Connect Contact Control

Contactors

C310 Series
1 pole
AC and bi-directional DC
NO contactors for $150 \mathrm{~A}, 300 \mathrm{~A}$ and 500 A

Catalogue C310.en

C310-1 pole AC and bidirectional DC NO contractors

Compact single-pole NO contractors for AC and DC up to $1,500 \mathrm{~V}$ rated insulation voltage. Making current up to $2,500 \mathrm{amps}$; conventional

 thermal current up to 500 amps ; short-time current up to $3,000 \mathrm{amps}$.The bi-directional DC contactors switch high powers in a small space. With a making capacity of up to $2,500 \mathrm{amps}$, the compact switchgear is suitable for applications with high inrush current or high capacities. In the C310A/500 design, the contactor can continuously conduct up to 500 amps . In the event of a short circuit, $3,000 \mathrm{amps}$, can even flow for one second without the contacts welding. The contactor therefore maintains
its full function in order to disconnect high power ranges if necessary up to 500 amps and up to 1,500 volts - irrespective of the current direction. This full bidirectionality is important for systems with a charging and discharging process, such as in battery networks or electric vehicles. Other typical application areas are the DC circuit in inverters, combiner boxes in photovoltaic systems or the management of battery storage systems.

Features

Compact dimensions - high rated insulation voltage U_{i} up to 1,500 volts

The C310A, without its arcing cover, has width, depth and height dimensions of $146 \times 81 \times 90 \mathrm{~mm}$. Nevertheless, all the air gaps in the contact area have been generously dimensioned. The rated insulation voltage is 1,500 volts. The arcing chamber of the C310 is made of plastic, all versions weigh less than a kilogram.

High making capacity I_{cm} of up to $2,500 \mathrm{amps}$
The C310 can switch on a current of up to $2,500 \mathrm{amps}$ (monostable design in a horizontal installation position; $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$). A PWM controller regulates the coil current and ensures lowbounce switch-on as well as a low holding power. High contact forces and optimised silver contacts both contribute to the excellent making capacity

High thermal continuous current $I_{\text {th }}$ of up to 500 amps The contactor of the C310A/500 version can continuously carry up to 500 amps . (Cross-section of the connections: $185 \mathrm{~mm}^{2}$, maximum ambient temperature: $85^{\circ} \mathrm{C}$; terminal heating: +65 Kelvin). The value is achieved through very high contact forces.

High short-time withstand current rating I_{cw} of up to 3.000 Ampere

The C310 can carry a current of up to 3,000 amps for one second without the contacts welding. This is enough time for the short circuit fuse to trip. The short-time withstand current rating is based on high contact forces and optimised silver contacts.

Full bidirectionality - reliable disconnection of high powers If necessary, version A of the C310 can reliably disconnect high currents and voltages, irrespective of the current direction. These properties are achieved through the special arrangement of blowout magnets and arcing chambers, high contact forces and generously dimensioned clearances in the contact ara.

Auxiliary switch with mirror contact function

Series C310 contactor are equipped with auxiliary switches with mirror contact function in accordance with DIN EN 60947-4-1. Appendix F. The mirror contact function means that the NC contact of the auxiliary contact must not be closed at the same time as the NO main contact.

Contractors meet requirements for industrial applications to:

IEC 60947-4-1
Low-voltage switchgear and controlgear - Part 4-1: Contactor and motor starters - Electromechanical contactor and motor starters.

ISO 16750-1

Road vehicles - Environmental conditions and testing for electrical and electronic equipment - Part 1: General

UL 60947-4-1
Low-Voltage Switchgear and Controlgear - Part 4-1: Contractors and Motor-Starters - Electromechanical Contactors and MotorStarters.

GB/T 14048.4

Low-Voltage Switchgear and Controlgear - Part 4-1: Contactor and Motor-Starters - Electromechanical Contactors and MotorStarters.

Contractors of the C310 series are designed for continuous currents of $150 \mathrm{amps}, 300 \mathrm{amps}$ and 500 amps . The switchgear has both high making and breaking capacities, and a high short-time withstand current. This ensures high operational safety.
An integrated electronic coil control ensures a constant and reliable switching behaviour independent of the ambient temperature. In additon, the energy consumption and associated heat development of the monostable design is noticeably reduced when switched on. Inherent to its design, the bistable version consumes no power in either end positions.

