The COMPLETE Chemistry Guide to

Melissa Maribel

Distribution is prohibited by law. Copyright © Melissa Maribel.

TABLE OF CONTENTS

This Table of Contents is Introduction to Chemistry clickable! **Classification of Matter** 2 Physical and Chemical Properties 6 Physical and Chemical Changes **Intensive and Extensive Properties** 8 **Scientific Notation** 9 Units of Measurement 11 13 **Converting Temperatures** The Scientific Method and Scientific Laws 16 **3** Scientific Laws 17 Dalton's Atomic Theory 20

Distribution is prohibited by law. Copyright © Melissa Maribel.

TABLE OF CONTENTS

21 The Discovery of the Atomic Structu	ıre
23 The Atomic Structure	
25 Isotopes	
26 Atomic Weight	
27 Finding Percent Abundance	
31 The Periodic Table	
33 Molar Mass	
34 Percent Composition	
35 Empirical and Molecular Formulas	
41 Combustion Analysis	

FINDING THE MOLECULAR FORMULA

EXAMPLE 1

What is the molecular formula of a compound that is 34.95% C, 6.844% H, 13.59% N and 46.56% O? The molecular weight of this compound is 210 g/mol.

Recall that to find the molecular formula we first need to find the empirical formula.

Change percentages to grams.

2105 9 (- 2105 ~ (691104-6911-4	13.59 % N = 13.59 g N	46.56 % 0 = 46.56 g 0
34.95 % C = 34.95 g C	6.844 % H = 6.844 g H	10.09 / N - 10.09 (IN	40.00 % 0 - 40.00 0 0

Convert values in grams to moles using the molar mass of each element which is found on the periodic table.

34.95 g C	1 mol C 12.01 g C = 2.910074938 1 mol C	6.844 g H	1 mol H 1.008 mol H = 6.78968254 mol H
13.59 g N	1 mol N 14.01 g N = 0.9700214133 mol N	46.56 g O	1 mol O 16.00 g O = 2.91 mol O

📒 Divide each by the smallest moles. In this case the smallest is N.

2.910074938 1 mol C	6.78968254 mol H = 6.9995
0.9700214133	0.9700214133
	Round up to a whole number

0.9700214133 mol N 0.9700214133 =

2.91 mol O 0.9700214133 = 2.9999

Round up to a whole number

= 7

= 3

These are the potential subscripts for the empirical formula: $C_3H_7N_1O_3$

Write empirical formula with only whole numbers. Since all subscripts are whole numbers, we found the empirical formula.

Empirical Formula: C₃H₇N₁O₃