 31: Power Supply Ratings	. 69
Table 32: Operation and Storage Temperatures	. 69
Table 33: EG21-G Current Consumption	. 70
Table 34: GNSS Current Consumption of EG21-G Module	. 75
Table 35: RF Output Power	. 75
Table 36: EG21-G Conducted RF Receiving Sensitivity	. 76
Table 37: Electrostatics Discharge Characteristics (25°C, 45% Relative Humidity)	. 78
Table 38: Recommended Thermal Profile Parameters	. 87
Table 39: Related Documents	. 89
Table 40: Terms and Abbreviations	. 89
Table 41: Description of Different Coding Schemes	. 93

Table 42: GPRS Multi-slot Classes	94
Table 43: EDGE Modulation and Coding Schemes	96

Figure Index

Figure 1: Functional Diagram	. 15
Figure 2: Pin Assignment (Top View)	. 17
Figure 3: Sleep Mode Application via UART	. 29
Figure 4: Sleep Mode Application with USB Remote Wakeup	. 29
Figure 5: Sleep Mode Application with RI	. 30
Figure 6: Sleep Mode Application without Suspend Function	. 31
Figure 7: Power Supply Limits during Burst Transmission	. 33
Figure 8: Star Structure of the Power Supply	. 33
Figure 9: Reference Circuit of Power Supply	. 34
Figure 10: Turn on the Module by Using Driving Circuit	. 35
Figure 11: Turn on the Module by Using Keystroke	. 35
Figure 12: Timing of Turning on Module	. 36
Figure 13: Timing of Turning off Module	. 37
Figure 14: Reference Circuit of RESET_N by Using Driving Circuit	. 38
Figure 15: Reference Circuit of RESET_N by Using Button	. 38
Figure 16: Timing of Resetting Module	. 39
Figure 17: Reference Circuit of (U)SIM Interface with an 8-pin (U)SIM Card Connector	. 40
Figure 18: Reference Circuit of (U)SIM Interface with a 6-pin (U)SIM Card Connector	. 40
Figure 19: Reference Circuit of USB Application	. 42
Figure 20: Reference Circuit with Translator Chip	. 44
Figure 21: Reference Circuit with Transistor Circuit	. 45
Figure 22: Primary Mode Timing	. 46
Figure 23: Auxiliary Mode Timing	46
	. 40
Figure 24: Reference Circuit of PCM and I2C Application with Audio Codec	
Figure 24: Reference Circuit of PCM and I2C Application with Audio Codec Figure 25: Reference Circuit of SD Card Interface	. 47
	. 47 . 48
Figure 25: Reference Circuit of SD Card Interface	. 47 . 48 . 51
Figure 25: Reference Circuit of SD Card Interface Figure 26: Simplified Block Diagram for Ethernet Application	. 47 . 48 . 51 . 52
Figure 25: Reference Circuit of SD Card Interface Figure 26: Simplified Block Diagram for Ethernet Application Figure 27: Reference Circuit of SGMII Interface with PHY AR8033 Application	. 47 . 48 . 51 . 52 . 53
Figure 25: Reference Circuit of SD Card Interface Figure 26: Simplified Block Diagram for Ethernet Application Figure 27: Reference Circuit of SGMII Interface with PHY AR8033 Application Figure 28: Reference Circuit of the Network Indicator	. 47 . 48 . 51 . 52 . 53 . 54
Figure 25: Reference Circuit of SD Card Interface Figure 26: Simplified Block Diagram for Ethernet Application Figure 27: Reference Circuit of SGMII Interface with PHY AR8033 Application Figure 28: Reference Circuit of the Network Indicator Figure 29: Reference Circuits of STATUS	. 47 . 48 . 51 . 52 . 53 . 54 . 56
Figure 25: Reference Circuit of SD Card Interface Figure 26: Simplified Block Diagram for Ethernet Application Figure 27: Reference Circuit of SGMII Interface with PHY AR8033 Application Figure 28: Reference Circuit of the Network Indicator Figure 29: Reference Circuits of STATUS Figure 30: Reference Circuit of USB_BOOT Interface	. 47 . 48 . 51 . 52 . 53 . 54 . 56 . 56
Figure 25: Reference Circuit of SD Card Interface Figure 26: Simplified Block Diagram for Ethernet Application Figure 27: Reference Circuit of SGMII Interface with PHY AR8033 Application Figure 28: Reference Circuit of the Network Indicator Figure 29: Reference Circuits of STATUS Figure 30: Reference Circuit of USB_BOOT Interface Figure 31: Timing Sequence for Entering Emergency Download Mode	. 47 . 48 . 51 . 52 . 53 . 54 . 56 . 56 . 61
Figure 25: Reference Circuit of SD Card Interface Figure 26: Simplified Block Diagram for Ethernet Application Figure 27: Reference Circuit of SGMII Interface with PHY AR8033 Application Figure 28: Reference Circuit of the Network Indicator Figure 29: Reference Circuits of STATUS Figure 30: Reference Circuit of USB_BOOT Interface Figure 31: Timing Sequence for Entering Emergency Download Mode Figure 32: Reference Circuit of RF Antenna Interface	. 47 . 48 . 51 . 52 . 53 . 54 . 56 . 61 . 62
 Figure 25: Reference Circuit of SD Card Interface Figure 26: Simplified Block Diagram for Ethernet Application Figure 27: Reference Circuit of SGMII Interface with PHY AR8033 Application Figure 28: Reference Circuit of the Network Indicator Figure 29: Reference Circuits of STATUS Figure 30: Reference Circuit of USB_BOOT Interface Figure 31: Timing Sequence for Entering Emergency Download Mode Figure 32: Reference Circuit of RF Antenna Interface Figure 33: Microstrip Design on a 2-layer PCB 	. 47 . 48 . 51 . 52 . 53 . 54 . 56 . 61 . 62 . 62
 Figure 25: Reference Circuit of SD Card Interface Figure 26: Simplified Block Diagram for Ethernet Application Figure 27: Reference Circuit of SGMII Interface with PHY AR8033 Application Figure 28: Reference Circuit of the Network Indicator Figure 29: Reference Circuits of STATUS Figure 30: Reference Circuit of USB_BOOT Interface Figure 31: Timing Sequence for Entering Emergency Download Mode Figure 32: Reference Circuit of RF Antenna Interface Figure 33: Microstrip Design on a 2-layer PCB Figure 34: Coplanar Waveguide Design on a 2-layer PCB 	. 47 . 48 . 51 . 52 . 53 . 54 . 56 . 61 . 62 . 62 . 62
Figure 25: Reference Circuit of SD Card Interface Figure 26: Simplified Block Diagram for Ethernet Application Figure 27: Reference Circuit of SGMII Interface with PHY AR8033 Application Figure 28: Reference Circuit of the Network Indicator Figure 29: Reference Circuits of STATUS Figure 30: Reference Circuit of USB_BOOT Interface Figure 31: Timing Sequence for Entering Emergency Download Mode Figure 32: Reference Circuit of RF Antenna Interface Figure 33: Microstrip Design on a 2-layer PCB Figure 34: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)	. 47 . 48 . 51 . 52 . 53 . 54 . 56 . 61 . 62 . 62 . 62 . 63
 Figure 25: Reference Circuit of SD Card Interface Figure 26: Simplified Block Diagram for Ethernet Application Figure 27: Reference Circuit of SGMII Interface with PHY AR8033 Application Figure 28: Reference Circuit of the Network Indicator Figure 29: Reference Circuits of STATUS Figure 30: Reference Circuit of USB_BOOT Interface Figure 31: Timing Sequence for Entering Emergency Download Mode Figure 32: Reference Circuit of RF Antenna Interface Figure 33: Microstrip Design on a 2-layer PCB Figure 34: Coplanar Waveguide Design on a 2-layer PCB (Layer 3 as Reference Ground) Figure 36: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground) 	. 47 . 48 . 51 . 52 . 53 . 54 . 56 . 61 . 62 . 62 . 62 . 63 . 64
Figure 25: Reference Circuit of SD Card Interface Figure 26: Simplified Block Diagram for Ethernet Application	. 47 . 48 . 51 . 52 . 53 . 54 . 56 . 61 . 62 . 62 . 62 . 63 . 64 . 66
 Figure 25: Reference Circuit of SD Card Interface	. 47 . 48 . 51 . 52 . 53 . 54 . 56 . 61 . 62 . 62 . 62 . 62 . 63 . 64 . 66 . 66

Figure 42: Referenced Heatsink Design (Heatsink at the Backside of Customers' PCB)	79
Figure 43: Module Top and Side Dimensions	80
Figure 44: Module Bottom Dimensions (Bottom View)	81
Figure 45: Recommended Footprint (Top View)	82
Figure 46: Recommended Compatible Footprint (Top View)	83
Figure 47: Top View of the Module	84
Figure 48: Bottom View of the Module	84
Figure 49: Reflow Soldering Thermal Profile	86
Figure 50: Tape Specifications	87
Figure 51: Reel Specifications	88
Figure 52: Tape and Reel Directions	88

1 Introduction

This document defines EG21-G module, and describes its air interface and hardware interfaces which are connected with customers' applications.

This document can help customers quickly understand module interface specifications, electrical and mechanical details as well as other related information of EG21-G module. To facilitate its application in different fields, relevant reference design is also provided for customers' reference. Associated with application note and user guide, customers can use EG21-G module to design and set up mobile applications easily.

1.1. Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any cellular terminal or mobile incorporating EG21-G module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for customers' failure to comply with these precautions.

	Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.
	Switch off the cellular terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If the device offers an Airplane Mode, then it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on boarding the aircraft.
•	Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.
SOS	Cellular terminals or mobiles operating over radio signals and cellular network cannot be guaranteed to connect in all possible conditions (for example, with unpaid bills or with an invalid (U)SIM card). When emergent help is needed in such conditions, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on in a service area with adequate cellular signal strength.
The second	The cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.
	In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc.

2 Product Concept

2.1. General Description

EG21-G is an LTE-FDD/LTE-TDD/WCDMA/GSM wireless communication module with receive diversity. It provides data connectivity on LTE-FDD, LTE-TDD, DC-HSDPA, HSPA+, HSDPA, HSUPA, UMTS, EDGE and GPRS networks. It also provides GNSS and voice functionality for customers' specific applications. The following table shows the supported frequency bands, GNSS and digital audio functions of EG21-G module.

Frequency Bands/ GNSS Function/ Digital Audio	EG21-G
LTE-FDD (with receive diversity)	B1/B2/B3/B4/B5/B7/B8/B12/B13/B18/B19/B20/B25/B26/B28
LTE-TDD (with receive diversity)	B38/B39/B40/B41
WCDMA (with receive diversity)	B1/B2/B4/B5/B6/B8/B19
GSM	850/900/1800/1900 MHz
GNSS Function (Optional)	GPS, GLONASS, BeiDou (Compass), Galileo, QZSS
Digital Audio (PCM)	Supported

Table 1: Supported Frequency Bands and GNSS Function of EG21-G Module

With a compact profile of 29.0 mm \times 32.0 mm \times 2.4 mm, EG21-G can meet almost all requirements for M2M applications such as automotive, smart metering, tracking system, security, router, wireless POS, mobile computing device, PDA phone, tablet PC, etc.

EG21-G is an SMD type module which can be embedded into applications through its 144-pin LGA ¹⁾ pads.

NOTE

¹⁾ EG21-G includes LGA and LCC form factors. LGA is default, while LCC is recommended only in the compatible design with EC25 series/EC21 series/EC20 R2.1/EG25-G/UC200T modules.

2.2. Key Features

The following table describes the detailed features of EG21-G module.

Table 2	2: Key	Features	of	EG21-G	Module
---------	--------	-----------------	----	--------	--------

Features	Description
Power Supply	Supply voltage: 3.3–4.3 V
	Typical supply voltage: 3.8 V
	Class 4 (33 dBm ±2 dB) for GSM850
	Class 4 (33 dBm ±2 dB) for EGSM900
	Class 1 (30 dBm ±2 dB) for DCS1800
	Class 1 (30 dBm ±2 dB) for PCS1900
	Class E2 (27 dBm ±3 dB) for GSM850 8-PSK
Transmitting Power	Class E2 (27 dBm ±3 dB) for EGSM900 8-PSK
	Class E2 (26 dBm ±3 dB) for DCS1800 8-PSK
	Class E2 (26 dBm ±3 dB) for PCS1900 8-PSK
	Class 3 (24 dBm +1/-3 dB) for WCDMA bands
	Class 3 (23 dBm \pm 2 dB) for LTE-FDD bands
	Class 3 (23 dBm ±2 dB) for LTE-TDD bands
	Support up to non-CA Cat 1 FDD and TDD
	Support 1.4/3/5/10/15/20 MHz RF bandwidth
LTE Features	Support MIMO in DL direction
	LTE-FDD: Max 10 Mbps (DL), Max 5 Mbps (UL)
	LTE-TDD: Max 8.96 Mbps (DL), Max 3.1 Mbps (UL)
	Support 3GPP R8 DC-HSDPA, HSPA+, HSDPA, HSUPA and WCDMA
	Support QPSK, 16-QAM and 64-QAM modulation
UMTS Features	DC-HSDPA: Max 42 Mbps (DL)
	HSUPA: Max 5.76 Mbps (UL)
	WCDMA: Max 384 kbps (DL), Max 384 kbps (UL)
	GPRS:
	Support GPRS multi-slot class 33 (33 by default)
GSM Features	Coding scheme: CS-1, CS-2, CS-3 and CS-4
	Max 107 kbps (DL), Max 85.6 kbps (UL)
	EDGE:

	Support EDGE multi-slot class 33 (33 by default) Support GMSK and 8-PSK for different MCS (Modulation and Coding Scheme) Downlink coding schemes: CS 1-4 and MCS 1-9 Uplink coding schemes: CS 1-4 and MCS 1-9 Max 296 kbps (DL), Max 236.8 kbps (UL)
Internet Protocol Features	Support TCP/UDP/PPP/FTP/FTPS/HTTP/HTTPS/NTP/PING/QMI/NITZ/ SMTP/SSL/MQTT/CMUX/SMTPS/MMS*/FILE* protocols Support PAP (Password Authentication Protocol) and CHAP (Challenge Handshake Authentication Protocol) protocols which are usually used for PPP connections
SMS	Text and PDU modes Point-to-point MO and MT SMS cell broadcast SMS storage: ME by default
(U)SIM Interface	Support USIM/SIM card: 1.8 V, 3.0 V
Audio Features	Support one digital audio interface: PCM interface GSM: HR/FR/EFR/AMR/AMR-WB WCDMA: AMR/AMR-WB LTE: AMR/AMR-WB Support echo cancellation and noise suppression
PCM Interface	Used for audio function with external codec Support 16-bit linear data format Support long frame synchronization and short frame synchronization Support master and slave modes, but must be the master in long frame synchronization
USB Interface	Compliant with USB 2.0 specification (slave only); the data transfer rate can reach up to 480 Mbps Used for AT command communication, data transmission, GNSS NMEA sentences output, software debugging, firmware upgrade and voice over USB Support USB serial drivers for: Windows 7/8/8.1/10, Linux 2.6–5.4, Android 4.x/5.x/6.x/7.x/8.x/9.x, etc.
UART Interfaces	Main UART: Used for AT command communication and data transmission Baud rates reach up to 921600 bps, 115200 bps by default Support RTS and CTS hardware flow control Debug UART: Used for Linux console and log output 115200bps baud rate
SD Card Interface	Support SD 3.0 protocol

	Support maximum 150 Mbps (DL)/50 Mbps (UL) for 4G network				
Rx-diversity	Support LTE/WCDMA Rx-diversity				
	Gen8C Lite of Qualcomm				
GNSS Features	Protocol: NMEA 0183				
	Data update rate: 1 Hz by default				
AT Commands	Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT				
AT Commanus	commands				
Network Indication	Two pins including NET_MODE and NET_STATUS to indicate network				
Network Indication	connectivity status				
Antenna Interfaces	Including main antenna interface (ANT_MAIN), Rx-diversity antenna				
Antenna Intenaces	interface (ANT_DIV) and GNSS antenna interface (ANT_GNSS)				
	Size: (29.0 ±0.15) mm × (32.0 ±0.15) mm × (2.4 ±0.2) mm				
Physical Characteristics	Package: LGA (default)				
Filysical Characteristics	LCC (compatible design)				
	Weight: approx. 4.9 g				
	Operation temperature range: -35 °C to +75 °C ¹⁾				
Temperature Range	Extended temperature range: -40 °C to +85 °C ²⁾				
	Storage temperature range: -40 °C to +90 °C				
Firmware Upgrade	USB interface or DFOTA				
RoHS	All hardware components are fully compliant with EU RoHS directive.				