Dependent on the application, high requirements can be placed on electromechanical components. The new DC contractors are highly resistant to shock and vibration loads and meet the high requirements of ISO 16750.

Application

Thanks to many years of experience and competence developing electromechanical switchgear and the mastering DC arcs, Schaltbau has developed an innovative solution with new DC contactors that significantly simplifies applications with DC switching technology. Since the C310 series safely controls both current directions, the contractors are ideal for all applications involving energy recovery.
A typical example here is energy storage, where batteries are
repeatedly charged and discharged. Other application areas for the C310 series are regenerative systems, DC charging stations and photovoltaic systems. In battery powered and hybrid vehicles, the devices can be used directly as the main contactor in the battery disconnect unit (BDU). This reliably ensures the disconnection of both poles from the vehicle in the event of a short circuit.

Photovoltaics

- DC switching in central inverters
- Electrical cabinet (Combiner-Box)

Battery energy storage systems

- Grid stabilization and battery energy storage
- Regenerative systems in industrial plants
- Battery management systems
- Home energy storage

E-mobility:

- Electrical vehicles, hybrid vehicles and trolley busses
- DC charging station
- Battery test system

150	$\mathrm{I}_{\text {th }}=150 \mathrm{~A}$
300	$\mathrm{I}_{\text {th }}=300 \mathrm{~A}$
500	$\mathrm{I}_{\mathrm{th}}=500 \mathrm{~A}$

$500 \quad \mathrm{I}_{\text {th }}=500 \mathrm{~A}$

Coil voltage

Monostable	Bistable
$\mathrm{U}_{\mathrm{s}}=12 \ldots 24 \mathrm{~V} \mathrm{DC}^{*}$	$\mathrm{U}_{\mathrm{s}}=24 \mathrm{VDC}$
in process	$\mathrm{U}_{\mathrm{s}}=48 \mathrm{VDC}$

* Operating range 9.5 ... 36 VIC

Accessories

C310-TP
(i)

Note:
Presented in this catalogue are only stockitems which can be supplied in short delivery time. For some variants minimum quantities apply. Please do not hesitate to ask for the conditions.

Special variants:

Ifyou need a special variant of the contactor, please do not hesitate to contact us. Maybe the type of contactor you are looking for is among our many special designs. If not, we can also supply customized designs. In this case, however, minimum order quantities apply.

