

This Table of Contents is clickable!

1 Acids and Base Definitions

2 Strong and Weak Acids
4 Strong and Weak Bases
5 Acid-Base Neutralization Reactions
6 Conjugate Acids and Bases
9 Amphoteric Species
10 Autoionization
11 What is pH ?
12 Significant Figure Rules for pH and pOH
13 Finding the pH of a Strong Acid
15 Finding the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a Strong Acid
16 Finding the pOH of a Strong Base
17 Finding the [OH^{-}] of a Strong Base
18 Finding pH from [$\mathrm{OH}-$]
19 Finding the pH of a Strong Base
21 Finding [OH^{-}] from pH
22 Finding pH and pOH
23 Finding [OH^{-}] from $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$]
24 Finding $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] from [OH^{-}]
25 Summary of All Formulas
26 What is K_{a} ?
27 What is Kb?

28 How to Build an ICE Table
31 How to Use the 5\% Rule
32 When to Use the Quadratic Formula
34 Finding the pH of a Weak Acid
48 Finding the pH of a Weak Base
58 Main Steps for Finding pH of Acids and Bases
59 Finding K_{a} and K_{b}
64 Percent Ionization
74 Relationship between pKa and pKb
77 Finding Mass from pH
78 pH and Ideal Gas Law Question
81 Finding Volume using Density
83 Properties of Anions and Salts
84 Properties of Cations and Salts
85 Classifying Salts as Acidic, Basic or Neutral
91 Determining Acid Strength
94 Finding pH of a Solution with an Anion
98 Mixtures of Acids

Percent Ionization

- Percent ionization is another way to measure the strength of a weak acid (HA).
- Percent ionization refers to the percentage of acid molecules that actually ionize (dissolve).
- The higher the percent ionization the stronger the acid.
(1) $\uparrow \%$ ionization $\downarrow \mathrm{pH}$
(2) $\uparrow[H A]_{\text {initial }} \downarrow \%$ ionization
(3) $\uparrow[H A]_{\text {initial }} \uparrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {equilibrium }}$

Other ways to say percent ionization

- percent ionized
- percent dissociation

The formula for percent ionization is:

$$
\text { Percent ionization }=\frac{\text { concentration of ionized acid }}{\text { initial acid concentration }} \times 100
$$

You may also see this formula written like this:

$$
\% \text { ionization }=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {equilibrium }}}{[\mathrm{HA}]_{\text {initial }}} \times 100
$$

Common multiple choice question
Which weak acid solution has the greatest percent ionization?
(a) $1.00 \times 10^{-2} \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
(b) $0.100 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
c $0.500 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
a, because $\uparrow[H A]_{\text {initial }} \downarrow \%$ ionization therefore the lowest [HA] has the greatest \% ionization
There are two main types of questions you'll see when asked to find the percent ionization:

Type 1: No ICE Table
Type 2: Requires an ICE Table

Finding Percent Ionization Type 1

Example

A 0.077 M solution of a weak acid, HA, has a pH of 2.16. Find the percentage of acid that is ionized.
(Siep Identify the given and what you're finding.
Given: 0.077 M HA
Find: \% ionization
$\mathrm{pH}=2.16$
(Step Find $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$using $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$.

$$
\begin{array}{lr}
\mathrm{pH}=2.16 \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}} & \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-2.26}} & \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.0069183097 \mathrm{M}} & \text { Correct amount of sig figs is } \\
& \text { Round up to } 2 \text { sig figs }
\end{array} \quad \text { found looking at the given values }
$$

Step
Plug into \% ionization formula.

$$
\begin{aligned}
& \% \text { ionization }=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {equilibrium }}}{[\mathrm{HA}]_{\text {initial }}} \times 100 \\
& \% \text { Given in question } \\
& 0.077
\end{aligned} 100
$$

$$
\% \text { ionization }=0.0896103896 \times 100
$$

\% ionization = 8.96103896\%

$$
\text { Round up to } 2 \text { sig figs }
$$