NOTES

- 1. ¹⁾ Within operation temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call*, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to normal operation temperature levels, the module will meet 3GPP specifications again.
- 3. "*" means under development.

2.3. Functional Diagram

The following figure shows a block diagram of EG21-G and illustrates the major functional parts.

- Power management
- Baseband
- DDR+NAND flash

- Radio frequency
- Peripheral interfaces

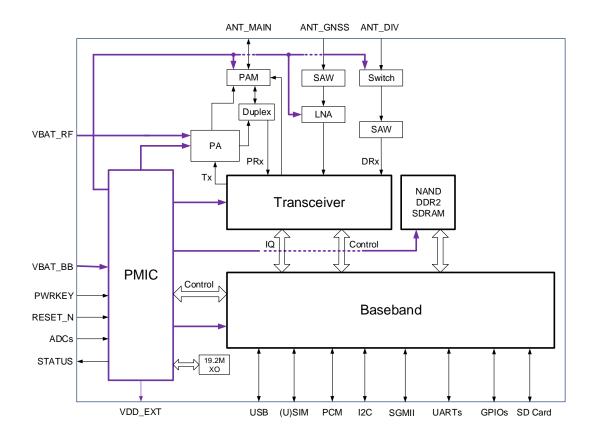


Figure 1: Functional Diagram

2.4. Evaluation Board

In order to help customers develop applications with EG21-G, Quectel supplies an evaluation board (UMTS<E EVB), USB to RS-232 converter cable, earphone, antenna and other peripherals to control or test the module. For more details, please refer to *document [8]*.

3 Application Interfaces

3.1. General Description

EG21-G is equipped with 144 LGA pads that can be connected to cellular application platform. The subsequent chapters will provide detailed descriptions of the following functions/interfaces.

- Power supply
- (U)SIM interface
- USB interface
- UART interfaces
- PCM and I2C interfaces
- SD card interface
- ADC interfaces
- Status indication
- SGMII interface
- USB_BOOT interface

3.2. Pin Assignment

The following figure shows the pin assignment of EG21-G module.

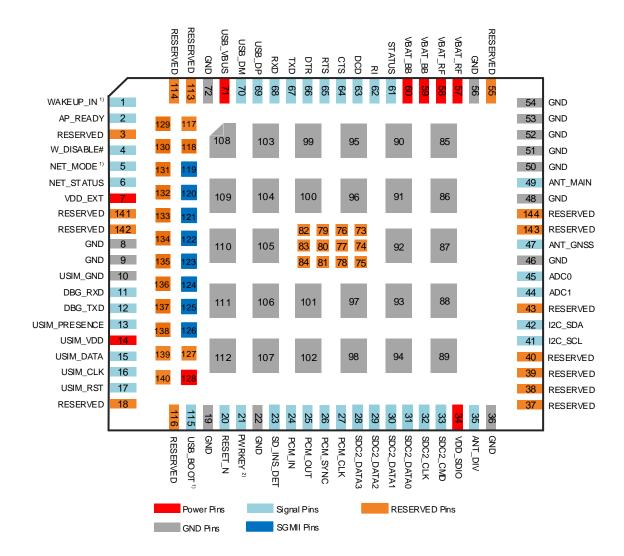


Figure 2: Pin Assignment (Top View)

NOTES

- 1. ¹⁾ means pins WAKEUP_IN, NET_MODE and USB_BOOT cannot be pulled up before startup.
- 2. ²⁾ PWRKEY output voltage is 0.8 V because of the diode drop in the Qualcomm chipset.
- 3. Pads 119–126 are SGMII function pins.
- 4. Keep all RESERVED pins and unused pins unconnected.
- 5. GND pins 85–112 should be connected to ground in the design. RESERVED pins 73–84 should not be designed in schematic and PCB decal, and these pins should be served as a keepout area.

3.3. Pin Description

The following tables show the pin definition of EG21-G modules.

 Table 3: I/O Parameters Definition

Туре	Description			
AI	Analog Input			
AO	Analog Output			
DI	Digital Input			
DO	Digital Output			
10	Bidirectional			
OD	Open Drain			
PI	Power Input			
PO	Power Output			

Table 4: Pin Description

Power Supply					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VBAT_BB	59, 60	ΡI	Power supply for module's baseband part	Vmax = 4.3 V Vmin = 3.3 V Vnorm = 3.8 V	It must be provided with sufficient current up to 0.8 A.
VBAT_RF	57, 58	PI	Power supply for module's RF part	Vmax = 4.3 V Vmin = 3.3 V Vnorm = 3.8 V	It must be provided with sufficient current up to 1.8 A in a burst transmission.
VDD_EXT	7	PO	Provide 1.8 V for external circuit	Vnorm = 1.8 V I _o max = 50 mA	Power supply for external GPIO's pull up circuits. If unused, keep it open.
GND	8, 9, 19, 22, 36, 46, 48, 50–54,		Ground		

56, 72, 85–112

Power-on/off

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PWRKEY	21	DI	Turn on/off the module	V _H = 0.8 V	The output voltage is 0.8V because of the diode drop in the Qualcomm chipset.
RESET_N	20	DI	Reset signal of the module	V _{IH} max = 2.1 V V _{IH} min = 1.3 V V _{IL} max = 0.5 V	lf unused, keep it open.
Status Indicat	ion				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
STATUS	61	OD	Indicate the module operating status	The drive current should be less than 0.9 mA.	An external pull-up resistor is required. If unused, keep it open.
NET_MODE	5	DO	Indicate the module's network registration mode	V _{OH} min = 1.35 V V _{OL} max = 0.45 V	1.8 V power domain.Cannot be pulled up before startup.If unused, keep it open.
NET_ STATUS	6	DO	Indicate the module's network activity status	V _{OH} min = 1.35 V V _{OL} max = 0.45 V	1.8 V power domain. If unused, keep it open.
USB Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_VBUS	71	ΡI	USB connection detection	Vmax = 5.25 V Vmin = 3.0 V Vnorm = 5.0 V	Typical: 5.0V If unused, keep it open.
USB_DP	69	Ю	USB differential data bus (+)		USB 2.0 Compliant. Require differential impedance of 90 Ω. If unused, keep it open.
USB_DM	70	Ю	USB differential data bus (-)		USB 2.0 Compliant. Require differential impedance of 90 Ω. If unused, keep it open.

(U)SIM Interface						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
USIM_GND	10		Specified ground for (U)SIM card			
				l _o max = 50 mA		
USIM_VDD	14	PO	Power supply for (U)SIM card	For 1.8 V (U)SIM: Vmax = 1.9 V Vmin = 1.7 V	Either 1.8 V or 3.0 V is supported by the module	
				For 3.0 V (U)SIM: Vmax = 3.05 V Vmin = 2.7 V	automatically.	
			For 1.8 V (U)SIM: V _{IL} max = 0.6 V V _{IH} min = 1.2 V V _{OL} max = 0.45 V V _{OH} min = 1.35 V			
USIM_DATA 15 IC	ΙΟ	O Data signal of (U)SIM card	For 3.0 V (U)SIM: V _{IL} max = 1.0 V V _{IH} min = 1.95 V V _{OL} max = 0.45 V V _{OH} min = 2.55 V			
USIM_CLK	16	DO	Clock signal of (U)SIM card	For 1.8 V (U)SIM: V _{OL} max = 0.45 V V _{OH} min = 1.35 V For 3.0 V (U)SIM:		
				V _{OL} max = 0.45 V V _{OH} min = 2.55 V		
USIM_RST	1/ 1)()	Reset signal of (U)SIM card	For 1.8 V (U)SIM: V _{OL} max = 0.45 V V _{OH} min = 1.35 V			
			For 3.0 V (U)SIM: V _{OL} max = 0.45 V V _{OH} min = 2.55 V			
USIM_ PRESENCE	13	DI	(U)SIM card insertion detection	V _{IL} min = -0.3 V V _{IL} max = 0.6 V V _{IH} min = 1.2 V V _{IH} max = 2.0 V	1.8 V power domain. If unused, keep it open.	

Main UART Interface						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
RI	62	DO	Ring indicator	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	1.8 V power domain. If unused, keep it open.	
DCD	63	DO	Data carrier detection	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	1.8 V power domain. If unused, keep it open.	
CTS	64	DO	Clear to send	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	1.8 V power domain. If unused, keep it open.	
RTS	65	DI	Request to send	$V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.2 V$ $V_{IH}max = 2.0 V$	1.8 V power domain. If unused, keep it open.	
DTR	66	DI	Data terminal ready, sleep mode control	$V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.2 V$ $V_{IH}max = 2.0 V$	1.8 V power domain.Pulled up by default.Low level wakes up the module.If unused, keep it open.	
TXD	67	DO	Transmit data	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	1.8 V power domain. If unused, keep it open.	
RXD	68	DI	Receive data	V _{IL} min = -0.3 V V _{IL} max = 0.6 V V _{IH} min = 1.2 V V _{IH} max = 2.0 V	1.8 V power domain. If unused, keep it open.	
Debug UART	Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
DBG_TXD	12	DO	Transmit data	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	1.8 V power domain. If unused, keep it open.	
DBG_RXD	11	DI	Receive data	V _{IL} min = -0.3 V V _{IL} max = 0.6 V V _{IH} min = 1.2 V V _{IH} max = 2.0 V	1.8 V power domain. If unused, keep it open.	
ADC Interface	es					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	

45	AI	General-purpose analog to digital converter	Voltage range: 0.3 V to VBAT_BB	lf unused, keep it open.
44	AI	General-purpose analog to digital converter	Voltage range: 0.3 V to VBAT_BB	lf unused, keep it open.
)				
Pin No.	I/O	Description	DC Characteristics	Comment
24	DI	PCM data input	$V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.2 V$ $V_{IH}max = 2.0 V$	1.8 V power domain. If unused, keep it open.
25	DO	PCM data output	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	1.8 V power domain. If unused, keep it open.
26	Ю	PCM data frame synchronization signal	$V_{OL}max = 0.45 V$ $V_{OH}min = 1.35 V$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.2 V$ $V_{IH}max = 2.0 V$	 1.8 V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open.
27	Ю	PCM clock	$V_{OL}max = 0.45 V$ $V_{OH}min = 1.35 V$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.2 V$ $V_{IH}max = 2.0 V$	1.8 V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open.
	44 Pin No. 24 25 26	44 AI Pin No. I/O 24 DI 25 DO 26 IO	45AIanalog to digital converter44AIGeneral-purpose analog to digital converterPin No.I/ODescription24DIPCM data input25DOPCM data output26IOPCM data frame synchronization signal	45AIanalog to digital converterVoltage range: $0.3 V$ to VBAT_BB44AIGeneral-purpose analog to digital converterVoltage range: $0.3 V$ to VBAT_BB24DIDescriptionDC Characteristics24DIPCM data input $V_{IL}min = -0.3 V$ $V_{IH}max = 2.0 V$ 25DOPCM data output $V_{0L}max = 0.45 V$ $V_{0H}min = 1.35 V$ 26IOPCM data frame synchronization signal $V_{0L}max = 0.45 V$ $V_{0H}min = 1.2 V$ 27IOPCM clock $V_{0L}max = 0.45 V$ $V_{0H}min = 1.35 V$ 27IOPCM clock $V_{0L}max = 0.6 V$ $V_{0H}min = 1.2 V$

```
I2C Interface
```

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
I2C_SCL	41	OD	I2C serial clock. Used for external codec.		An external pull-up resistor is required. 1.8 V only. If unused, keep it open.
I2C_SDA	42	OD	I2C serial data. Used for external codec.		An external pull-up resistor is required. 1.8 V only. If unused, keep it open.
SD Card Interface					

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
SDC2_ DATA3	28	IO	SD card SDIO bus DATA3	1.8 V signaling: $V_{OL}max = 0.45 V$ $V_{OH}min = 1.4 V$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.58 V$ $V_{IH}min = 1.27 V$ $V_{IH}max = 2.0 V$ 3.0 V signaling: $V_{OL}max = 0.38 V$ $V_{OH}min = 2.01 V$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.76 V$ $V_{IH}min = 1.72 V$ $V_{IH}max = 3.34 V$	SDIO signal level car be selected according to SD card supported level, please refer to SD 3.0 protocol for more details. If unused, keep it open.
SDC2_ DATA2	29	IO	SD card SDIO bus DATA2	1.8 V signaling: $V_{OL}max = 0.45 V$ $V_{OL}min = 1.4 V$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.58 V$ $V_{IL}max = 0.58 V$ $V_{IL}max = 2.0 V$ 3.0 V signaling: $V_{OL}max = 0.38 V$ $V_{OL}max = 0.38 V$ $V_{OL}min = 2.01 V$ $V_{IL}min = -0.3 V$ $V_{IL}min = -0.3 V$ $V_{IL}min = 1.72 V$ $V_{IH}max = 3.34 V$	SDIO signal level car be selected according to SD card supported level, please refer to SD 3.0 protocol for more details. If unused, keep it open.
SDC2_ DATA1	30	IO	SD card SDIO bus DATA1	1.8 V signaling: $V_{OL}max = 0.45 V$ $V_{OH}min = 1.4 V$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.58 V$ $V_{IH}min = 1.27 V$ $V_{IH}max = 2.0 V$ 3.0 V signaling: $V_{OL}max = 0.38 V$ $V_{OH}min = 2.01 V$	SDIO signal level car be selected according to SD card supported level, please refer to SD 3.0 protocol for more details. If unused, keep it open.

