

Titrations By Melissa Maribel

Table of Contents

- 1 Key Terms to Know
- **2** The Process of a Titration
- 3 How to Find the Equivalence Point
- 6 How to Write the Chemical Equation for Each Type of Titration
- 11 How to Build an ICE Table
- 14 How to Build a BCA Table
- 17 How to Use the 5% Rule
- 18 Using the Quadratic Formula
- **20** Titrations Curves
- 21 Strong Acid Titrated with a Strong Base
- 31 Strong Base Titrated with a Strong Acid
- **42** Weak Acid Titrated with a Strong Base
- 64 Weak Base Titrated with a Strong Acid
- 81 Using mmol for a Strong Acid and Strong Base Titration
- 90 Using mmol for a Weak Acid and Strong Base Titration
- Polyprotic Acids
- 106 Finding the pH of Polyprotic Acids
- **129** Acid-Base Indicators
- 132 Determining Indicators
- 141 Finding the Moles at Equivalence Point
- 142 Finding the Molarity of an Acid
- 144 Finding the Molarity of a Base
- 146 Finding the Mass of a Sample

melissamaribel.com

How to Build an ICE Table

The Basics:

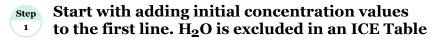
- An ICE Table is used to find concentrations at equilibrium and the equilibrium constant (K)
- The values used in an ICE Table must be concentrations, meaning the units are all molarity (M)
- Here is what each letter in ICE represents:

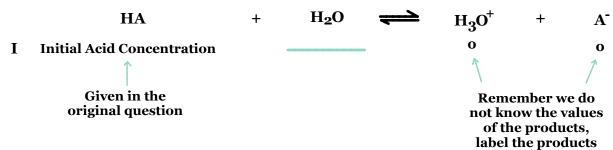
I = Initial concentration

C = Change in concentration

E = concentration when the reaction is at Equilibrium

H₂O is excluded in an ICE Table


Generic Template of an ICE Table


Balanced Chemical Equation:

	НА	+	H ₂ O		H_3O^+	+	A ⁻
Ι	Initial Acid Concentration			-	0		o
C	-x			-	+x		+ x
E	Initial Acid Concentration - x	(_	X		X

How to Build an ICE Table

Steps for building an ICE Table

HA +
$$H_2O$$
 \Longrightarrow H_3O^+ + A^-
I Initial Acid Concentration O O

C -x O

Note: x depends on the coefficients in the balanced chemical equation, if there was a 2 coefficient in front of HA, for example 2 HA then the change would be 2x

 H_2O

zero.

 $\mathbf{A}^{\mathsf{-}}$

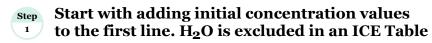
Add rows I and C together to get row E

HA

HA +
$$H_2O$$
 \Longrightarrow H_3O^+ + ATI Initial Acid Concentration 0 0 0

C -x +x +x +x

E Initial Acid Concentration - x x x



How to Build an ICE Table Example

Calculate the pH at different volumes of KOH in a titration of 40.0 mL of 0.100 M HCOOH (Ka = 1.80 x 10^{-4}) with 0.100 M KOH.

zero.

Steps for building an ICE Table

$$HCOOH + H_2O \rightleftharpoons H_3O^{\dagger} + COOH^{-}$$

Place -x for the reactants and +x for the products

Add rows I and C together to get row E

I

 \mathbf{C}

Ι

 \mathbf{C}