Crossover Trial of Novel Mechanical Oscillatory Vibration Frequency Device Versus TENS for Musculoskeletal Pain

PRESENTER: Amy Baxter MD

Objective

To evaluate whether high frequency mechanical vibration in the Pacinian stimulation range (180-250Hz) relieves pain more than electrical stimulation

Design

Randomized non-blinded crossover trial Setting

Outpatient physical therapy

Participants

13 females and 7 males aged 25 – 81 receiving physical therapy for OA (6), sacroiliac dysfunction (2), shoulder injury (5), post-surgery (3), epicondylitis (1), plantar fasciitis (1), fibromyalgia (1), and bone cancer of the spine

Interventions

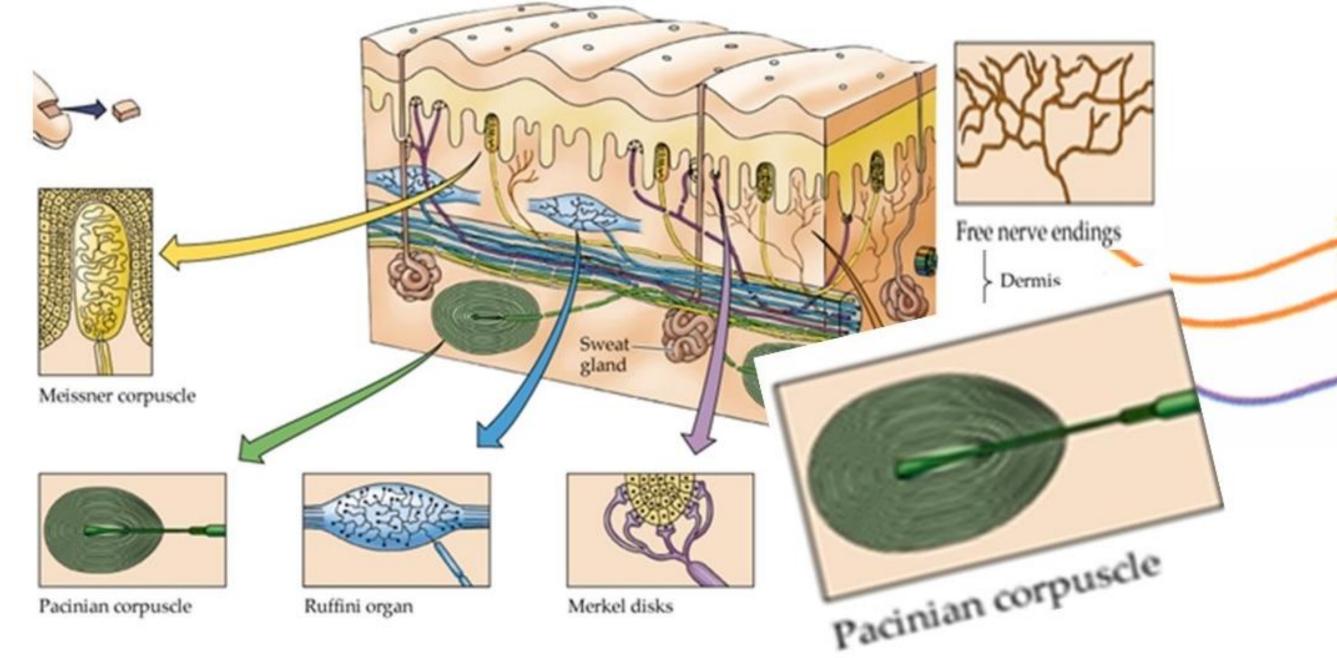
Consented patients got a randomized 20-minute session of 180-200Hz mechanical oscillatory vibration, 0.1m/s2 amplitude (VibraCool (VC), Pain Care Labs, Atlanta, GA) or a generic model-TENS 3000 applied to pain. TENS units used 150Hz frequency with a pulse width of 200ms, asymmetrical biphasic square pulse waveform, and amplitude as high as comfortable on a 0-80mA using a 500 ohm load per channel. Most patients tried the devices on different days. On 2 occasions when TENS was applied with no relief VC was used the same day.