				$V_{IL}max = 0.76 V$ $V_{IH}min = 1.72 V$	
SDC2_ DATA0	31	IO	SD card SDIO bus DATA0	$V_{IH}max = 3.34 V$ 1.8 V signaling: $V_{OL}max = 0.45 V$ $V_{OH}min = 1.4 V$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.58 V$ $V_{IH}min = 1.27 V$ $V_{IH}max = 2.0 V$ 3.0 V signaling: $V_{OL}max = 0.38 V$ $V_{OH}min = 2.01 V$ $V_{IL}min = -0.3 V$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.76 V$ $V_{IH}min = 1.72 V$ $V_{IH}max = 3.34 V$	SDIO signal level can be selected according to SD card supported level, please refer to SD 3.0 protocol for more details. If unused, keep it open.
SDC2_CLK	32	DO	SD card SDIO bus clock	1.8 V signaling: $V_{OL}max = 0.45 V$ $V_{OH}min = 1.4 V$ 3.0 V signaling: $V_{OL}max = 0.38 V$ $V_{OH}min = 2.01 V$	SDIO signal level can be selected according to SD card supported level, please refer to SD 3.0 protocol for more details. If unused, keep it open.
SDC2_CMD	33	IO	SD card SDIO bus command	1.8 V signaling: $V_{OL}max = 0.45 V$ $V_{OH}min = 1.4 V$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.58 V$ $V_{IH}min = 1.27 V$ $V_{IH}max = 2.0 V$ 3.0 V signaling: $V_{OL}max = 0.38 V$ $V_{OH}min = 2.01 V$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.76 V$ $V_{IH}min = 1.72 V$ $V_{IH}max = 3.34 V$	SDIO signal level can be selected according to SD card supported level, please refer to SD 3.0 protocol for more details. If unused, keep it open.
SD_INS_ DET	23	DI	SD card insertion detect	$V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$	1.8 V power domain. If unused, keep it

				V _{IH} min = 1.2 V V _{IH} max = 2.0 V	open.
VDD_SDIO	34	PO	SD card SDIO bus pull-up power	l_0 max = 50 mA	1.8/2.85 V configurable. Cannot be used for SD card power. If unused, keep it open.
SGMII Interface	e				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
EPHY_RST_N	119	DO	Ethernet PHY reset	For 1.8 V: V _{OL} max = 0.45 V V _{OH} min = 1.4 V For 2.85V: V _{OL} max = 0.35 V V _{OH} min = 2.14 V	1.8/2.85 V power domain. If unused, keep it open.
EPHY_INT_N	120	DI	Ethernet PHY interrupt	V _{IL} min = -0.3 V V _{IL} max = 0.6 V V _{IH} min = 1.2 V V _{IH} max = 2.0 V	1.8 V power domain. If unused, keep it open.
SGMII_MDATA	121	Ю	SGMII MDIO (Management Data Input/Output) data	For 1.8 V: $V_{IL}max = 0.58 V$ $V_{IH}min = 1.27 V$ $V_{OL}max = 0.45 V$ $V_{OH}min = 1.4 V$ For 2.85V: $V_{IL}max = 0.71 V$ $V_{IH}min = 1.78 V$ $V_{OL}max = 0.35 V$ $V_{OH}min = 2.14 V$	1.8/2.85 V power domain. Require external pull-up to USIM2_VDD, and the resistor should be 1.5 k Ω . If unused, keep it open.
SGMII_MCLK	122	DO	SGMII MDIO (Management Data Input/Output) clock	For 1.8 V: V _{OL} max = 0.45 V V _{OH} min = 1.4 V For 2.85V: V _{OL} max = 0.35 V V _{OH} min = 2.14 V	1.8/2.85 V power domain. If unused, keep it open.
SGMII_TX_M	123	AO	SGMII transmission - minus		Connect with a $0.1 \ \mu F$ capacitor, and is close to the PHY

				side. If unused, keep it open.
SGMII_TX_P	124	AO	SGMII transmission - plus	Connect with a 0.1 µF capacitor, and is close to the PHY side. If unused, keep it open.
SGMII_RX_P	125	AI	SGMII receiving - plus	Connect with a 0.1 µF capacitor, and is close to the PHY side. If unused, keep it open.
SGMII_RX_M	126	AI	SGMII receiving - minus	Connect with a 0.1 µF capacitor, and is close to the PHY side. If unused, keep it open.
USIM2_VDD	128	PO	SGMII MDIO pull-up power source	Configurable power source. 1.8/2.85 V power domain. If unused, keep it open.
RF Interfaces				opon.

Pin Name	Pin No.	I/O	Description DC Characteristics		Comment	
ANT_DIV	35	AI	Diversity antenna		50 Ω impedance. If unused, keep it	
		AI	Diversity antenna		open.	
ANT_MAIN	49	IO	Main antenna	Main antenna		
ANT_GNSS	47	AI	GNSS antenna		50 Ω impedance. If unused, keep it	
					open.	
Other Interface Pins						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
WAKEUP_IN	1	DI	Sleep mode control $V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$		1.8 V power domain. Cannot be pulled up	

				V _{IH} min = 1.2 V V _{IH} max = 2.0 V	before startup. Low level wakes up the module. If unused, keep it open.	
W_DISABLE#	4	DI	Airplane mode control	V _{IL} min = -0.3 V V _{IL} max = 0.6 V V _{IH} min = 1.2 V V _{IH} max = 2.0 V	 1.8 V power domain. Pull-up by default. At low voltage level, module can enter into airplane mode. If unused, keep it open. 	
AP_READY	2	DI	Application processor sleep state detection	$V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.2 V$ $V_{IH}max = 2.0 V$	1.8 V power domain. If unused, keep it open.	
USB_BOOT In	nterface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
			Force the module to enter emergency download mode $V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.2 V$ $V_{IH}max = 2.0 V$ Cannot be before sta It is recom		1.8 V power domain. Cannot be pulled up	
USB_BOOT	115	DI	÷ .	$V_{IH}min = 1.2 V$	before startup. It is recommended to reserve test point.	
USB_BOOT		DI	÷ .	$V_{IH}min = 1.2 V$	It is recommended to	
_		DI I/O	÷ .	$V_{IH}min = 1.2 V$	It is recommended to	

3.4. Operating Modes

The following table briefly outlines the operating modes to be mentioned in the following chapters.

Mode	Details		
Normal Operation	Idle Software is active. The module has registered on the network, a ready to send and receive data.		
	Talk/Data	Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transfer rate.	
Minimum Functionality Mode	AT+CFUN=0 command can set the module to a minimum functionality mode without removing the power supply. In this case, both RF function and (U)SIM card will be invalid.		
Airplane Mode	AT+CFUN=4 command or W_DISABLE# pin can set the module to enter airplane mode. In this case, RF function will be invalid.		
Sleep Mode	In this mode, the current consumption of the module will be reduced to the minimal level. During this mode, the module can still receive paging message, SMS, voice call and TCP/UDP data from the network normally.		
Power Down Mode	In this mode, the power management unit shuts down the power supply. Software goes inactive. The serial interface is not accessible. Operating voltage (connected to VBAT_RF and VBAT_BB) remains applied.		

3.5. Power Saving

3.5.1. Sleep Mode

EG21-G is able to reduce its current consumption to a minimum value during the sleep mode. The following sub-chapters describes power saving procedures of EG21-G module.

3.5.1.1. UART Application

If the host communicates with module via UART interface, the following preconditions can let the module enter sleep mode.

- Execute **AT+QSCLK=1** command to enable sleep mode.
- Drive DTR to high level.

The following figure shows the connection between the module and the host.

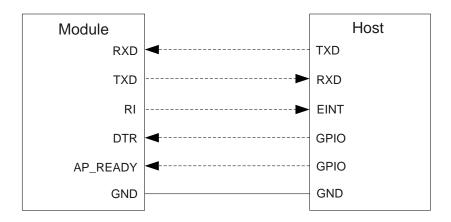


Figure 3: Sleep Mode Application via UART

- Driving the host DTR to low level will wake up the module.
- When EG21-G has a URC to report, RI signal will wake up the host. Please refer to Chapter 3.18 for details about RI behaviors.
- AP_READY will detect the sleep state of the host (can be configured to high level or low level detection). Please refer to **AT+QCFG="apready"** command for details.

3.5.1.2. USB Application with USB Remote Wakeup Function

If the host supports USB suspend/resume and remote wakeup functions, the following three preconditions must be met to let the module enter sleep mode.

- Execute AT+QSCLK=1 command to enable sleep mode.
- Ensure the DTR is held at high level or keep it open.
- The host's USB bus, which is connected with the module's USB interface, enters suspend state.

The following figure shows the connection between the module and the host.

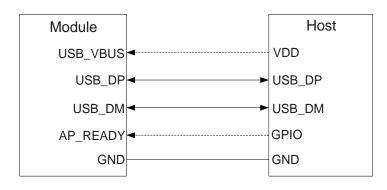
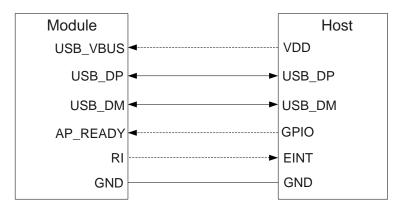


Figure 4: Sleep Mode Application with USB Remote Wakeup

- Sending data to EG21-G via USB will wake up the module.
- When EG21-G has a URC to report, the module will send remote wake-up signals via USB bus so as to wake up the host.


3.5.1.3. USB Application with USB Suspend/Resume and RI Function

If the host supports USB suspend and resume, but does not support remote wake-up function, the RI signal is needed to wake up the host.

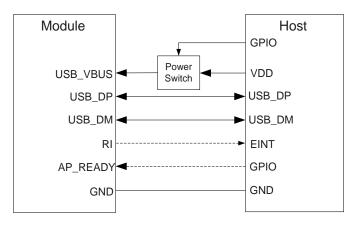
There are three preconditions to let the module enter sleep mode.

- Execute **AT+QSCLK=1** command to enable the sleep mode.
- Ensure the DTR is held at high level or keep it open.
- The host's USB bus, which is connected with the module's USB interface, enters suspend state.

The following figure shows the connection between the module and the host.

Figure 5: Sleep Mode Application with RI

- Sending data to EG21-G via USB will wake up the module.
- When EG21-G has a URC to report, RI signal will wake up the host.


3.5.1.4. USB Application without USB Suspend Function

If the host does not support USB suspend function, USB_VBUS should be disconnected with an external control circuit to let the module enter sleep mode.

- Execute AT+QSCLK=1 command to enable sleep mode.
- Ensure the DTR is held at high level or keep it open.
- Disconnect USB_VBUS.

The following figure shows the connection between the module and the host.

Figure 6: Sleep Mode Application without Suspend Function

Switching on the power switch to supply power to USB_VBUS will wake up the module.

NOTE

Please pay attention to the level match shown in dotted line between the module and the host. For more details about EG21-G power management application, please refer to *document [1]*.

3.5.2. Airplane Mode

When the module enters airplane mode, the RF function will be disabled, and all AT commands related to it will be inaccessible. This mode can be set via the following ways.

Hardware:

The W_DISABLE# pin is pulled up by default. Driving it to low level will let the module enter airplane mode.

Software:

AT+CFUN command provides the choice of the functionality level through setting <fun> into 0, 1 or 4.

- AT+CFUN=0: Minimum functionality mode. Both (U)SIM and RF functions are disabled.
- **AT+CFUN=1:** Full functionality mode (by default).
- AT+CFUN=4: Airplane mode. RF function is disabled.

NOTES

- 1. The W_DISABLE# control function is disabled in firmware by default. It can be enabled by AT+QCFG="airplanecontrol" command.
- 2. The execution of AT+CFUN command will not affect GNSS function.

3.6. Power Supply

3.6.1. Power Supply Pins

EG21-G provides four VBAT pins for connection with the external power supply. There are two separate voltage domains for VBAT.

- Two VBAT_RF pins for module's RF part
- Two VBAT_BB pins for module's baseband part

The following table shows the details of VBAT pins and ground pins.

Pin Name	Pin No.	Description	Min.	Тур.	Max.	Unit
VBAT_RF	57, 58	Power supply for module's RF part	3.3	3.8	4.3	V
VBAT_BB	59, 60	Power supply for module's baseband part	3.3	3.8	4.3	V
GND	8, 9, 19, 22, 36, 46, 48, 50–54, 56, 72, 85–112	Ground	-	0	-	V

Table 6: Pin Definition of VBAT and GND Pins

3.6.2. Decrease Voltage Drop

The power supply range of the module is from 3.3 V to 4.3 V. Please make sure that the input voltage will never drop below 3.3 V. The following figure shows the voltage drop during burst transmission in 2G network. The voltage drop will be less in 3G and 4G networks.

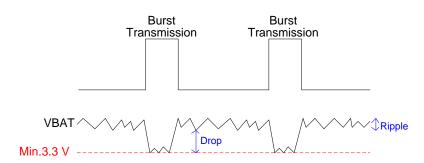


Figure 7: Power Supply Limits during Burst Transmission

To decrease voltage drop, a bypass capacitor of about 100 μ F with low ESR (ESR = 0.7 Ω) should be used, and a multi-layer ceramic chip (MLCC) capacitor array should also be reserved due to its ultra-low ESR. It is recommended to use three ceramic capacitors (100 nF, 33 pF, 10 pF) for composing the MLCC array, and place these capacitors close to VBAT_BB/VBAT_RF pins. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star structure. The width of VBAT_BB trace should be no less than 1 mm; and the width of VBAT_RF trace should be no less than 2 mm. In principle, the longer the VBAT trace is, the wider it will be.

In addition, in order to avoid the damage caused by electric surge and electrostatics discharge (ESD), it is suggested that a TVS diode with suggested low reverse stand-off voltage V_{RWM} 4.5 V, low clamping voltage V_C and high reverse peak pulse current I_{PP} should be used. The following figure shows the star structure of the power supply.

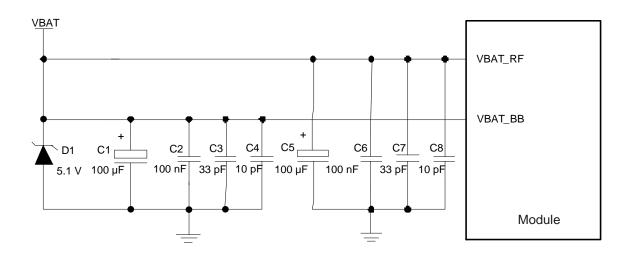


Figure 8: Star Structure of the Power Supply

3.6.3. Reference Design for Power Supply

Power design for the module is very important, as the performance of the module largely depends on the power source. The power supply should be able to provide sufficient current up to 2.0A at least. If the voltage drop between the input and output is not too high, it is suggested that an LDO should be used to supply power for the module. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is preferred to be used as the power supply.

The following figure shows a reference design for +5.0 V input power source. The typical output of the power supply is about 3.8 V and the maximum load current is 3.0A.

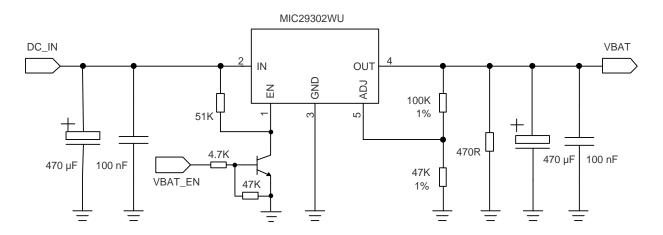


Figure 9: Reference Circuit of Power Supply

NOTE

In order to avoid damaging internal flash, please do not switch off the power supply when the module works normally. Only after the module is shut down by PWRKEY or AT command, then the power supply can be cut off.

3.6.4. Monitor the Power Supply

AT+CBC command can be used to monitor the VBAT_BB voltage value. For more details, please refer to *document [2]*.

3.7. Power-on/off Scenarios

3.7.1. Turn on Module Using the PWRKEY

The following table shows the pin definition of PWRKEY.

Table 7: Pin Definition of PWRKEY

Pin Name	Pin No.	I/O	Description	Comment
PWRKEY	21	DI	Turn on/off the module	The output voltage is 0.8 V because of the diode drop in the Qualcomm chipset.

When EG21-G is in power-down mode, it can be turned on to normal mode by driving the PWRKEY pin to a low level for at least 500 ms. It is recommended to use an open drain/collector driver to control the PWRKEY. After STATUS pin (require external pull-up resistor) outputs a low level, PWRKEY pin can be released. A simple reference circuit is illustrated in the following figure.