Series	C310S/150	C310S/300	C310S/500
Type of voltage Main contacts, configuration	DC, bidirectional / AC, $\mathrm{f} \leq 60 \mathrm{~Hz}$ 1x NO		
Rated operational voltage $U_{\text {e }}$	60 V @ PD3		
Rated insulation voltage U_{i}	1,000 V @ PD3 / 1,500 V @ PD2		
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	8 kV		
Pollution degree / Overvoltage category	PD2, PD3: see U_{e} and $U_{i} /$ OV3		
Electrical data according to IEC/UL 60947-4-1, GB/T 14048.4-2010			
$\begin{array}{ll}\text { Conventional free air thermal current } l_{\text {th }} & \mathrm{T}_{\mathrm{a}}=40^{\circ} \mathrm{C} \text { (cross section) } \\ & \mathrm{T}_{\mathrm{a}}=70^{\circ} \mathrm{C} \text { (cross section) }\end{array}$	$150 \mathrm{~A}\left(50 \mathrm{~mm}^{2}\right)$	$300 \mathrm{~A}\left(185 \mathrm{~mm}^{2}\right)$	$\begin{aligned} & 500 \mathrm{~A}\left(2 \times 150 \mathrm{~mm}^{2}\right) \\ & 400 \mathrm{~A}\left(240 \mathrm{~mm}^{2}\right) \end{aligned}$
Power dissipation per pole $\mathrm{I}_{\text {th }} @ 40^{\circ} \mathrm{C}$ 仡 typ.	3 W	11 W	30 W
Pole impedance typ.	$120 \mu \Omega$	$120 \mu \Omega$	$120 \mu \Omega$
Utilization category $A C-1 * / A C$ general use $U_{e}=48 \mathrm{~V}$ Rated operational current $l_{\text {e }}$	150 A	300 A	500 A
Utilization category DC-1* / DC general use $\mathrm{U}_{\mathrm{e}}=48 \mathrm{~V}$ Rated operational current $l_{\text {e }}$	150 A	300 A	500 A
Frequency of operation $\mathrm{l}_{\mathrm{e}} \quad$ AC-1 \& DC-1	$360 \mathrm{~h}^{-1}$	$360 \mathrm{~h}^{-1}$	$360 \mathrm{~h}^{-1}$
Rated short-time withstand current l_{cw} t=1 s		$3,000 \mathrm{~A}$	
Short circuit protection device for contactors General electrical ratings of main circuit	on request	on request	on request
$\begin{array}{ll}\text { Conventional free air thermal current } \mathrm{l}_{\text {th }} & \mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C} \text { (cross section) } \\ \text { Terminal heating }\end{array}$	$\begin{gathered} 200 \mathrm{~A}\left(50 \mathrm{~mm}^{2}\right) \\ 45 \mathrm{~K} \end{gathered}$	$\underset{45 \mathrm{~K}}{350 \mathrm{~A}} \underset{\left(120 \mathrm{~mm}^{2}\right)}{ }$	$\begin{gathered} 500 \mathrm{~A}\left(185 \mathrm{~mm}^{2}\right) \\ 65 \mathrm{~K} \end{gathered}$
Power dissipation per pole $\mathrm{I}_{\text {th }}$ @ $40^{\circ} \mathrm{C}$, typ.	5 W	15 W	30 W
Pole impedance typ.	$120 \mu \Omega$	$120 \mu \Omega$	$120 \mu \Omega$
Rated short-circuit making capacity $\mathrm{I}_{\mathrm{cm}}(\mathrm{L} / \mathrm{R}=0 \mathrm{~ms})$ For mono- or bistable drive (depending on mounting position)	monostable: horizontal: $2,500 \mathrm{~A}$, vertical: $2,000 \mathrm{~A}$ bistable: horizontal: 750 A , vertical: 750 A		
$\begin{array}{ll} \text { Breaking capacity }(\mathrm{L} / \mathrm{R}=0.1 \mathrm{~ms}) & \left.\begin{array}{c} \mathrm{U}_{\mathrm{e}}=60 \mathrm{~V} / \mathrm{I}_{\mathrm{e}}=750 \mathrm{~A} \text { (bistable) } \\ \mathrm{U}_{\mathrm{e}}=60 \mathrm{~V} / \mathrm{I}_{\mathrm{e}}=800 \mathrm{~A} \text { (monostable) } \end{array}\right) \end{array}$	60 operations	60 operations	60 operations