Main Outcome Measures

Visual analog scale (VAS) pre- and post-therapy pain scores (from 0 "no pain" to 10.

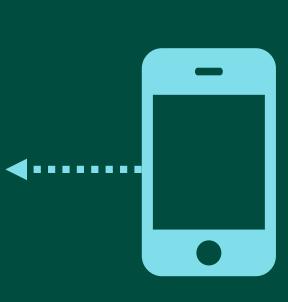
Results

Mean pain relief with VC high frequency vibration was 3.60 +/- 1.60 (95%CI 2.85 to 4.35). Pain relief with TENS was 1.40 +/- 1.05 (95%CI 0.91 to 1.89), with a mean difference of -2.2 +/- 1.34 (95%CI-2.85 to -1.55, P<.0001). Pain relief with VC was greatest for spine, injury and post-surgical pain (5-6) and least for OA (2-3). One patient had no relief with VC (plantar fasciitis); five patients had no relief with TENS (plantar fasciitis, OAx2, shoulder arthralgia, and s/p ORIF).


Conclusions

Mechanical high frequency vibration in the Pacinian corpuscle frequency was superior to electrical stimulation for pain relief, with highest efficacy for injury, post-surgical and spinal conditions.

Wearable mechanical stimulation frequency relieved overuse and spine pain 4x better than TENS. Why Mechanical Stimulation > Electrical Gate Control Pain Relief In the brain, self-eff


distraction reinterp

Mechanoreceptors fire at different mechanical frequency thresholds. Pacinian (180-250Hz)¹ block pain most.²

TENS uses electricity (2-5Hz & 80-150Hz) to twitch skin to make motion to fire nerves.³ 50% of patients tolerate the electricity amplitude needed to fire deep Pacinian.⁴ 100% of patients tolerate mechanical amplitude to fire Pacinian mechanoreceptors.⁵ Mechanical waves stretch (firing Ruffini) + decay to trigger slower (Meissner) Hz.⁶

In the brain, annoying signals (cold) inhibit pain.

> In the spine, mechanical signals ove pain signals' transmission to the br

		duction by Et Location	VibraCool TENS
			-OA VC -OA TENS -Overuse VC -Overuse TENS -Injury VC -Injury TENS -Spine VC -Spine TENS
nore th 2.2 +/- ndividu	an TENS 1.34 (95% al pain et	elieved pain 2.2/10 () units on average. &CI-2.85 to -1.55, P<.0001) iology lines shown in colors ith VibraCool; mechanical only. After 20 M	Spine n=4 age 53.7
cy and t pain.		References 1. Manfredi LR, et al. The propagation on neural re primate glabrous skin. Pl 2. Hollins M, Corsi C, Sloa	sponses to vibration in oS one. 2012; 7 (2):e312
ide 1.7		 Determine the Direction and Magnitude of the Effect of Vibration on Pain. Perception. 2017 Aug;46(8):987-999. 3. Vance CG, et al. Using TENS for pain control: t state of the evidence. Pain management. 2014 May;4(3):197-209. 4. Serrano-Munoz D et al. Intensity matters: Therapist-dependent dose of spinal transcutane electrical nerve stimulation. PloS one. 2017;12(12):e0189734. 5. Mineto M et al. Contralateral effect of short- 	
		duration unilateral NMES healthy subjects. Eur Jou 2018 December;54(6):91 6. Hollins M, McDermott vibration reduce pain? Pe 7. Guang H , Linhong Ji, a Vibration Stretches Musc Muscle Waves. IEEE TRAN AND REHAB ENGINEERIN 846.	r Physical and Rehab M 1-20. K, Harper D. How does erception. 2014; 43 (1):7 Ind Yingying Shi Focal Cle Fibers by Producing NS ON NEURAL SYSTEM
		Tiziano A. Marovino, PT Amy Baxter MD, FAAP F abaxter@PainCareLabs	ACEP