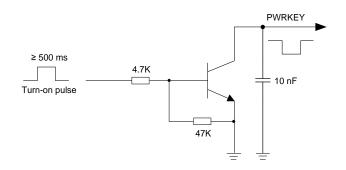


Figure 10: Turn on the Module by Using Driving Circuit

The other way to control the PWRKEY is using a button directly. When pressing the key, electrostatic strike may generate from finger. Therefore, a TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shown in the following figure.

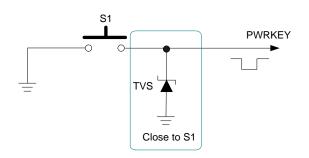


Figure 11: Turn on the Module by Using Keystroke

The power-on scenario is illustrated in the following figure.

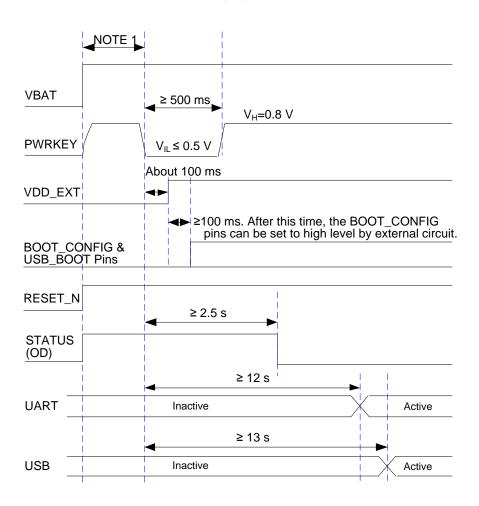


Figure 12: Timing of Turning on Module

NOTES

- 1. Please make sure that VBAT is stable before pulling down PWRKEY pin. It is recommended that the time between powering up VBAT and pulling down PWRKEY pin is no less than 30 ms.
- 2. PWRKEY can be pulled down directly to GND with a recommended 10 k Ω resistor if module needs to be powered on automatically and shutdown is not needed.

3.7.2. Turn off Module

The following procedures can be used to turn off the module normally:

- Use the PWRKEY pin.
- Use AT+QPOWD command.

3.7.2.1. Turn off Module Using the PWRKEY Pin

Driving the PWRKEY pin to a low level voltage for at least 650 ms, the module will execute power-off procedure after the PWRKEY is released. The power-off scenario is illustrated in the following figure.

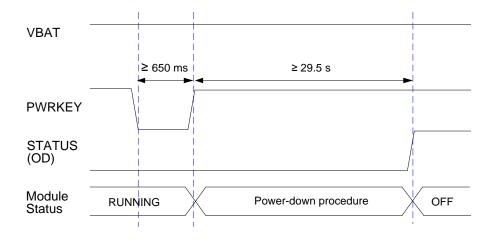


Figure 13: Timing of Turning off Module

3.7.2.2. Turn off Module Using AT Command

It is also a safe way to use **AT+QPOWD** command to turn off the module, which is similar to turning off the module via PWRKEY pin.

Please refer to *document [2]* for details about AT+QPOWD command.

- 1. In order to avoid damaging internal flash, please do not switch off the power supply when the module works normally. Only after the module is shut down by PWRKEY or AT command, then the power supply can be cut off.
- 2. When turning off module with the AT command, please keep PWRKEY at high level after the execution of the command. Otherwise the module will be turned on again after successfully turn-off.

3.8. Reset Module

The RESET_N pin can be used to reset the module. The module can be reset by driving RESET_N to a low level voltage for 150–460 ms.

Table 8: Pin Definition of RESET_N

Pin Name	Pin No.	I/O	Description	Comment
RESET_N	20	DI	Reset the module	1.8 V power domain

The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET_N.

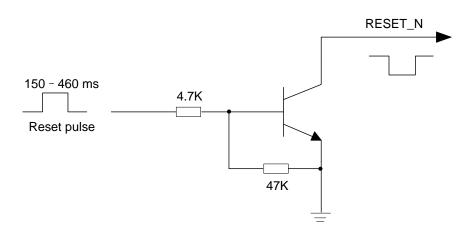


Figure 14: Reference Circuit of RESET_N by Using Driving Circuit

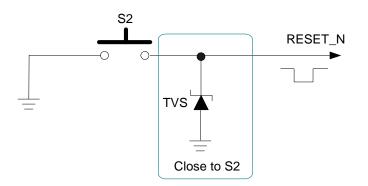


Figure 15: Reference Circuit of RESET_N by Using Button

The reset scenario is illustrated in the following figure.

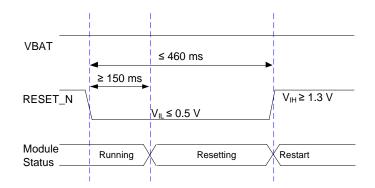


Figure 16: Timing of Resetting Module

NOTES

- 1. Use RESET_N only when failed to turn off the module by **AT+QPOWD** command and PWRKEY pin.
- 2. Ensure that there is no large capacitance on PWRKEY and RESET_N pins.

3.9. (U)SIM Interface

EG21-G's (U)SIM interface circuitry meets ETSI and IMT-2000 requirements. Both 1.8 V and 3.0 V (U)SIM cards are supported.

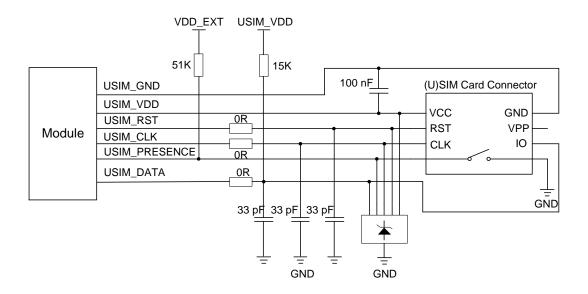

Pin Name	Pin No.	I/O	Description	Comment
USIM_VDD	14	PO	Power supply for (U)SIM card	Either 1.8 V or 3.0 V is supported by the module automatically.
USIM_DATA	15	Ю	Data signal of (U)SIM card	
USIM_CLK	16	DO	Clock signal of (U)SIM card	
USIM_RST	17	DO	Reset signal of (U)SIM card	
USIM_ PRESENCE	13	DI	(U)SIM card insertion detection	1.8 V power domain. If unused, keep it open.
USIM_GND	10		Specified ground for (U)SIM card	

Table 9: Pin Definition of (U)SIM Interface

EG21-G supports (U)SIM card hot-plug via the USIM_PRESENCE pin. The function supports low level and high level detections. By default, it is disabled, and can be configured via **AT+QSIMDET** command. Please refer to **document [2]** for more details about the command.

The following figure shows a reference design for (U)SIM interface with an 8-pin (U)SIM card connector.

Figure 17: Reference Circuit of (U)SIM Interface with an 8-pin (U)SIM Card Connector

If (U)SIM card detection function is not needed, please keep USIM_PRESENCE unconnected. A reference circuit of (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure.

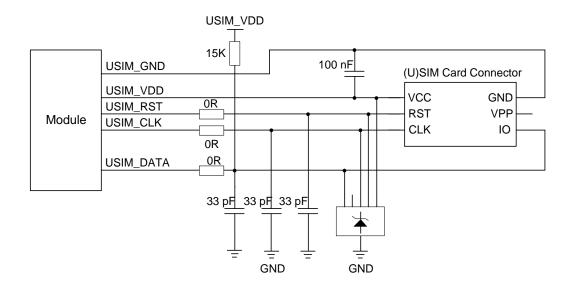


Figure 18: Reference Circuit of (U)SIM Interface with a 6-pin (U)SIM Card Connector

In order to enhance the reliability and availability of the (U)SIM card in customers' applications, please follow the criteria below in (U)SIM circuit design:

- Keep placement of (U)SIM card connector to the module as close as possible. Keep the trace length as less than 200 mm as possible.
- Keep (U)SIM card signals away from RF and VBAT traces.
- Make sure the bypass capacitor between USIM_VDD and USIM_GND less than 1 µF, and place it as close to (U)SIM card connector as possible. If the ground is complete on customers' PCB, USIM_GND can be connected to PCB ground directly.
- To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground.
- In order to offer good ESD protection, it is recommended to add a TVS diode array whose parasitic capacitance should not be more than 15 pF. The 0 Ω resistors should be added in series between the module and the (U)SIM card to facilitate debugging. The 33 pF capacitors are used for filtering interference of EGSM900. Please note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
- The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace and sensitive occasion are applied, and should be placed close to the (U)SIM card connector.

3.10. USB Interface

EG21-G contains one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0 specification and supports high-speed (480 Mbps) and full-speed (12 Mbps) modes. The USB interface can only serves as a slave device and is used for AT command communication, data transmission, GNSS NMEA sentences output, software debugging, firmware upgrade and voice over USB. The following table shows the pin definition of USB interface.

Pin Name	Pin No.	I/O	Description	Comment
USB_DP	69	Ю	USB differential data bus (+)	Require differential impedance of 90 Ω
USB_DM	70	Ю	USB differential data bus (-)	Require differential impedance of 90 Ω
USB_VBUS	71	PI	USB connection detection	Typical 5.0 V
GND	72		Ground	

Table 10:	Pin Defir	nition of	USB	Interface
-----------	-----------	-----------	-----	-----------

For more details about the USB 2.0 specifications, please visit <u>http://www.usb.org/home</u>.

The USB interface is recommended to be reserved for firmware upgrade in customers' design. The following figure shows a reference circuit of USB interface.

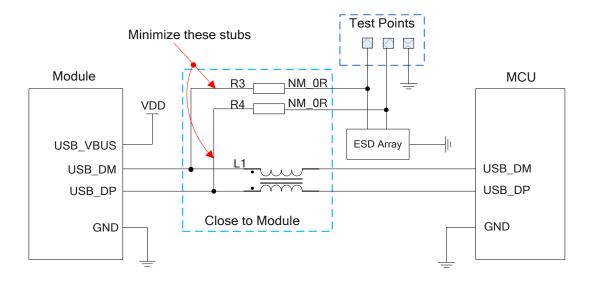


Figure 19: Reference Circuit of USB Interface

A common mode choke L1 is recommended to be added in series between the module and customer's MCU in order to suppress EMI spurious transmission. Meanwhile, the 0 Ω resistors (R3 and R4) should be added in series between the module and the test points so as to facilitate debugging, and the resistors are not mounted by default. In order to ensure the integrity of USB data line signal, L1/R3/R4 components must be placed close to the module, and also these resistors should be placed close to each other. The extra stubs of trace must be as short as possible.

The following principles should be complied with when design the USB interface, so as to meet USB 2.0 specification.

- It is important to route the USB signal traces as differential pairs with total grounding. The impedance
 of USB differential trace is 90 Ω.
- Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is important to route the USB differential traces in inner-layer with ground shielding on not only upper and lower layers but also right and left sides.
- Junction capacitance of the ESD protection component might cause influences on USB data lines, so please pay attention to the selection of the component. Typically, the stray capacitance should be less than 2 pF.
- Keep the ESD protection components to the USB connector as close as possible.

3.11. UART Interfaces

The module provides two UART interfaces: the main UART interface and the debug UART interface. The following shows their features.

- The main UART interface supports 4800 bps, 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps, 230400 bps, 460800 bps and 921600 bps baud rates, and the default is 115200 bps. It also supports RTS and CTS hardware flow control, and can be used for data transmission and AT command communication.
- The debug UART interface supports 115200 bps baud rate. It is used for Linux console and log output.

The following tables show the pin definition of the UART interfaces.

Pin Name	Pin No.	I/O	Description	Comment
RI	62	DO	Ring indicator	
DCD	63	DO	Data carrier detection	
CTS	64	DO	Clear to send	
RTS	65	DI	Request to send	1.8 V power domain
DTR	66	DI	Data terminal ready, sleep mode control	_
TXD	67	DO	Transmit data	
RXD	68	DI	Receive data	_

Table 11: Pin Definition of Main UART Interface

Table 12: Pin Definition of Debug UART Interface

Pin Name	Pin No.	I/O	Description	Comment
DBG_TXD	12	DO	Transmit data	1.9. V power demain
DBG_RXD	11	DI	Receive data	1.8 V power domain

The logic levels are described in the following table.

Table 13: Logic Levels of Digital I/O

Parameter	Min.	Max.	Unit
V _{IL}	-0.3	0.6	V
V _{IH}	1.2	2.0	V
V _{OL}	0	0.45	V
V _{OH}	1.35	1.8	V

The module provides 1.8 V UART interfaces. A level translator should be used if customers' application is equipped with a 3.3V UART interface. A level translator TXS0108EPWR provided by *Texas Instruments* is recommended. The following figure shows a reference design.

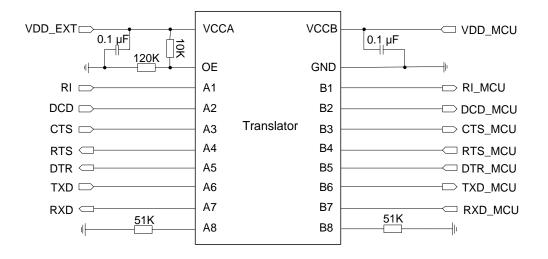


Figure 20: Reference Circuit with Translator Chip

Please visit <u>http://www.ti.com</u> for more information.

Another example with transistor translation circuit is shown as below. For the design of circuits in dotted lines, please refer to that of circuits in solid lines, but please pay attention to the direction of connection.

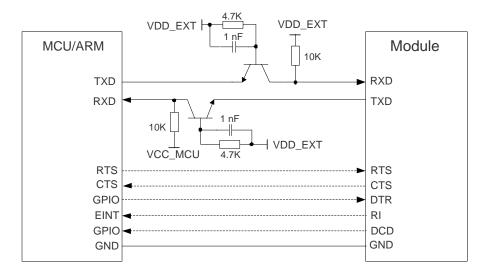


Figure 21: Reference Circuit with Transistor Circuit

NOTE
NULL

Transistor circuit solution is not suitable for applications with high baud rates exceeding 460 kbps.

3.12. PCM and I2C Interfaces

EG21-G provides one Pulse Code Modulation (PCM) digital interface for audio design, which supports the following modes and one I2C interface:

- Primary mode (short frame synchronization, works as both master and slave)
- Auxiliary mode (long frame synchronization, works as master only)

In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC falling edge represents the MSB. In this mode, the PCM interface supports 256 kHz, 512 kHz, 1024 kHz or 2048 kHz PCM_CLK at 8 kHz PCM_SYNC, and also supports 4096 kHz PCM_CLK at 16 kHz PCM_SYNC.

In auxiliary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC rising edge represents the MSB. In this mode, the PCM interface operates with a 256 kHz, 512 kHz, 1024 kHz or 2048 kHz PCM_CLK and an 8 kHz, 50% duty cycle PCM_SYNC.

EG21-G supports 16-bit linear data format. The following figures show the primary mode's timing relationship with 8 kHz PCM_SYNC and 2048 kHz PCM_CLK, as well as the auxiliary mode's timing relationship with 8 kHz PCM_SYNC and 256 kHz PCM_CLK.