Electrical endurance	$\begin{gathered} 10,000 \text { operations } \\ \mathrm{DC}(\mathrm{~L} / \mathrm{R}=1 \mathrm{~ms}) \\ \mathrm{AC}(\cos \varphi=0.8): 48 \mathrm{~V} / 150 \mathrm{~A} \end{gathered}$	$\begin{gathered} 10,000 \text { operations } \\ \mathrm{DC}(\mathrm{~L} / \mathrm{R}=1 \mathrm{~ms}) \\ \mathrm{AC}(\cos \varphi=0.8): 48 \mathrm{~V} / 300 \mathrm{~A} \end{gathered}$	$\begin{gathered} 10,000 \text { operations } \\ \mathrm{DC}(\mathrm{~L} / \mathrm{R}=1 \mathrm{~ms}) \\ \mathrm{AC}(\cos \varphi=0.8): 48 \mathrm{~V} / 500 \mathrm{~A} \end{gathered}$
Main contacts			
Contact material	AgSnO_{2}	AgSnO_{2}	AgSnO_{2}
Terminals	M8	M10	M10
Torque	6 Nm max.	10 Nm max.	10 Nm max.
Auxiliary contacts			
Number, configuration / Contact material	2x S880 W1R6 A max. / Silver		
Making / Breaking capacity 5880	AC-15:230 V AC / 1.0 A DC-13:60VDC / 0.5 A		
Minimum voltage / Current	$5 \mathrm{~V} / 5 \mathrm{~mA}$		
Terminals	Flat quick connect $2.8 \times 0.5 \mathrm{~mm}$		
Magnetic drive (monostable)			
Rated control supply voltage U_{S} / Operating range Pollution degree / Overvoltage category	$\begin{gathered} 12 \ldots 24 \mathrm{VDC} / 9.5 . . .36 \mathrm{VDC} \\ \text { PD3 / OV2 } \end{gathered}$		
Coil power dissipation, max. ($\mathrm{Ta}=20^{\circ} \mathrm{C} / \mathrm{Us}$) Pull-In power (0.2 s) / Holding power	$50 \mathrm{~W}(24 \mathrm{~V}) / 2.6 \mathrm{~W}$		
Frequency of operation (operations per hour, no load) $T_{a}=20^{\circ} \mathrm{C} / 70^{\circ} \mathrm{C}$	3,600 $\mathrm{h}^{-1} / 1,800 \mathrm{~h}^{-1}$		
Pull-in time ($\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}$) / Drop-off time ($\left.\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}\right)$ Coil suppression (integrated) / Coil terminal	$\begin{gathered} 33 \mathrm{~ms} / 25 \mathrm{~ms} \\ \text { Suppressor diode / Flat tap } 6.3 \times 0.8 \mathrm{~mm} \end{gathered}$		
Magnetic drive (bistable)			
Rated control supply voltage U_{S} / Min. operating voltage Pollution degree / Overvoltage category	24 V DC @ ON time 0.1 ... 0.5 s max. / 15 V DC @ ON time 0.1 ... 0.5 s max. PD3 / OV2		
Coil power dissipation, max. ($\mathrm{Ta}=20^{\circ} \mathrm{C} / \mathrm{U}_{5}$)	35 W		
Frequency of operation (operations per hour, no load) $\quad T_{a}=20^{\circ} \mathrm{C} / 70^{\circ} \mathrm{C}$	1,800 $\mathrm{h}^{-1} / 1,800 \mathrm{~h}^{-1}$		
Pull-in time ($T_{a}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}$) / Drop-off time ($\left.\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}\right)$ Coil suppression (integrated) / Coil terminal	$\begin{gathered} 20 \mathrm{~ms} / 13 \mathrm{~ms} \\ \text { Suppressor diode / Flat tap } 6.3 \times 0.8 \mathrm{~mm} \end{gathered}$		
Mounting position	vertical / horizontal (not upside-down, see page 6)		
Degree of protection IEC 60529	IP00		
Mechanical endurance monostable / bistable	2,000,000 operations / 100,000 operations		
Shock / Vibration IEC 61373 / ISO 16750-1	Category 1, Class B / Class C		
Temperatures Operating temperature / Storage temperature Altitude / Humidity (EN 50125-1)	$\begin{gathered} -40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C} \\ <4,500 \mathrm{~m} @ \mathrm{Ui}=1,000 \mathrm{~V},<3,500 \mathrm{~m} @ \mathrm{Ui}=1,500 \mathrm{~V} /<75 \% \text { on an annual average } \end{gathered}$		
Weight	0.55 kg	0.63 kg	0.65 kg
			(3) SCHALTBAU

