The COMPLETE Chemistry Guide to

Melissa Maribel

TABIE OF CONTENTS

1 Introduction to Chemistry
2 Classification of Matter
6 Physical and Chemical Properties
7 Physical and Chemical Changes
8 Intensive and Extensive Properties
9 Scientific Notation
11 Units of Measurement
13 Converting Temperatures
16 The Scientific Method and Scientific Laws
173 Scientific Laws
20 Dalton's Atomic Theory

TABIE OF CONTENTS

21 The Discovery of the Atomic Structure

23 The Atomic Structure
25 Isotopes
26 Atomic Weight
27. Finding Percent Abundance

31 The Periodic Table
33 Molar Mass
34 Percent Composition
35 Empirical and Molecular Formulas
41 Combustion Analysis

FINDING THE MOLECULAR FORMULA

EXAMPLE 1

What is the molecular formula of a compound that is $34.95 \% \mathrm{C}, 6.844 \% \mathrm{H}, 13.59 \% \mathrm{~N}$ and 46.56% ? The molecular weight of this compound is $210 \mathrm{~g} / \mathrm{mol}$.

Recall that to find the molecular formula we first need to find the empirical formula.

Change percentages to grams.
$34.95 \% \mathrm{C}=34.95 \mathrm{~g} \mathrm{C}$
$6.844 \% \mathrm{H}=6.844 \mathrm{~g} \mathrm{H}$
$13.59 \% \mathrm{~N}=13.59 \mathrm{~g} \mathrm{~N}$
$46.56 \% 0=46.56 \mathrm{~g} \mathrm{O}$

(sit)
Convert values in grams to moles using the molar mass of each element which is found on the periodic table.

34.95 g C	1 mol C		
	12.01 g C	$=2.9100749381 \mathrm{~mol} \mathrm{C} \quad$	6.844 g H
:---			
1 mol H	$=6.008 \mathrm{~mol} \mathrm{H} .7868254 \mathrm{~mol} \mathrm{H}$		

13.59 g N	1 mol		
	14.01 g N	$=0.9700214133 \mathrm{~mol} \mathrm{~N} \quad$	46.56 g O
:---			
1 mol O	$=2.91 \mathrm{~mol} 0$		

$\left(\frac{1 i t}{3}\right)$ Divide each by the smallest moles. In this case the smallest is N .

These are the potential subscripts for the empirical formula: $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}_{1} \mathrm{O}_{3}$

Write empirical formula with only whole numbers. Since all subscripts are whole numbers, we found the empirical formula.

Empirical Formula: $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}_{1} \mathrm{O}_{3}$