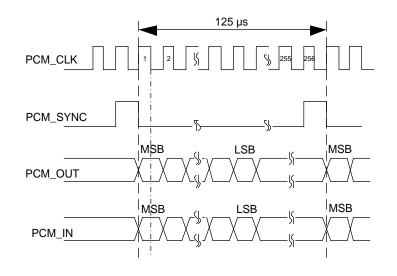


Figure 22: Primary Mode Timing

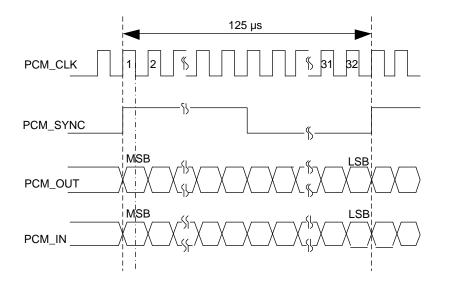


Figure 23: Auxiliary Mode Timing

The following table shows the pin definition of PCM and I2C interfaces which can be applied on audio codec design.

Table 14: Pin Definition	of PCM and I2C Interfaces
---------------------------------	---------------------------

Pin Name	Pin No.	I/O	Description	Comment
PCM_IN	24	DI	PCM data input	1.8 V power domain

PCM_OUT	25	DO	PCM data output	1.8 V power domain
PCM_SYNC	26	IO	PCM data frame synchronization signal	1.8 V power domain
PCM_CLK	27	IO	PCM data bit clock	1.8 V power domain
I2C_SCL	41	OD	I2C serial clock	An external pull-up resistor is required.
I2C_SDA	42	OD	I2C serial data	An external pull-up resistor is required.

Clock and mode can be configured by AT command, and the default configuration is master mode using short frame synchronization format with 2048 kHz PCM_CLK and 8 kHz PCM_SYNC. Please refer to *document [2]* for more details about **AT+QDAI** command.

The following figure shows a reference design of PCM and I2C interfaces with external codec IC.

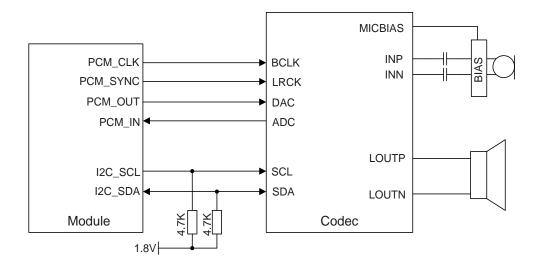
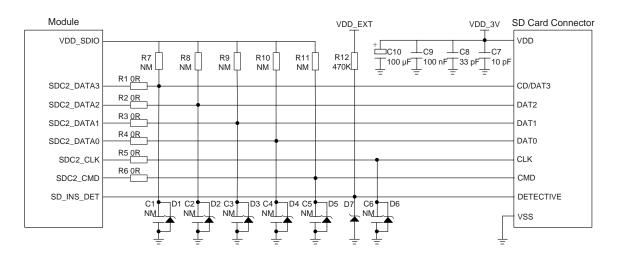


Figure 24: Reference Circuit of PCM and I2C Application with Audio Codec

NOTES

- 1. It is recommended to reserve an RC (R = 22 Ω , C = 22 pF) circuits on the PCM lines, especially for PCM_CLK.
- 2. EG21-G works as a master device pertaining to I2C interface.

3.13. SD Card Interface


EG21-G supports SDIO 3.0 interface for SD card.

The following table shows the pin definition of SD card interface.

Table 15: Pin Definition of SD Card Interface

Pin Name	Pin No.	I/O	Description	Comment
SDC2_DATA3	28	Ю	SD card SDIO bus DATA3	
SDC2_DATA2	29	Ю	SD card SDIO bus DATA2	SDIO signal level can be
SDC2_DATA1	30	IO	SD card SDIO bus DATA1	selected according to SD card supported level,
SDC2_DATA0	31	IO	SD card SDIO bus DATA0	please refer to SD 3.0 protocol for more details.
SDC2_CLK	32	DO	SD card SDIO bus clock	If unused, keep it open.
SDC2_CMD	33	IO	SD card SDIO bus command	_
VDD_SDIO	34	PO	SD card SDIO bus pull up power	1.8/2.85 V configurable. Cannot be used for SD card power. If unused, keep it open.
SD_INS_DET	23	DI	SD card insertion detection	1.8 V power domain. If unused, keep it open.

The following figure shows a reference design of SD card.

In SD card interface design, in order to ensure good communication performance with SD card, the following design principles should be complied with:

- SD_INS_DET must be connected.
- The voltage range of SD card power supply VDD_3V is 2.7–3.6 V and a sufficient current up to 0.8 A should be provided. As the maximum output current of VDD_SDIO is 50 mA which can only be used for SDIO pull-up resistors, an externally power supply is needed for SD card.
- To avoid jitter of bus, resistors R7–R11 are needed to pull up the SDIO to VDD_SDIO. Value of these resistors is among 10–100 kΩ and the recommended value is 100 kΩ. VDD_SDIO should be used as the pull-up power.
- In order to adjust signal quality, it is recommended to add 0 Ω resistors R1–R6 in series between the module and the SD card. The bypass capacitors C1–C6 are reserved and not mounted by default. All resistors and bypass capacitors should be placed close to the module.
- In order to offer good ESD protection, it is recommended to add a TVS diode on SD card pins near the SD card connector with junction capacitance less than 15 pF.
- Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DC-DC signals, etc.
- It is important to route the SDIO signal traces with total grounding. The impedance of SDIO data trace is 50 Ω (±10%).
- Make sure the adjacent trace spacing is two times of the trace width and the load capacitance of SDIO bus should be less than 15 pF.
- It is recommended to keep the trace length difference between CLK and DATA/CMD less than 1 mm and the total routing length less than 50 mm. The total trace length inside the module is 27 mm, so the exterior total trace length should be less than 23 mm.

3.14. ADC Interfaces

The module provides two analog-to-digital converter (ADC) interfaces. **AT+QADC = 0** command can be used to read the voltage value on ADC0 pin. **AT+QADC = 1** command can be used to read the voltage value on ADC1 pin. For more details about these AT commands, please refer to *document [2]*.

In order to improve the accuracy of ADC, the trace of ADC should be surrounded by ground.

Pin Name	Pin No.	Description
ADC0	45	General-purpose analog to digital converter
ADC1	44	General-purpose analog to digital converter

Table 16: Pin Definition of ADC Interfaces

The following table describes the characteristic of ADC function.

Table 17: Characteristic of ADC

Parameter	Min.	Тур.	Max.	Unit
ADC0 Voltage Range	0.3		VBAT_BB	V
ADC1 Voltage Range	0.3		VBAT_BB	V
ADC Resolution		15		bits

NOTES

- 1. ADC input voltage must not exceed that of VBAT_BB.
- 2. It is prohibited to supply any voltage to ADC pins when VBAT power supply is removed.
- 3. It is recommended to use a resistor divider circuit for ADC application.

3.15. SGMII Interface

EG21-G includes an integrated Ethernet MAC with an SGMII interface and two management interfaces. The key features of the SGMII interface are shown below:

- IEEE802.3 compliant
- Support 10 M/100 M/1000 M Ethernet work mode
- Support maximum 10 Mbps (DL)/5 Mbps (UL) for 4G network
- Support VLAN tagging
- Support IEEE1588 and Precision Time Protocol (PTP)
- Can be used to connect to external Ethernet PHY like AR8033, or to an external switch
- Management interfaces support dual voltage 1.8/2.85 V

The following table shows the pin definition of SGMII interface.

Table 18: Pin Definition of SGMII Interface

Pin Name	Pin No.	I/O	Description	Comment
Control Signa	l Part			
EPHY_RST_N	119	DO	Ethernet PHY reset	1.8/2.85 V power domain

EPHY_INT_N	120	DI	Ethernet PHY interrupt	1.8 V power domain	
SGMII_MDATA	121	10	SGMII MDIO (Management Data Input/Output) data	1.8/2.85 V power domain	
SGMII_MCLK	122	DO	SGMII MDIO (Management Data Input/Output) clock	1.8/2.85 V power domain	
USIM2_VDD	128	PO	SGMII MDIO pull-up power source	Configurable power source. 1.8/2.85 V power domain.	
SGMII Signal P	art				
SGMII_TX_M 1	123	AO	SGMII transmission - minus	Connect with a 0.1 μ F capacitor,	
SGMII_TX_P 1	124	AO	SGMII transmission - plus	and is close to the PHY side. If unused, keep it open.	
SGMII_RX_P 1	125	AI	SGMII receiving - plus	Connect with a 0.1 μ F capacitor and is close to EG21-G module.	
SGMII_RX_M 1	126	AI	SGMII receiving - minus	If unused, keep it open.	

The following figure shows the simplified block diagram for Ethernet application.

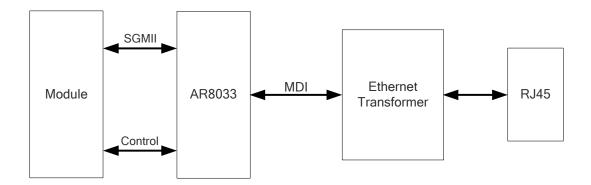
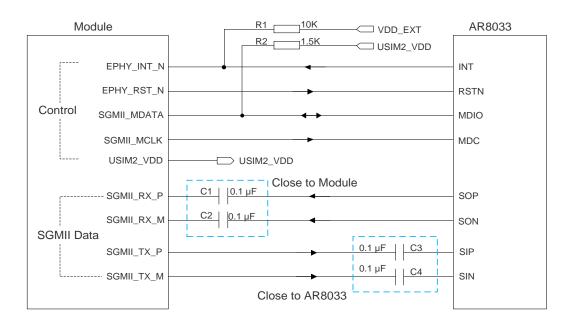



Figure 26: Simplified Block Diagram for Ethernet Application

The following figure shows a reference design of SGMII interface with PHY AR8033 application.

Figure 27: Reference Circuit of SGMII Interface with PHY AR8033 Application

In order to enhance the reliability and availability in customers' applications, please follow the criteria below in the Ethernet PHY circuit design:

- Keep SGMII data and control signals away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DC-DC signals, etc.
- Keep the maximum trace length less than 10-inch and keep skew on the differential pairs less than 20mil.
- The differential impedance of SGMII data trace is 100 Ω ±10%, and the reference ground of the area should be complete.
- Make sure the trace spacing between SGMII RX and TX is at least 3 times of the trace width, and the same to the adjacent signal traces.

3.16. Network Status Indication

The network indication pins can be used to drive network status indication LEDs. The module provides two pins which are NET_MODE and NET_STATUS. The following tables describe the pin definition and logic level changes in different network status.

Pin Name	Pin No.	I/O	Description	Comment
NET_MODE	5	DO	Indicate the module's network registration mode	1.8 V power domain Cannot be pulled up before startup
NET_STATUS	6	DO	Indicate the module's network activity status	1.8 V power domain

Table 20: Working State of Network Connection Status/Activity Indication

Pin Name	Logic Level Changes	Network Status
NET MODE	Always High	Registered on LTE network
NET_MODE	Always Low	Others
NET_STATUS	Flicker slowly (200 ms High/1800 ms Low)	Network searching
	Flicker slowly (1800 ms High/200 ms Low)	Idle
	Flicker quickly (125 ms High/125 ms Low)	Data transfer is ongoing
	Always High	Voice calling

A reference circuit is shown in the following figure.

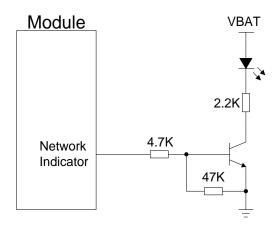
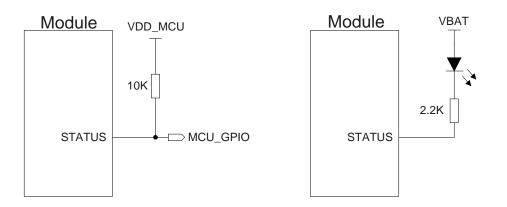


Figure 28: Reference Circuit of the Network Indicator


3.17. STATUS

The STATUS pin is an open drain output for indicating the module's operation status. It can be connected to a GPIO of DTE with a pull-up resistor, or as LED indication circuit as below. When the module is turned on normally, the STATUS will present the low state. Otherwise, the STATUS will present high-impedance state.

Table 21: Pin Definition of STATUS

Pin Name	Pin No.	I/O	Description	Comment
STATUS	61	OD	Indicate the module's operation status	An external pull-up resistor is required. If unused, keep it open.

The following figure shows different circuit designs of STATUS, and customers can choose either one according to customers' application demands.

Figure 29: Reference Circuits of STATUS

NOTE

The status pin cannot be used as indication of module shutdown status when VBAT power supply is removed.

3.18. Behaviors of RI

AT+QCFG="risignaltype","physical" command can be used to configure RI behaviors.

No matter on which port a URC is presented, the URC will trigger the behaviors of RI pin.

NOTE

URC can be outputted from UART port, USB AT port and USB modem port through configuration via **AT+QURCCFG** command. The default port is USB AT port.

The default behaviors of the RI are shown as below, and can be changed by **AT+QCFG="urc/ri/ring"** command. Please refer to *document [2]* for details.

Table 22: Behaviors of RI

State	Response
Idle	RI keeps at high level
URC	RI outputs 120 ms low pulse when a new URC returns

3.19. USB_BOOT Interface

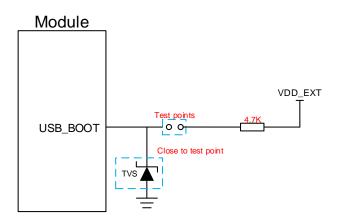

EG21-G provides a USB_BOOT pin. Customers can pull up USB_BOOT to 1.8 V before VDD_EXT is powered up, and the module will enter emergency download mode when it is powered on. In this mode, the module supports firmware upgrade over USB interface.

Table 23: Pin Definition of USB_BOOT Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_BOOT	115	DI	Force the module to enter emergency download mode	1.8 V power domain.Active high.It is recommended to reserve test points.

The following figures show the reference circuit of USB_BOOT interface and timing sequence of entering emergency download mode.

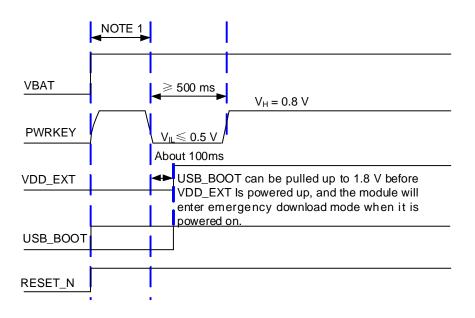


Figure 31: Timing Sequence for Entering Emergency Download Mode

NOTES

- 1. Please make sure that VBAT is stable before pulling down PWRKEY pin. It is recommended that the time between powering up VBAT and pulling down PWRKEY pin is no less than 30 ms.
- When using MCU to control module to enter the emergency download mode, please follow the above timing sequence. It is not recommended to pull up USB_BOOT to 1.8 V before powering up VBAT. Connect the test points as shown in *Figure 30* can manually force the module to enter download mode.

4 GNSS Receiver

4.1. General Description

EG21-G includes a fully integrated global navigation satellite system solution that supports Gen8C Lite of Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS).

EG21-G supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update rate via USB interface by default.

By default, EG21-G GNSS engine is switched off. It has to be switched on via AT command. For more details about GNSS engine technology and configurations, please refer to *document* [3].

4.2. GNSS Performance

The following table shows the GNSS performance of EG21-G.