[^0]| Series | C310A/150 | C310A/300 | C310A/500 |
| :---: | :---: | :---: | :---: |
| Type of voltage Main contacts, configuration | DC, bidirectional / $\mathrm{AC}, \mathrm{f} \leq 60 \mathrm{~Hz}$1 xNO | | |
| Rated operational voltage $U_{\text {e }}$ | 1,000 V @ PD3 / 1,500 V @ PD2 | | |
| Rated insulation voltage U_{i} | 1,000 V @ PD3 / 1,500 V @ PD2 | | |
| Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$ | 8 kV | | |
| Pollution degree / Overvoltage category | PD2, PD3: see U_{e} and $U_{i} /$ OV3 | | |
| Electrical data according to IEC/UL 60947-4-1, GB/T 14048.4-2010 | | | |
| $\begin{array}{ll}\text { Conventional free air thermal current } \mathrm{I}_{\text {th }} & \mathrm{T}_{\mathrm{a}}=40^{\circ} \mathrm{C} \text { (cross section) } \\ \mathrm{T}_{\mathrm{a}}=70^{\circ} \mathrm{C} \text { (cross section) }\end{array}$ | $150 \mathrm{~A}\left(50 \mathrm{~mm}{ }^{2}\right)$ | $300 \mathrm{~A}\left(185 \mathrm{~mm}^{2}\right)$ | $\begin{aligned} & 500 \mathrm{~A}\left(2 \times 150 \mathrm{~mm}^{2}\right) \\ & 400 \mathrm{~A}\left(240 \mathrm{~mm}^{2}\right) \end{aligned}$ |
| | 3 W | 11 W | 30 W |
| Pole impedance typ. | $120 \mu \Omega$ | $120 \mu \Omega$ | $120 \mu \Omega$ |
| Utilization category $\mathrm{AC}-1^{*} \mathrm{U}_{\mathrm{e}}=750 \mathrm{~V}$
 Rated operational current I_{e} IEC 60947-4-1 | 60 A | 60 A | 60 A |
| Utilization category DC-1* $\mathrm{U}_{\mathrm{e}}=750 \mathrm{~V}$
 Rated operational current $\mathrm{I}_{\mathrm{e}} \quad$ IEC 60947-4-1, GB/T 14048.4-2010 | 60 A | 60 A | 60 A |
| Utilization category DC-1* / DC general use $U_{e}=600 \mathrm{~V}$
 Rated operational current I_{e}
 UL 60947-4-1 | 50 A | 50 A | 50 A |
| Frequency of operation (operations per hour) $\mathrm{I}_{\mathrm{e}} \quad$ AC-1 \& DC-1 | $360 \mathrm{~h}^{-1}$ | $360 \mathrm{~h}^{-1}$ | $360 \mathrm{~h}^{-1}$ |
| Rated short-time withstand current l_{cw} t=1 s | | 3,000 A | |
| Short circuit protection device for contactors (w/o thermal overload relay) $U_{e}=900 \mathrm{VDC}$, $\mathrm{I}_{\text {prosp }}=10 \mathrm{kA}$, coord. type " 2 ", fuse: SIBA SQB-DC 2 (aR Type) | 200 A | 315 A | $2 \times 250 \mathrm{~A}$ (parallel) |
| General electrical ratings of main circuit | | | |
| $\begin{array}{lr}\text { Conventional free air thermal current } \mathrm{I}_{\text {th }} & \mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C} \text { (cross section) } \\ \text { Terminal heating }\end{array}$ | $\begin{gathered} 200 \mathrm{~A}\left(50 \mathrm{~mm}^{2}\right) \\ 45 \mathrm{~K} \end{gathered}$ | $\begin{gathered} 350 \mathrm{~A}\left(120 \mathrm{~mm}^{2}\right) \\ 45 \mathrm{~K} \end{gathered}$ | $\begin{gathered} 500 \mathrm{~A}\left(185 \mathrm{~mm}^{2}\right) \\ 65 \mathrm{~K} \end{gathered}$ |
| Power dissipation per pole ${ }_{\text {th }}$ @ 40 ${ }^{\circ} \mathrm{C}$, typ. | 5 W | 15 W | 30 W |
| Pole impedance typ. | $125 \mu \Omega$ | $120 \mu \Omega$ | $120 \mu \Omega$ |
| Rated short-circuit making capacity $\mathrm{I}_{\mathrm{cm}}(\mathrm{L} / \mathrm{R}=0 \mathrm{~ms})$
 For mono- or bistable drive (depending on mounting position) | monostable: horizontal: $2,500 \mathrm{~A}$, vertical: $2,000 \mathrm{~A}$ bistable: horizontal: 750 A , vertical: 750 A | | |
| | 60 operations | 60 operations | 60 operations |
