

A ratio that compares two quantities with different units of measure is called a rate.

Examples: $\$ 23$ per foot
55 mph
$\$ 5 /$ per person

Your family drove 200 miles. The total amount of fuel used was 10 gallons of gas.

What was the average rate of fuel consumption?
$\frac{\text { miles }}{\text { gallons }} \frac{200 \text { miles }}{10 \text { gallons }}=\frac{20 \text { miles }}{1 \text { gallon }}$

Rates are simplified by writing them as a unit rate. A unit rate has a second term that is a single unit.

Example: 500 people go to 10 school dances.
500 people $=\frac{50 \text { people }}{1 \text { dance }}$

Find the Unit Rate. Amount per one

1) $\mathbf{1 5 0}$ students in $\mathbf{5}$ classrooms

Find the Unit Rate. Amount per one
2) $\mathbf{\$ 2 4}$ for $\mathbf{8}$ lunches

Find the Unit Price. Amount per one
\$200 for 4 skateboards

$\begin{aligned} & \text { Change } 3 \text { hours } \\ & \text { to minutes }\end{aligned} \frac{3 \text { hours }}{1} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{ht}}=180 \mathrm{~min}$, to minutes
$\begin{array}{ll}\text { Change } 21 \text { days } \\ \text { to Weeks } & \frac{21 \text { days }}{1} \cdot \frac{1 \text { week }}{7 \text { days }}=\frac{21}{7}=3 \mathrm{wks}\end{array}$

Change 10 feet
to inches
and
1

Change 6 feet to inches
$\frac{6 \mathrm{ft}}{1} \cdot \frac{12 \mathrm{in} .}{1 \mathrm{ft}}=72 \mathrm{in}$.
$\begin{aligned} & \text { Change } 5 \text { hours } \\ & \text { to minutes }\end{aligned}: \frac{5 \text { hours }}{1} \cdot \frac{60 \mathrm{~min} .}{1 \mathrm{ht}}=300 \mathrm{~min}$.

Your heart beats $\mathbf{7 0}$ heats/min. How many beats per hour is this?

Start

$\frac{70 \text { beats }}{1 \text { min. }} \times \frac{60 \mathrm{~min} .}{1 \mathrm{hr} .}=\frac{4200}{1} \frac{\text { beats }}{\mathrm{hr} .}$

Rate
60 min .
1 hr .

Write the statement as a fraction. Then find the missing unit.

$$
\begin{array}{r}
\frac{8 \mathrm{lb}}{1 \mathrm{ft}^{3}} \cdot 5 \mathrm{ft}^{3}=40 \mathrm{lb} \\
\frac{? \nVdash}{1 \mathrm{ft}^{3}} \cdot \frac{5 \mathrm{ft}}{1}=40 \not \mathrm{l} \\
? \cdot 5=40
\end{array}
$$

The missing number is 8 .

Write the statement as a fraction. Then find the missing unit.

$$
\frac{5 \mathrm{~g}}{1 \mathrm{~cm}^{3}} \cdot 10 \underline{?}=50 \mathrm{~g}
$$

$$
\frac{5 g}{\mathrm{~cm}^{3}} \cdot \frac{10 ?}{1}=50 g
$$

Your units must cancel.

The missing unit is cm^{3}.

Write the statement as a fraction. Then find the missing unit.

$$
3 \mathrm{~h} \cdot \frac{20 \mathrm{~km}}{?}=60 \mathrm{~km}
$$

$\frac{3 \text { h. }}{1} \cdot \frac{20 \mathrm{k} / \mathrm{m}}{?}=60 \mathrm{kgx}$
Your units must cancel.
The missing unit is 1 hr .

An airplane flies 590 miles per hour for 120 minutes. How many miles does it travel?

SOLUTION

First make sure that the units for the rate and the time are compatible. In this case, convert minutes to hours.

Start

Finish

$$
\frac{120 \text { mins }}{1} \times \frac{1 \text { hour }}{60 \text { mins }}=\frac{120}{60}=2 \text { hours }
$$

$$
\text { Rate } \frac{1 \text { hour }}{60 \operatorname{mins}}
$$

An airplane flies 590 miles per hour for 120 minutes. How many miles does it travel?
$120 \mathrm{~min}=2 \mathrm{hrs}$
Then calculate the distance traveled.

$\mathrm{D}=\frac{590 \text { miles }}{1 \text { hour }} \bullet 2$ hours
$\mathrm{D}=1180$ miles
The plane travels 1180 miles in 120 minutes.

\#17 Unit Rate as a Fraction

Unit Rate is a comparison of a number to one in different units. It is written as a fraction.
You divide to simplify and always include units in your answer.

1) $\mathbf{1 2 0}$ students in $\mathbf{4}$ classrooms

2) $\mathbf{2 9}$ grams per cubic centimeter

\#18 Find the Missing Unit

Write the statement as a fraction. Then find the missing unit.

1) $\frac{? \mathrm{lb}}{1 \mathrm{ft}^{3}} \bullet 6 \mathrm{ft}^{3}=30 \mathrm{lb}$

$$
\frac{? \not \supset 6}{1 f^{3}} \cdot \frac{6 f^{3}}{1}=30 \not 6
$$

$? \cdot 6=30$
The missing number is 5 .
2) $\frac{4 \mathrm{~g}}{1 \mathrm{~cm}^{3}} \cdot 8 \underline{?}=32 \mathrm{~g}$ $\frac{4 \%}{1\left(\mathrm{~cm}^{3}\right)} \cdot \frac{8 ?}{1}=32 \%$

Your units must cancel. The missing unit is cm^{3}.