Table 24: GNSS Performance

Parameter	Description	Conditions	Тур.	Unit
	Cold start	Autonomous	-146	dBm
Sensitivity (GNSS)	Reacquisition	Autonomous	-156	dBm
(00)	Tracking	Autonomous	-157	dBm
	Cold start	Autonomous	35	S
	@open sky	XTRA enabled	15	S
TTFF (GNSS)	Warm start	Autonomous	28	S
	@open sky	XTRA enabled	3	S
	Hot start	Autonomous	2	S

	@open sky	XTRA enabled	1.6	S
Accuracy (GNSS)	CEP-50	Autonomous @open sky	< 2.5	m

NOTES

- 1. Tracking sensitivity: the minimum GNSS signal power at which the module can maintain lock (keep positioning for at least 3 minutes continuously).
- 2. Reacquisition sensitivity: the minimum GNSS signal power required for the module to maintain lock within 3 minutes after loss of lock.
- 3. Cold start sensitivity: the minimum GNSS signal power at which the module can fix position successfully within 3 minutes after executing cold start command.

4.3. Layout Guidelines

The following layout guidelines should be taken into account in customers' design.

- Maximize the distance among GNSS antenna, main antenna and Rx-diversity antenna.
- Digital circuits such as (U)SIM card, USB interface, camera module and display connector should be kept away from the antennas.
- Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar isolation and protection.
- Keep 50 Ω characteristic impedance for the ANT_GNSS trace.

Please refer to *Chapter 5* for GNSS antenna reference design and antenna installation information.

5 Antenna Interfaces

EG21-G antenna interfaces include a main antenna interface, an Rx-diversity antenna interface which is used to resist the fall of signals caused by high speed movement and multipath effect, and a GNSS antenna interface. The impedance of the antenna ports is 50Ω .

5.1. Main/Rx-diversity Antenna Interfaces

5.1.1. Pin Definition

The pin definition of main antenna and Rx-diversity antenna interfaces is shown below.

Pin Name	Pin No.	I/O	Description	Comment
ANT_MAIN	49	IO	Main antenna	50 Ω impedance
ANT_DIV	35	AI	Receive diversity antenna	50 Ω impedance. If unused, keep it open.

Table 25: Pin Definition of RF Antennas

5.1.2. Operating Frequency

Table 26: Module Operating Frequencies

3GPP Band	Transmit	Receive	Unit
GSM850	824–849	869–894	MHz
EGSM900	880–915	925–960	MHz
DCS1800	1710–1785	1805–1880	MHz
PCS1900	1850–1910	1930–1990	MHz
WCDMA B1	1920–1980	2110–2170	MHz

WCDMA B2	1850–1910	1930–1990	MHz
WCDMA B4	1710–1755	2110–2155	MHz
WCDMA B5	824–849	869–894	MHz
WCDMA B6	830–840	875–885	MHz
WCDMA B8	880–915	925–960	MHz
WCDMA B19	830–845	875–890	MHz
LTE-FDD B1	1920–1980	2110–2170	MHz
LTE-FDD B2	1850–1910	1930–1990	MHz
LTE-FDD B3	1710–1785	1805–1880	MHz
LTE-FDD B4	1710–1755	2110–2155	MHz
LTE-FDD B5	824–849	869–894	MHz
LTE-FDD B7	2500–2570	2620–2690	MHz
LTE-FDD B8	880–915	925–960	MHz
LTE-FDD B12	699–716	729–746	MHz
LTE-FDD B13	777–787	746–756	MHz
LTE-FDD B18	815–830	860–875	MHz
LTE-FDD B19	830–845	875–890	MHz
LTE-FDD B20	832–862	791–821	MHz
LTE-FDD B25	1850–1915	1930–1995	MHz
LTE-FDD B26	814–849	859–894	MHz
LTE-FDD B28	703–748	758–803	MHz
LTE-TDD B38	2570–2620	2570–2620	MHz
LTE-TDD B39	1880–1920	1880–1920	MHz
LTE-TDD B40	2300–2400	2300–2400	MHz
LTE-TDD B41	2496–2690	2496–2690	MHz

5.1.3. Reference Design of RF Antenna Interface

A reference design of ANT_MAIN and ANT_DIV antenna pads is shown as below. A π -type matching circuit should be reserved for better RF performance. The capacitors are not mounted by default.

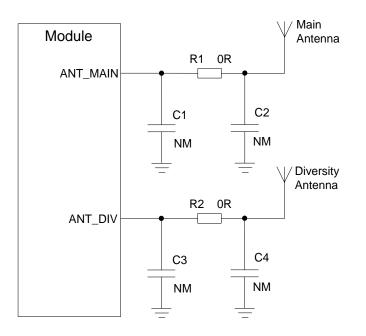


Figure 32: Reference Circuit of RF Antenna Interface

NOTES

- 1. Keep a proper distance between the main antenna and the Rx-diversity antenna to improve the receiving sensitivity.
- ANT_DIV function is enabled by default. AT+QCFG="divctl",0 command can be used to disable receive diversity. Please refer to *document [2]* for details.
- 3. Place the π-type matching components (R1&C1&C2, R2&C3&C4) as close to the antenna as possible.

5.1.4. Reference Design of RF Layout

For user's PCB, the characteristic impedance of all RF traces should be controlled as 50 Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, height from the reference ground to the signal layer (H), and the space between the RF trace and the ground (S). Microstrip and coplanar waveguide are typically used in RF layout to control characteristic impedance. The following figures are reference designs of microstrip or coplanar waveguide with different PCB structures.

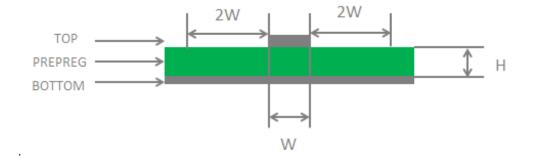


Figure 33: Microstrip Design on a 2-layer PCB

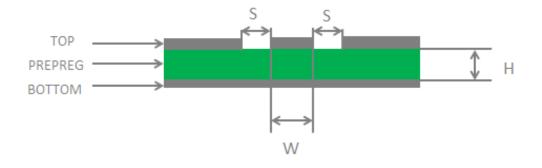


Figure 34: Coplanar Waveguide Design on a 2-layer PCB

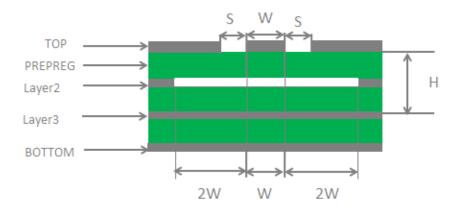
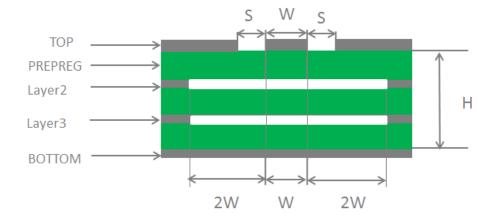



Figure 35: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

Figure 36: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design:

- Please use an impedance simulation tool to control the characteristic impedance of RF traces as 50 Ω.
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible, and all the right-angle traces should be changed to curved ones.
- There should be clearance area under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times the width of RF signal traces (2 × W).

For more details about RF layout, please refer to document [6].

5.2. GNSS Antenna Interface

The following tables show the pin definition and frequency specification of GNSS antenna interface.

Pin Name	Pin No.	I/O	Description	Comment
ANT_GNSS	47	AI	GNSS antenna	50 Ω impedance. If unused, keep it open.

Table 27: Pin Definition of GNSS Antenna Interface

Table 28: GNSS Frequency

Туре	Frequency	Unit
GPS	1575.42 ±1.023	MHz
GLONASS	1597.5–1605.8	MHz
Galileo	1575.42 ±2.046	MHz
BeiDou (Compass)	1561.098 ±2.046	MHz
QZSS	1575.42	MHz

A reference design of GNSS antenna is shown as below.

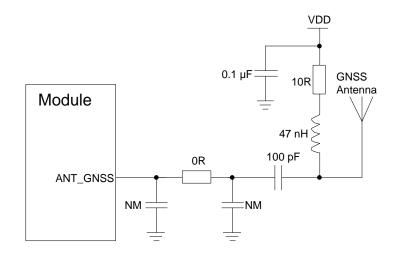


Figure 37: Reference Circuit of GNSS Antenna

NOTES

- 1. An external LDO can be selected to supply power according to the active antenna requirement.
- 2. If the module is designed with a passive antenna, then the VDD circuit is not needed.

5.3. Antenna Installation

5.3.1. Antenna Requirement

The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna.

Table 29: Antenna Requirements

Туре	Requirements
	Frequency range: 1559–1609 MHz
	Polarization: RHCP or linear
	VSWR: < 2 (Typ.)
GNSS ¹⁾	Passive antenna gain: > 0 dBi
	Active antenna noise figure: < 1.5 dB
	Active antenna gain: > 0 dBi
	Active antenna embedded LNA gain: < 17 dB
	VSWR: ≤ 2
	Efficiency: > 30%
	Max input power: 50 W
	Input impedance: 50 Ω
	Cable insertion loss: < 1 dB
GSM/WCDMA/LTE	(GSM850, EGSM900, WCDMA B5/B6/B8/B19,
GSIVI/VCDIVIA/LTE	LTE-FDD B5/B8/B12/B13/B18/B19/B20/B26/B28)
	Cable insertion loss: < 1.5 dB
	(DCS1800, PCS1900, WCDMA B1/B2/B4,
	LTE-FDD B1/B2/B3/B4/B25/B39)
	Cable insertion loss < 2 dB
	(LTE-FDD B7, LTE-TDD B38/B40/B41)

NOTE

¹⁾ It is recommended to use a passive GNSS antenna when LTE B13 or B14 is supported, as the use of active antenna may generate harmonics which will affect the GNSS performance.

5.3.2. Recommended RF Connector for Antenna Installation

If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT connector provided by Hirose.

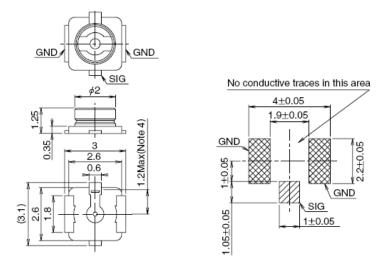


Figure 38: Dimensions of the U.FL-R-SMT Connector (Unit: mm)

U.FL-LP serial connectors listed in the following figure can be used to match the U.FL-R-SMT.

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Part No.					
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable
Weight (mg)	53.7	59.1	34.8	45.5	71.7
RoHS			YES		

Figure 39: Mechanicals of U.FL-LP Connectors

The following figure describes the space factor of mated connector.

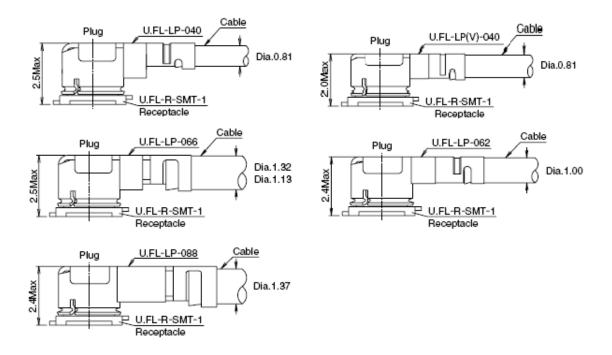


Figure 40: Space Factor of Mated Connector (Unit: mm)

For more details, please visit <u>http://www.hirose.com</u>.

6 Electrical, Reliability and Radio Characteristics

6.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

Table 30: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT_RF/VBAT_BB	-0.3	4.7	V
USB_VBUS	-0.3	5.5	V
Peak Current of VBAT_BB	0	0.8	A
Peak Current of VBAT_RF	0	1.8	A
Voltage at Digital Pins	-0.3	2.3	V
Voltage at ADC0	0	VBAT_BB	V
Voltage at ADC1	0	VBAT_BB	V

6.2. Power Supply Ratings

Table 31: Power Supply Ratings

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
VBAT	VBAT_BB and VBAT_RF	The actual input voltages must be kept between the minimum and maximum values.	3.3	3.8	4.3	V
	Voltage drop during burst transmission	Maximum power control level on EGSM900.			400	mV
I _{VBAT}	Peak supply current (during transmission slot)	Maximum power control level on EGSM900.		1.8	2.0	A
USB_VBUS	USB connection detection		3.0	5.0	5.25	V

6.3. Operation and Storage Temperatures

The operation and storage temperatures are listed in the following table.

Table 32: Operation and Storage Temperatures

Parameter	Min.	Тур.	Max.	Unit
Operation Temperature Range ¹⁾	-35	+25	+75	°C
Extended Temperature Range ²⁾	-40		+85	٥C
Storage Temperature Range	-40		+90	٥C

NOTES

- 1. ¹⁾ Within operation temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call*, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature

returns to the normal operation temperature levels, the module will meet 3GPP specifications again. 3. "*" means under development.

6.4. Current Consumption

Table 33: EG21-G Current Consumption

Parameter	Description	Conditions	Тур.	Unit
	OFF state	Power down	13	uA
		AT+CFUN=0 (USB disconnected)	1.8	mA
		EGSM @ DRX = 2 (USB disconnected)	2.3	mA
		EGSM @ DRX = 5 (USB disconnected)	1.8	mA
		EGSM @ DRX = 5 (USB suspended)	2.1	mA
		EGSM @ DRX = 9 (USB disconnected)	1.8	mA
	Sleep state	DCS @ DRX = 2 (USB disconnected)	1.9	mA
		DCS @ DRX = 5 (USB disconnected)	1.9	mA
		DCS @ DRX = 5 (USB suspended)	1.5	mA
I _{VBAT}		DCS @ DRX = 9 (USB disconnected)	1.3	mA
		WCDMA @ PF = 64 (USB disconnected)	1.7	mA
		WCDMA @ PF = 64 (USB suspended)	2.1	mA
		WCDMA @ PF = 128 (USB disconnected)	1.4	mA
		WCDMA @ PF = 256 (USB disconnected)	1.2	mA
		WCDMA @ PF = 512 (USB disconnected)	1.1	mA
		LTE-FDD @ PF = 32 (USB disconnected)	3.2	mA
		LTE-FDD @ PF = 64 (USB disconnected)	2.2	mA
		LTE-FDD @ PF = 64 (USB suspended)	2.3	mA

	LTE-FDD @ PF = 128 (USB disconnected)	1.7	mA
	LTE-FDD @ PF = 256 (USB disconnected)	1.5	mA
	LTE-TDD @ PF = 32 (USB disconnected)	3.2	mA
	LTE-TDD @ PF = 64 (USB disconnected)	2.3	mA
	LTE-TDD @ PF = 64 (USB suspended)	1.4	mA
	LTE-TDD @ PF = 128 (USB disconnected)	1.6	mA
	LTE-TDD @ PF = 256 (USB disconnected)	1.4	mA
Idle state	EGSM @DRX = 5 (USB disconnected)	16	mA
	EGSM @DRX = 5 (USB connected)	25	mA
	WCDMA @ PF = 64 (USB disconnected)	14	mA
	WCDMA @ PF = 64 (USB connected)	25	mA
	LTE-FDD @ PF = 64 (USB disconnected)	16	mA
	LTE-FDD @ PF = 64 (USB connected)	25	mA
	LTE-TDD @ PF = 64 (USB disconnected)	15	mA
	LTE-TDD @ PF = 64 (USB connected)	25	mA
GPRS data transfer (GNSS OFF)	EGSM900 4DL/1UL @ 32.05 dBm	274	mA
	EGSM900 3DL/2UL @ 30.91 dBm	463	mA
	EGSM900 2DL/3UL @ 29.05 dBm	554	mA
	EGSM900 1DL/4UL @ 27.70 dBm	652	mA
	GSM850 4DL/1UL @ 32.16 dBm	303	mA
	GSM850 3DL/2UL @ 29.87 dBm	477	mA
	GSM850 2DL/3UL @ 28.85 dBm	601	mA
	GSM850 1DL/4UL @ 27.51 dBm	707	mA
	DCS1800 4DL/1UL @ 29.34 dBm	150	mA
	DCS1800 3DL/2UL @ 28.60 dBm	245	mA