| | 60 operations | 60 operations | 60 operations |
| Electrical endurance | 8,000 operations @ DC ($\mathrm{L} / \mathrm{R}=1 \mathrm{~ms}$), $\mathrm{AC}(\cos \varphi=0.8): 750 \mathrm{~V} / 60 \mathrm{~A}$ | | |
| Main contacts | | | |
| Contact material | AgSnO_{2} | AgSnO_{2} | AgSnO_{2} |
| Terminals | M8 | M10 | M10 |
| Torque | 6 Nm. max. | 10 Nm max. | 10 Nm max. |
| Auxiliary contacts | | | |
| Number, configuration / Contact material | 2x S880 W1R6 A max. / Silver | | |
| Making / Breaking capacity S880 | AC-15:230 V AC / 1.0 A DC-13:60 VDC / 0.5 A | | |
| Minimum voltage / Current | $5 \mathrm{~V} / 5 \mathrm{~mA}$ | | |
| Terminals | Flat quick connect $2.8 \times 0.5 \mathrm{~mm}$ | | |
| Magnetic drive (monostable) | | | |
| Rated control supply voltage U_{s} / Operating range Pollution degree / Overvoltage category | $\begin{gathered} 12 . . .24 \mathrm{VDC} / 9.5 . . .36 \mathrm{VDC} \\ \text { PD3 / OV2 } \end{gathered}$ | | |
| Coil power dissipation, max. ($\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}$) Pull-In power (0.2 s) / Holding power | $50 \mathrm{~W}(24 \mathrm{~V}) / 2.6 \mathrm{~W}$ | | |
| Frequency of operation (operations per hour, no load) $\quad \mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / 70^{\circ} \mathrm{C}$ | $3,600 \mathrm{~h}^{-1} / 1,800 \mathrm{~h}^{-1}$ | | |
| Pull-in time ($T_{a}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}$) / Drop-off time ($\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}$) Coil suppression (integrated) / Coil terminal | $\begin{aligned} & 33 \mathrm{~ms} / 25 \mathrm{~ms} \\ & \text { Suppressor diode / Flat tap } 6.3 \times 0.8 \mathrm{~mm} \end{aligned}$ | | |
| Magnetic drive (bistable) | | | |
| Rated control supply voltage U_{S} / Min. operating voltage Pollution degree / Overvoltage category | $24 \text { V DC @ ON time } 0.1 \text {... } 0.5 \text { s max. / } 15 \text { VDC } \operatorname{PD} \text { @ ON time } 0.1 \text {... } 0.5 \text { s max. }$ | | |
| Coil power dissipation, max. ($\mathrm{Ta}=20^{\circ} \mathrm{C} / \mathrm{U}_{5}$) | 35 W | | |
| Frequency of operation (operations per hour, no load) $\quad \mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / 70^{\circ} \mathrm{C}$ | 1,800 $\mathrm{h}^{-1} / 1,800 \mathrm{~h}^{-1}$ | | |
| Pull-in time $\left(T_{a}=20^{\circ} \mathrm{C} / \mathrm{U}_{s}\right) /$ Drop-off time $\left(\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{s}\right) \quad$ typ. Coil suppression (integrated) / Coil terminal | $\begin{gathered} 20 \mathrm{~ms} / 13 \mathrm{~ms} \\ \text { Suppressor diode / Flat tap } 6.3 \times 0.8 \mathrm{~mm} \end{gathered}$ | | |
| Mounting position | vertical / horizontal (not upside-down, see page 6) | | |
| Degree of protection IEC 60529 | IP00 | | |
| Mechanical endurance monostable / bistable | 2,000,000 operations / 100,000 operations | | |
| Shock / Vibration IEC 61373 / ISO 16750-1 | Category 1, Class B / Class C | | |
| Temperatures Operating temperature / Storage temperature | $\begin{gathered} -40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C} \\ <4,500 \mathrm{~m} @ \mathrm{Ui}=1,000 \mathrm{~V},<3,500 \mathrm{~m} @ \mathrm{Ui}=1,500 \mathrm{~V} /<75 \% \text { on an annual average } \end{gathered}$ | | |
| Weight | 0.83 kg | 0.90 kg | 0.95 kg |
| | | | (3) SCHALIBA |

