Kinetics

By Melissa Maribel

melissamaribel.com

Table of Contents

(1) Rates of Chemical Reactions
(4) Factors Affecting Reaction Rates
(5) Endothermic and Exothermic Reactions
(8) Rate Law and Reaction Orders
(9) How to Find the Rate Law

11 How to Find the Rate Constant
(16) Finding the Rate Law with Three Reactants
(18) Finding the Rate Constant with Three Reactants
19) Using Ln to Find the Rate Law
(21) Integrated Rate Laws
(28) Integrated Rate Law Graphing Example

30 Half-Life
(36) Reaction Mechanisms
(38) Molecularity

39 Reaction Mechanisms Examples
(46) The Arrhenius Equation

Example 1 : Finding the rate law

Using the table, find the rate law and rate constant.

$$
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}
$$

Trial	$\left[\mathbf{S O}_{\mathbf{3}} \mathbf{]}, \mathbf{M}\right.$	[$\mathbf{H}_{\mathbf{2}} \mathbf{O}$], M	Rate M/s
$\mathbf{1}$	0.35	0.35	0.150
2	0.70	0.35	0.600
3	0.35	0.70	0.300
4	0.70	0.70	1.20

Step
Pick two different trials where one reactant's concentration stays the same and the other changes. Plug values into formula.

Trial	[$\left.\mathbf{S O}_{3}\right]$, M	[$\mathrm{H}_{2} \mathrm{O}$], M	Rate M/s
1	5 Changes ${ }^{\text {O. }} 35$ Same		
2	0.70	0.35	0.600
3	0.35	0.70	0.300
4	0.70	0.70	1.20

$$
\begin{aligned}
& \frac{\text { Rate 2 }}{\text { Rate } 1}=\frac{\mathrm{k}\left[\mathrm{SO}_{3}\right]^{x}\left[\mathrm{H}_{2} \mathrm{O}\right]^{y}}{\mathrm{k}\left[\mathrm{SO}_{3}\right]^{x}\left[\mathrm{H}_{2} \mathrm{O}\right]^{y}} \\
& \frac{0.600}{0.150}=\frac{\mathrm{k}[0.70]^{x}[0.35]^{y}}{\mathrm{k}[0.35]^{x}[0.35]^{y}}
\end{aligned}
$$

Step Plug in each value from the two chosen trials.
4 Cancel like terms and divide remaining terms.

$$
\frac{\text { Rate } 4}{\text { Rate } 2}=\frac{\mathrm{k}\left[\mathrm{SO}_{3}\right]^{\mathrm{x}}\left[\mathrm{H}_{2} \mathrm{O}\right]^{\mathrm{y}}}{\mathrm{k}\left[\mathrm{SO}_{3}\right]^{\mathrm{x}}\left[\mathrm{H}_{2} \mathrm{O}\right]^{\mathrm{y}}}
$$

$$
\frac{1.20}{0.600}=\frac{\mathrm{k}[0.70]^{\mathrm{x}}[0.70]^{\mathrm{y}}}{\mathrm{k}[0.70]^{\mathrm{x}}[0.35]^{y}}
$$

Solve for x by cancelling like terms and dividing the

remaining values.

$$
\begin{aligned}
& \frac{0.600}{0.150}=\frac{\mathrm{k}[0.70]^{\mathrm{x}}[0.35]^{\mathrm{y}}}{\mathrm{k}[0.35]^{x}[0.35]^{y}} \\
& \text { Divide } \\
& \begin{aligned}
4 & =2^{\mathrm{x}} \\
\mathrm{x} & =2
\end{aligned}
\end{aligned}
$$

Repeat step one with two other trials but solve for y now.

Trial	[$\left.\mathbf{S O}_{3}\right]$, M	[$\left.\mathrm{H}_{2} \mathrm{O}\right]$, M	Rate M/s
1	0.35	0.35	0.150
2	0.70	0.35	0.600
3	0.35	$\begin{array}{\|c\|c} \hline \text { Same } 0.70 & \text { Changes } 0.300 \\ 0.70 & 1.20 \\ \hline \end{array}$	
4	0.70		

Answer: Rate $=k\left[\mathrm{SO}_{3}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{1}$