		DCS1800 2DL/3UL @ 26.62 dBm	303	mA
		DCS1800 1DL/4UL @ 25.73 dBm	359	mA
		PCS1900 4DL/1UL @ 29.37 dBm	165	mA
		PCS1900 3DL/2UL @ 28.08 dBm	270	mA
		PCS1900 2DL/3UL @ 26.41 dBm	332	mA
		PCS1900 1DL/4UL @ 25.47 dBm	391	mA
		EGSM900 4DL/1UL @ 26.22 dBm	162	mA
		EGSM900 3DL/2UL @ 25.02 dBm	270	mA
		EGSM900 2DL/3UL @ 23.44 dBm	336	mA
		EGSM900 1DL/4UL @22.47 dBm	402	mA
		GSM850 4DL/1UL @ 25.90 dBm	180	mA
		GSM850 3DL/2UL @ 24.77 dBm	291	mA
		GSM850 2DL/3UL @ 23.03 dBm	363	mA
	EDGE data transfer (GNSS OFF)	GSM850 1DL/4UL @ 21.90 dBm	429	mA
		DCS1800 4DL/1UL @ 25.70 dBm	120	mA
		DCS1800 3DL/2UL @ 25.03 dBm	200	mA
		DCS1800 2DL/3UL @ 23.94 dBm	260	mA
		DCS1800 1DL/4UL @ 22.81 dBm	315	mA
		PCS1900 4DL/1UL @ 25.56 dBm	126	mA
		PCS1900 3DL/2UL @ 24.73 dBm	208	mA
		PCS1900 2DL/3UL @ 23.33 dBm	276	mA
		PCS1900 1DL/4UL @ 22.23 dBm	332	mA
	WCDMA data	WCDMA B1 HSDPA @ 22.52 dBm	577	mA
	transfer	WCDMA B1 HSUPA @ 21.85 dBm	585	mA
	(GNSS OFF)	WCDMA B2 HSDPA @ 22.32 dBm	610	mA

	WCDMA B2 HSUPA @ 21.79 dBm	609	mA
	WCDMA B4 HSDPA @ 22.60 dBm	586	mA
	WCDMA B4 HSUPA @ 22.18 dBm	550	mA
	WCDMA B5 HSDPA @ 22.24 dBm	576	mA
	WCDMA B5 HSUPA @ 21.59 dBm	600	mA
	WCDMA B6 HSDPA @ 22.22 dBm	575	mA
	WCDMA B6 HSUPA @ 21.84 dBm	595	mA
	WCDMA B8 HSDPA @ 22.01 dBm	600	mA
	WCDMA B8 HSUPA @ 21.47 dBm	506	mA
	WCDMA B19 HSDPA @ 22.07 dBm	560	mA
	WCDMA B19 HSUPA @ 22.39 dBm	545	mA
	LTE-FDD B1 @ 22.99 dBm	700	mA
	LTE-FDD B2 @ 22.93 dBm	750	mA
	LTE-FDD B3 @ 23.30 dBm	730	mA
	LTE-FDD B4 @ 23.55 dBm	785	mA
	LTE-FDD B5 @ 23.06 dBm	712	mA
	LTE-FDD B7 @ 22.76 dBm	700	mA
LTE data	LTE-FDD B8 @ 22.93 dBm	831	mA
transfer (GNSS OFF)	LTE-FDD B12 @ 23.19 dBm	660	mA
	LTE-FDD B13 @ 22.79 dBm	685	mA
	LTE-FDD B18 @ 23.18 dBm	690	mA
	LTE-FDD B19 @ 23.04 dBm	634	mA
	LTE-FDD B20 @ 22.95 dBm	750	mA
	LTE-FDD B25 @ 23.50 dBm	763	mA
	LTE-FDD B26 @ 23.20 dBm	761	mA

		LTE-FDD B28 @ 23.40 dBm	720	mA
		LTE-TDD B38 @ 23.32 dBm	400	mA
		LTE-TDD B39 @ 23.06 dBm	353	mA
		LTE-TDD B40 @ 22.70 dBm	366	mA
		LTE-TDD B41 @ 23.37 dBm	395	mA
		EGSM900 PCL = 5 @ 32.2 dBm	295	mA
		EGSM900 PCL = 12 @ 19.2 dBm	124	mA
		EGSM900 PCL = 19 @ 4.1 dBm	100	mA
		GSM850PCL = 5 @ 32.2 dBm	318	mA
		GSM850PCL = 12 @ 19.2 dBm	128	mA
	GSM voice call	GSM850PCL = 19 @ 4.1 dBm	94	mA
		DCS1800 PCL = 0 @ 29.3 dBm	161	mA
		DCS1800 PCL = 7 @ 16.1 dBm	108	mA
		DCS1800 PCL = 15 @ 0.7 dBm	85	mA
		PCS1900 PCL = 0 @ 29.4 dBm	173	mA
		PCS1900 PCL = 7 @ 16.1 dBm	106	mA
		PCS1900 PCL = 15 @ 0.3 dBm	79	mA
		WCDMA B1 @ 23.5 dBm	640	mA
		WCDMA B2 @ 23.4 dBm	665	mA
		WCDMA B4 @ 23.5 dBm	625	mA
	WCDMA voice call	WCDMA B5 @ 23.3 dBm	620	mA
		WCDMA B6 @ 23.0 dBm	560	mA
		WCDMA B8 @ 23.3 dBm	650	mA
		WCDMA B19 @ 23.2 dBm	576	mA

Parameter	Description	Conditions	Тур.	Unit
	Searching	Cold start @ Passive Antenna	43	mA
	(AT+CFUN=0)	Lost state @ Passive Antenna	42	mA
I _{VBAT} (GNSS)	GNSS) In	Instrument Environment	25	mA
· · · ·		Open Sky @ Passive Antenna	43	mA
	· · · ·	Open Sky @ Active Antenna	43	mA

Table 34: GNSS Current Consumption of EG21-G Module

6.5. RF Output Power

The following table shows the RF output power of EG21-G module.

Table 35: RF Output Power

Frequency Bands	Max.	Min.
GSM850/EGSM900	33 dBm ±2 dB	5 dBm ±5 dB
DCS1800/PCS1900	30 dBm ±2 dB	0 dBm ±5 dB
DCS1800/PCS1900 (8-PSK)	26 dBm ±3 dB	0 dBm ±5 dB
GSM850/EGSM900	33 dBm ±2 dB	5 dBm ±5 dB
WCDMA B1/B2/B4/B5/B6/B8/B19	24 dBm +1/ -3 dB	< -49 dBm
LTE-FDD B1/B2/B3/B4/B5/B7/B8/B12/B13/B18/B19/B20/B25/B26/B28	23 dBm ±2 dB	< -39 dBm
LTE-TDD B38/B39/B40/B41	23 dBm ±2 dB	< -39 dBm

- 1. In GPRS 4 slots TX mode, the maximum output power is reduced by 3.0 dB. The design conforms to the GSM specification as described in *Chapter 13.16* of *3GPP TS 51.010-1*.
- EG21-G supports LTE B25, and Qorvo Phase 6 PAMiD QM77031 in the module does not actually support LTE B25. Qorvo has confirmed that the SAW integrated in the PA can support LTE B2, but B25 can work at the same frequency as B2. B25 is 5 MHz wider than B2. Therefore, the sensitivity of

the RX channels 8630–8689 is poor, and there is a big gap with the 3GPP standard. At a high temperature of 75 °C, the maximum power of channels 26640–26689 will be reduced by about 2.5 dB.

6.6. RF Receiving Sensitivity

The following tables show the conducted RF receiving sensitivity of EG21-G module.

Table 36: EG21-G Conducted RF Receiving Sensitivity

Frequency Bands	Primary	Diversity	SIMO ¹⁾	3GPP (SIMO)
GSM900	-108 dBm	NA	NA	-102 dBm
GSM850	-108 dBm	NA	NA	-102 dBm
DCS1800	-107.4 dBm	NA	NA	-102 dBm
PCS1900	-107.5 dBm	NA	NA	-102 dBm
WCDMA B1	-108.2 dBm	-108.5 dBm	-109.2 dBm	-106.7 dBm
WCDMA B2	-109.5 dBm	-109 dBm	-110 dBm	-104.7 dBm
WCDMA B4	-109.5 dBm	NA	NA	-106.7 dBm
WCDMA B5	-109.2 dBm	-109.5 dBm	-110.4 dBm	-104.7 dBm
WCDMA B6	-109 dBm	-109.5 dBm	-110.5 dBm	-106.7 dBm
WCDMA B8	-109.5 dBm	NA	NA	-103.7 dBm
WCDMA B19	-109 dBm	-109.5 dBm	-110.1 dBm	-106.7 dBm
LTE-FDD B1 (10 MHz)	-97.3 dBm	-98.3 dBm	-99.5 dBm	-96.3 dBm
LTE-FDD B2 (10 MHz)	-98 dBm	-99 dBm	-99.9 dBm	-94.3 dBm
LTE-FDD B3 (10 MHz)	-97.5 dBm	-98.1 dBm	-99.7 dBm	-93.3 dBm
LTE-FDD B4 (10 MHz)	-97.8 dBm	-98.2 dBm	-99.7 dBm	-96.3 dBm
LTE-FDD B5 (10 MHz)	-98 dBm	-98.5 dBm	-99.9 dBm	-94.3 dBm
LTE-FDD B7 (10 MHz)	-97.3 dBm	-97.6 dBm	-99.2 dBm	-94.3 dBm

LTE-FDD B8 (10 MHz)	-98 dBm	-98 dBm	-99.8 dBm	-93.3 dBm
LTE-FDD B12 (10 MHz)	-98 dBm	-98.3 dBm	-99.8 dBm	-93.3 dBm
LTE-FDD B13 (10 MHz)	-98 dBm	-98 dBm	-99.5 dBm	-93.3 dBm
LTE-FDD B18 (10 MHz)	-98 dBm	-99.4 dBm	-100 dBm	-96.3 dBm
LTE-FDD B19 (10 MHz)	-98 dBm	-98.8 dBm	-99.9 dBm	-96.3 dBm
LTE-FDD B20 (10 MHz)	-98 dBm	-98.8 dBm	-99.8 dBm	-93.3 dBm
LTE-FDD B25 (10 MHz)	-98 dBm	-98.4 dBm	-100 dBm	-92.8 dBm
LTE-FDD B26 (10 MHz)	-98 dBm	-98.3 dBm	-99.5 dBm	-93.8 dBm
LTE-FDD B28 (10 MHz)	-98.1 dBm	-98.5 dBm	-99.6 dBm	-94.8 dBm
LTE-TDD B38 (10 MHz)	-96.8 dBm	-96.9 dBm	-98 dBm	-96.3 dBm
LTE-TDD B39 (10 MHz)	-98 dBm	-98.2 dBm	-99.5 dBm	-96.3 dBm
LTE-TDD B40 (10 MHz)	-97.8 dBm	-97.5 dBm	-99.2 dBm	-96.3 dBm
LTE-TDD B41 (10 MHz)	-96.8 dBm	-96.0 dBm	-97.8 dBm	-94.3 dBm

NOTE

¹⁾ SIMO is a smart antenna technology that uses a single antenna at the transmitter side and two antennas at the receiver side, which can improve RX performance.

6.7. Electrostatic Discharge

The module is not protected against electrostatic discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module.

The following table shows the module's electrostatic discharge characteristics.

Table 37: Electrostatic Discharge Characteristics (25 °C, 45% Relative Humidity)

Table 27. Electropic de Discherver Obergeteristics (05.00, 45%, Deleting Humsidite)

Tested Interfaces	Contact Discharge	Air Discharge	Unit
VBAT, GND	±10	±16	kV
All Antenna Interfaces	±10	±16	kV
Other Interfaces	±0.5	±1	kV

6.8. Thermal Consideration

In order to achieve better performance of the module, it is recommended to comply with the following principles for thermal consideration:

- On customers' PCB design, please keep placement of the module away from heating sources, especially high power components such as ARM processor, audio power amplifier, power supply, etc.
- Do not place components on the opposite side of the PCB area where the module is mounted, in order to facilitate adding of heatsink when necessary.
- Do not apply solder mask on the opposite side of the PCB area where the module is mounted, so as to ensure better heat dissipation performance.
- The reference ground of the area where the module is mounted should be complete, and add ground vias as many as possible for better heat dissipation.
- Make sure the ground pads of the module and PCB are fully connected.
- According to customers' application demands, the heatsink can be mounted on the top of the module, or the opposite side of the PCB area where the module is mounted, or both of them.
- The heatsink should be designed with as many fins as possible to increase heat dissipation area. Meanwhile, a thermal pad with high thermal conductivity should be used between the heatsink and module/PCB.

The following shows two kinds of heatsink designs for reference and customers can choose one or both of them according to their application structure.

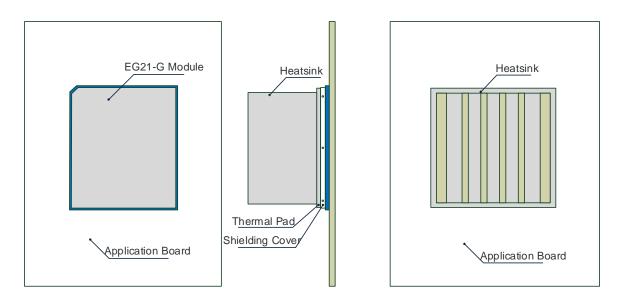
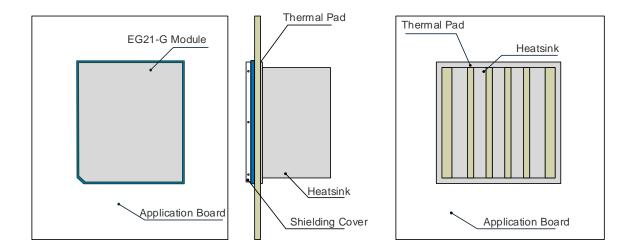



Figure 41: Referenced Heatsink Design (Heatsink at the Top of the Module)

Figure 42: Referenced Heatsink Design (Heatsink at the Backside of Customers' PCB)

- 1. The module offers the best performance when the internal BB chip stays below 105 °C. When the maximum temperature of the BB chip reaches or exceeds 105 °C, the module works normal but provides reduced performance (such as RF output power, data rate, etc.). When the maximum BB chip temperature reaches or exceeds 115 °C, the module will disconnect from the network, and it will recover to network connected state after the maximum temperature falls below 115 °C. Therefore, the thermal design should be maximally optimized to make sure the maximum BB chip temperature always maintains below 105 °C. Customers can execute AT+QTEMP command and get the maximum BB chip temperature from the first returned value.
- 2. For more detailed guidelines on thermal design, please refer to *document* [7].

7 Mechanical Dimensions

This chapter describes the mechanical dimensions of the module. All dimensions are measured in mm, and the dimensional tolerances are ± 0.05 mm unless otherwise specified.