- Version «A»: with arc chamber cover

(i)

The extinguishing chamber cover is part of the standard scope of delivery for the C310A/150, C310A/300 and C310A/500 series.

- Insertable deflection shields:

- Version «A»: w/o arc chamber cover
Top edge Minimum distance s. a. diagram
- Version «S»: w/o arc chamber

(i)

For the C310S/150, C310S/300 and C310S/500 series there is a minimum distance of 15 mm to live or earthed parts.

(i)
The use of insertable deflection shields reduces the minimum distance to 0 mm . Without deflection shields, the minimum distance of the contactors, depending on the arrangement, can increase to 100 mm .

- Minimum distances (\$) to live or earthed parts

- Predicted electrical endurance as a function of the load current

Mounting instructions

- Permissible mounting orientations

(i)

The contactors can be mounted horizontally or vertically on a prepared mounting plate. Mounting positions hanging upside down are not allowed!

- Mounting holes

(1)

The contactors are mounted on a mounting plate with two M5 screws.

Dimension and circuit diagram

- Dimension diagram, version «A»: C310A/150, C310A/300, C310A/500

- Circuit diagram

Version	Monostable*	Bistable**
V0-w/o aux. contact		
V1-1 aux. contact Snap-action switch S880 W1R6 a		
V2-2 aux. contacts Snap-action switches S880 W1R6 a		

* Coil suppression integrated, additional circuit is not allowed!
** Switching by reversing the polarity, voltage pulse 1 sec max.
- Dimension diagram, version «S》: C310S/150, C310S/300, C310S/500

- Assignment of main contacts

Version	Material \diamond	Thickness \uparrow)	Diameter ©
C310A/150 \ldots	Copper	3 mm	$\varnothing 9 \mathrm{~mm}$
C310A/300 ...	Copper	5 mm	$\varnothing 11 \mathrm{~mm}$
C310A/500 \ldots	Copper, silver plated	5 mm	$\varnothing 11 \mathrm{~mm}$
C310S/150 ...	Copper	3 mm	$\varnothing 9 \mathrm{~mm}$
C310S/300 ...	Copper	5 mm	$\varnothing 11 \mathrm{~mm}$
C310S/500 ...	Copper, silver plated	5 mm	$\varnothing 11 \mathrm{~mm}$

Maintenance and safety instructions

Maintenance:

- C310 series contactors are basically maintenance free.
- Make regular in-depth visual inspections once or twice a year.

Safety instructions:

- The device must be used according to the intended purpose as specified in the technical documentation. You are obliged to observe all specifications depending on operating temperature, degree of pollution etc. that are relevant to your application.
- Without further safety measures the contactors are not suited for use in potentially explosive atmospheres.
- In case of malfunction of the device or uncertainties stop using it any longer and contact the manufacturer instantly.
- Tampering with the device can seriously affect the safety of people and equipment. This is not permitted and leads to an exclusion of liability and warranty.
- Coil suppression for reducing surges when the coil is switched off is optimally attuned to the contactors switching behaviour. The existing opening characteristic must not be negatively influenced by parallel connection with an external diode.

For detailed maintenance, safety and mounting instructions please refer to our operating manuals C310-M.en!

- Contactors running permanently may heat up. So make sure that the contactor has sufficiently cooled down before you start any inspection or maintenance work.
- When installing contactors with magnetic blowout make sure to do it in such a way that no magnetizable parts can be attracted by the permanent magnets that are also capable of destroying all data of swipe cards.
- Strong electromagnetic induction caused when switching off can influence other components installed near the contactor.
- Improper handling of the contactor, e.g. when hitting the floor with some impact, can result in breakage, visible cracks and deformation.

Defective contactors or parts (e.g. arc chambers, auxiliary switches) must be replaced immediately!

Schaltbau GmbH

For detailed information on our products and services visit our website -
or give us a call!
Schaltbau GmbH Hollerithstrasse 5 81829 Munich Germany

Phone +498993005-0
Fax +4989930 05-350
Internet www.schaltbau.com
e-Mail contact@schaltbau.de

Schaltbau GmbH manufactures in compliance with RoHS.

IRIS.

Certification
The production facilities of Schaltbau GmbH have been IRIS certified since 2008.

Electrical Components and Systems for
 Railway Engineering and Industrial Applications

Connectors

Snap-action switches

- Snap-action switches with positive opening operation
- Snap-action switches with self-cleaning contacts
- Enabling switches
- Special switches to suit customer requirements

Contactors

Electrics for rolling stock

- Equipment for driver's cab
- Equipment for passenger use
- High-voltage switchgear
- High-voltage heaters
- High-voltage roof equipment
- Equipment for electric brakes
- Design and engineering of train electrics to customer requirements

[^0]: * Corresponds to 50 switching operations $1.5 \times I_{e}$ and 6,000 switching operations $1.0 \times I_{e}$

