The Complete Guide to:



## STOICHIOMETRY



by Melissa Maribel

## 

| 1  | How to Setup Any Problem               |
|----|----------------------------------------|
| 3  | Molar Mass                             |
| 5  | Mole to Mole Ratios                    |
| 7  | Avogadro's Number                      |
| 10 | Liters to Moles                        |
| 11 | Examples without Changing the Compound |
| 13 | Examples with Changing the Compound    |

## EXAMPLES WIT NGING THE COMPO



Grams of one compound

Grams of another compound

Calculate the mass of  $CO_2$  produced when 75.0 g of Fe is produced.

Given: 75.0 g Fe

Finding: mass (grams) CO<sub>2</sub>

$$Fe_2O_3 + 3CO$$
 2 Fe + 3CO<sub>2</sub>

Plan:

g Fe mol Fe mol CO<sub>2</sub>





| 75.0 g Fe | 1 mol Fe   | 3 mol CO <sub>2</sub> | 44.01 g CO <sub>2</sub> |
|-----------|------------|-----------------------|-------------------------|
|           | 55.85 g Fe | 2 mol Fe              | 1 mol CO <sub>2</sub>   |



Mole to Mole Ratio 2 Numbers/Coefficients from balanced equation **1**Fe<sub>2</sub>O<sub>3</sub> +**3**CO **2** Fe + **3**CO<sub>2</sub>

3 Molar mass of  $CO_2$ C = 12.01

 $0 = 16 \times 2 = 32$ 

Add it up

 $12.01 + 32 = 44.01 \, g/mol$ 

 $= 88.6504 \text{ g CO}_{2}$ 

Round up to 3 sig figs since given value of 75.0 has 3 sig figs ANSWER =  $88.7 \text{ g CO}_2$ 

Tutors and Coffee, LLC | melissamaribel.com