7.1. Mechanical Dimensions of the Module

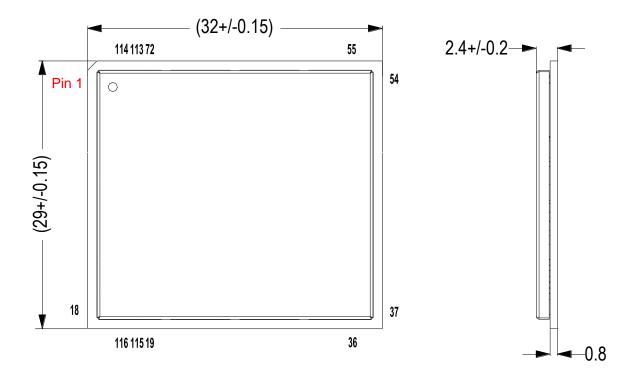
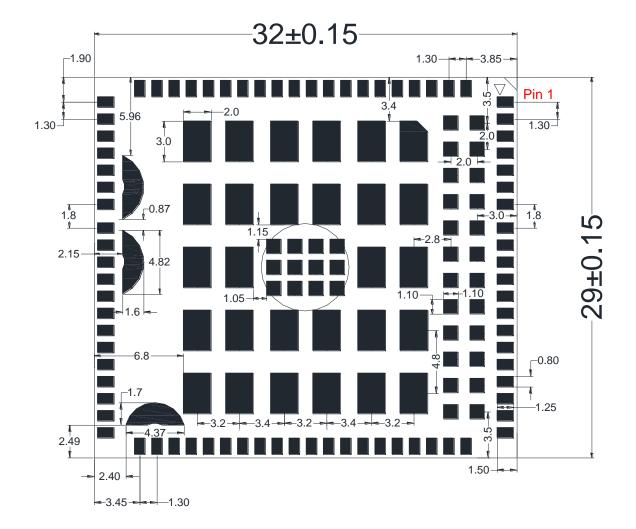



Figure 43: Module Top and Side Dimensions

7.2. Recommended Footprint

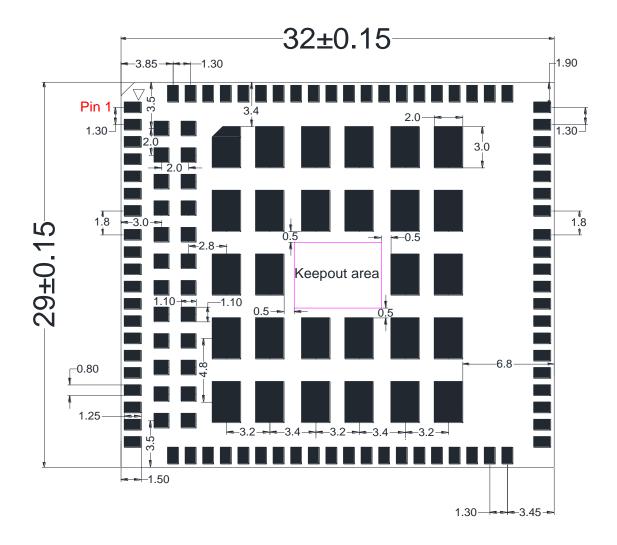


Figure 45: Recommended Footprint (Top View)

- 1. The keepout area should not be designed.
- 2. For easy maintenance of the module, please keep about 3 mm between the module and other components in the host PCB.

7.3. Recommended Compatible Footprint

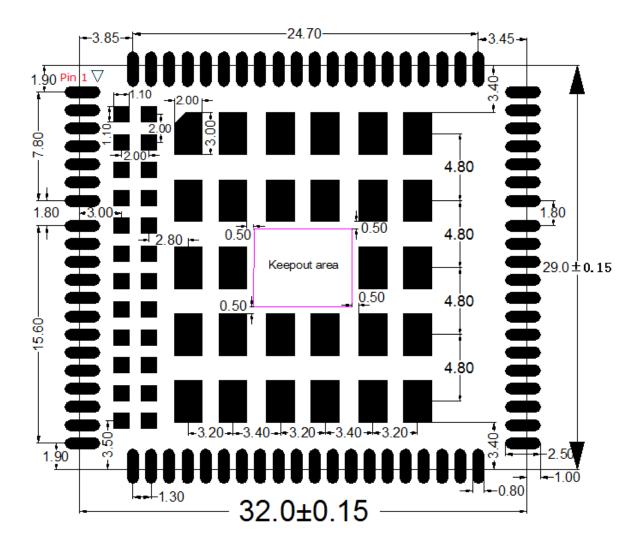


Figure 46: Recommended Compatible Footprint (Top View)

- 1. The keepout area should not be designed.
- 2. For easy maintenance of the module, please keep about 3 mm between the module and other components in the host PCB.
- 3. EG21-G includes LGA and LCC form factors. LGA is default, while LCC is recommended only in the compatible design with EC25 series/EC21 series/EC20 R2.1/EG25-G/UC200T modules.
- 4. For more details, please refer to *document [4]*.

7.4. Design Effect Drawings of the Module

Figure 47: Top View of the Module

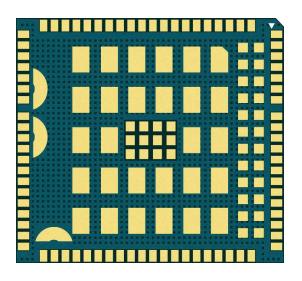


Figure 48: Bottom View of the Module

NOTE

These are renderings of EG21-G module. For authentic appearance, please refer to the module that you receive from Quectel.

8 Storage, Manufacturing and Packaging

8.1. Storage

EG21-G is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

- 1. Recommended Storage Condition: The temperature should be 23 \pm 5 °C and the relative humidity should be 35%–60%.
- 2. The storage life (in vacuum-sealed packaging) is 12 months in Recommended Storage Condition.
- 3. The floor life of the module is 24 hours in a plant where the temperature is 23 ±5 °C and relative humidity is below 60%. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 24 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10% (e.g. a drying cabinet).
- 4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
 - The module is not stored in Recommended Storage Condition;
 - Violation of the third requirement above occurs;
 - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
 - Before module repairing.
- 5. If needed, the pre-baking should follow the requirements below:
 - The module should be baked for 8 hours at 120 ±5 °C;
 - All modules must be soldered to PCB within 24 hours after the baking, otherwise they should be put in a dry environment such as in a drying oven.

NOTE

Please take the module out of the packaging and put it on high-temperature resistant fixtures before the baking. If shorter baking time is desired, please refer to *IPC/JEDEC J-STD-033* for baking procedure.

8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil for the module is recommended to be 0.13–0.15 mm. For more details, please refer to **document [4]**.

It is suggested that the peak reflow temperature is 238–246 °C, and the absolute maximum reflow temperature is 246 °C. To avoid damage to the module caused by repeated heating, it is strongly recommended that the module should be mounted after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

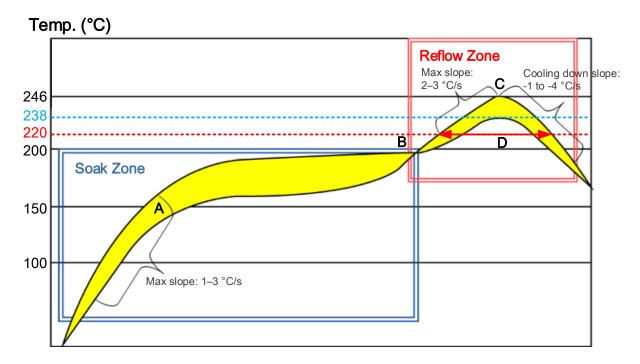


Figure 49: Reflow Soldering Thermal Profile

Table 38: Recommended Thermal Profile Parameters

Factor	Recommendation
Soak Zone	
Max slope	1–3 °C/s
Soak time (between A and B: 150 °C and 200 °C)	70–120 s
Reflow Zone	
Max slope	2–3 °C/s
Reflow time (D: over 220 °C)	45–70 s
Max temperature	238–246 °C
Cooling down slope	-1 to -4 °C/s
Reflow Cycle	
Max reflow cycle	1

8.3. Packaging

EG21-G is packaged in tap and reel carriers. Each reel is 11.88m long and contains 250 modules. The figure below shows the package details, measured in mm.

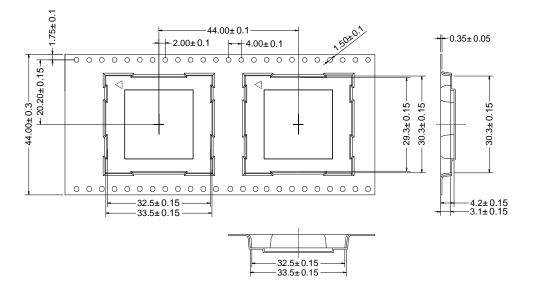
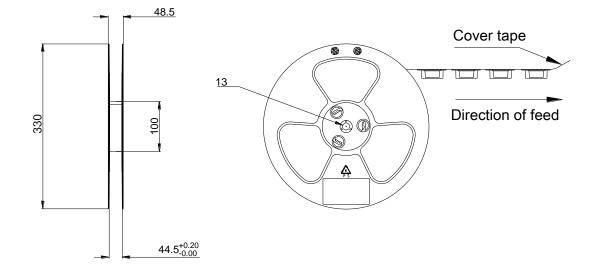



Figure 50: Tape Specifications

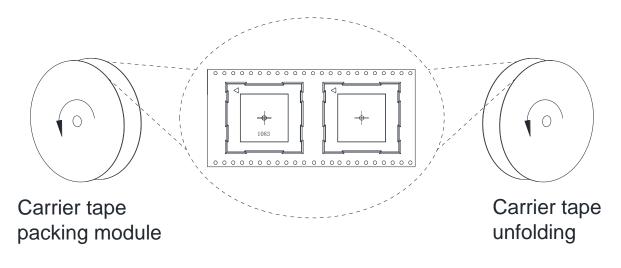


Figure 52: Tape and Reel Directions

9 Appendix A References

Table 39: Related Documents

SN	Document Name	Remark
[1]	Quectel_EC2x&EGxx_Power_Management_ Application_Note	Power management application note for EC25 series, EC21 series, EC20 R2.1, EG95 series, EG91 series, EG21-G and EG25-G modules
[2]	Quectel_LTE_Standard_AT_Commands_ Manual	AT commands manual for LTE Standard modules
[3]	Quectel_LTE_Standard_GNSS_Application_Note	GNSS application note for LTE Standard modules
[4]	Quectel_Module_Secondary_SMT_User_Guide	Module secondary SMT user guide
[5]	Quectel_EG21-G_Reference_Design	EG21-G reference design
[6]	Quectel_RF_Layout_Application_Note	RF layout application note
[7]	Quectel_LTE_Module_Thermal_Design_Guide	Thermal design guide for LTE standard, LTE-A and Automotive modules
[8]	Quectel_UMTS<E_EVB_User_Guide	UMTS<E EVB user guide for UMTS<E modules

Table 40: Terms and Abbreviations

Abbreviation	Description
AMR	Adaptive Multi-rate
bps	Bits Per Second
СНАР	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CSD	Circuit Switched Data

CTS	Clear To Send
DC-HSPA+	Dual-carrier High Speed Packet Access
DFOTA	Delta Firmware Upgrade Over The Air
DL	Downlink
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
ESD	Electrostatic Discharge
FDD	Frequency Division Duplex
FR	Full Rate
GLONASS	GLObalnaya NAvigatsionnaya Sputnikovaya Sistema, the Russian Global Navigation Satellite System
GMSK	Gaussian Minimum Shift Keying
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
GSM	Global System for Mobile Communications
HR	Half Rate
HSPA	High Speed Packet Access
HSDPA	High Speed Downlink Packet Access
HSUPA	High Speed Uplink Packet Access
I/O	Input/Output
Inorm	Normal Current
LED	Light Emitting Diode
LNA	Low Noise Amplifier
LTE	Long Term Evolution
MIMO	Multiple Input Multiple Output

МО	Mobile Originated
MS	Mobile Station (GSM engine)
MSL	Moisture Sensitivity Level
MT	Mobile Terminated
PAP	Password Authentication Protocol
PCB	Printed Circuit Board
PDU	Protocol Data Unit
PPP	Point-to-Point Protocol
QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
RF	Radio Frequency
RHCP	Right Hand Circularly Polarized
Rx	Receive
SGMII	Serial Gigabit Media Independent Interface
SIMO	Single Input Multiple Output
SMS	Short Message Service
TDD	Time Division Duplexing
TDMA	Time Division Multiple Access
TD-SCDMA	Time Division-Synchronous Code Division Multiple Access
ТХ	Transmitting Direction
UL	Uplink
UMTS	Universal Mobile Telecommunications System
URC	Unsolicited Result Code
(U)SIM	(Universal)Subscriber Identity Module
Vmax	Maximum Voltage Value

Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
V _{IH} max	Maximum Input High Level Voltage Value
V _{IH} min	Minimum Input High Level Voltage Value
Vilmax	Maximum Input Low Level Voltage Value
Villmin	Minimum Input Low Level Voltage Value
V _I max	Absolute Maximum Input Voltage Value
V _I min	Absolute Minimum Input Voltage Value
V _{OH} max	Maximum Output High Level Voltage Value
V _{OH} min	Minimum Output High Level Voltage Value
V _{OL} max	Maximum Output Low Level Voltage Value
Volmin	Minimum Output Low Level Voltage Value
VSWR	Voltage Standing Wave Ratio
WCDMA	Wideband Code Division Multiple Access

10 Appendix B GPRS Coding Schemes

Table 41: Description of Different Coding Schemes

Scheme	CS-1	CS-2	CS-3	CS-4
Code Rate	1/2	2/3	3/4	1
USF	3	3	3	3
Pre-coded USF	3	6	6	12
Radio Block excl.USF and BCS	181	268	312	428
BCS	40	16	16	16
Tail	4	4	4	-
Coded Bits	456	588	676	456
Punctured Bits	0	132	220	-
Data Rate Kb/s	9.05	13.4	15.6	21.4

11 Appendix C GPRS Multi-slot Classes

Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications.

The description of different multi-slot classes is shown in the following table.

Multi-slot Class	Downlink Slots	Uplink Slots	Active Slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5
13	3	3	NA

Table 42: GPRS Multi-slot Classes

14	4	4	NA
15	5	5	NA
16	6	6	NA
17	7	7	NA
18	8	8	NA
19	6	2	NA
20	6	3	NA
21	6	4	NA
22	6	4	NA
23	6	6	NA
24	8	2	NA
25	8	3	NA
26	8	4	NA
27	8	4	NA
28	8	6	NA
29	8	8	NA
30	5	1	6
31	5	2	6
32	5	3	6
33	5	4	6

12Appendix D EDGE Modulation and Coding Schemes

Coding Scheme Modulation Coding Family 1 Timeslot 2 Timeslot **4 Timeslot** CS-1: GMSK / 9.05 kbps 18.1 kbps 36.2 kbps CS-2: GMSK / 13.4 kbps 26.8 kbps 53.6 kbps CS-3: GMSK / 15.6 kbps 31.2 kbps 62.4 kbps CS-4: GMSK / 21.4 kbps 42.8 kbps 85.6 kbps С MCS-1 GMSK 17.60 kbps 8.80 kbps 35.20 kbps MCS-2 GMSK В 11.2 kbps 22.4 kbps 44.8 kbps MCS-3 GMSK А 14.8 kbps 29.6 kbps 59.2 kbps С MCS-4 GMSK 17.6 kbps 35.2 kbps 70.4 kbps MCS-5 8-PSK В 22.4 kbps 44.8 kbps 89.6 kbps MCS-6 8-PSK А 29.6 kbps 59.2 kbps 118.4 kbps MCS-7 В 8-PSK 44.8 kbps 89.6 kbps 179.2 kbps MCS-8 8-PSK А 54.4 kbps 108.8 kbps 217.6 kbps MCS-9 8-PSK А 59.2 kbps 118.4 kbps 236.8 kbps

Table 43: EDGE Modulation and Coding Schemes