
Intel teamed up with Philips to show that servers powered by Intel® Xeon® 
Scalable processors could be used to efficiently perform deep learning inference 
on patients’ X-rays and computed tomography (CT) scans, without the need for 
accelerators. The ultimate goal for Philips is to offer artificial intelligence (AI) to its 
end customers without significantly increasing the cost of the customers’ systems 
and without requiring modifications to the hardware deployed in the field.

The companies tested two healthcare use cases for deep learning inference 
models: one on X-rays of bones for bone-age-prediction modeling, and the other 
on CT scans of lungs for lung segmentation. Using the OpenVINO™ toolkit and 
other optimizations, along with efficient multi-core processing from Intel Xeon 
Scalable processors, Philips was able to achieve a speed improvement of 188.1x 
for the bone-age-prediction model, and a 37.7x speed improvement for the 
lung-segmentation model over the baseline measurements. (See Appendix A for 
configuration details.)

AI-Enhanced Medical Imaging

AI techniques such as object detection and segmentation offer unique possibilities 
to help radiologists identify issues faster and more accurately, which can translate 
to better prioritization of cases, better outcomes for more patients, and reduced 
costs for hospitals.

However, AI for medical imaging is often challenging because the information is 
often high-resolution and multi-dimensional. Down-sampling images to lower 
resolutions because of memory constraints can cause misdiagnoses, unless the 
biomarkers are preserved. Once an AI model is trained to acceptable levels of 
accuracy, it needs to be incorporated into the imaging modality architecture. Given 
how large radiology images typically are, it is critical to be able to process these 
images efficiently without slowing down radiologists’ workflows or impacting the 
accuracy of the models.

Making the Right AI Hardware Choice

Until recently, there was one prominent hardware solution to accelerate deep 
learning: graphics processing units (GPUs). By design, GPUs work well with images, 
but they also have inherent memory constraints that data scientists have had to 
work around when building some models.

Today, data scientists have another option. With the introduction of Intel 
Xeon Scalable processors in 2017, more complex, hybrid workloads could be 
accelerated, including larger, memory-intensive models typically found in medical 
imaging. For a large subset of AI workloads, Intel and Philips found that Intel 
Xeon Scalable processors can better meet data scientists’ needs than GPU-based 
systems. This enables Philips to offer AI solutions at lower costs to its customers.

Perform AI-Driven Medical Imaging  
Efficiently and Cost-Effectively on Intel®  
CPU–Based Systems

Intel® AI
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Philips demonstrated breakthrough performance for AI inferencing of  
healthcare workloads run on servers powered by Intel® Xeon® Scalable  
processors and optimized with the OpenVINO™ toolkit.
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Test Results: Optimizing Two Deep Learning Models 
for Inference

Philips is developing sophisticated deep learning models for 
segmenting regions of interest on medical images and for 
medical-image classification. This case study describes use 
cases for optimizing the deployment of two deep learning 
models developed by Philips.

Use Case 1: Bone-Age-Prediction Model

The first model takes inputs from X-ray images of human 
bones, such as a wrist, along with a patient’s gender. The 
inference model then determines a predicted age from the 
bone, in order to help identify medical conditions that lead 
to bone loss. For example, if the predicted age for a younger 
patient is less than the actual age, the patient could be 
suffering from malnutrition. The trained model from Philips is 
based on the Xception* architecture.

Use Case 2: Lung-Segmentation Model

The second inference model identifies the lungs from a CT 
scan of a patient’s chest, and it then creates a segmentation 
mask around the detected organ. The results can be 
used to measure size and volume of the lungs or to load 
organ-specific disease screening models for tuberculosis 
or pneumothorax detection, for example. In addition, by 
isolating the lung in the image, a radiologist can have a 
clearer anatomical view of the organ, free of distraction from 
other structures. The trained model from Philips is based on 
the popular U-Net* topology.

Test Procedure

For both inference models, engineers first took baseline 
measurements without optimizations. Then, various 
optimizations were applied, as described below.

All testing was performed on a two-socket system powered 
by Intel Xeon Platinum 8168 processors. Full configuration 
details are provided in Appendix A.

Baseline Performance Measurements

Baseline measurements using inference based on Keras* and 
TensorFlow* were as follows:

• Bone-age-prediction model: 1.42 images per second

• Lung-segmentation model: 1.9 images per second

Optimizing the AI Models for Deployment

The following optimizations were performed to maximize 
performance for the inference models.

1. Using the OpenVINO Toolkit

Inference models for both use cases were optimized using 
the Intel® Deep Learning Deployment Toolkit (DLDT), which is 
a part of the OpenVINO toolkit. Figure 1 shows the inference 
workflow, from a trained deep learning model to model 
optimization and inference execution.

The Intel Deep Learning Deployment Toolkit contains 
two major components: the Model Optimizer and the 
Inference Engine. Philips* models—trained in Keras and 
TensorFlow—were first run through the Model Optimizer. 
The Model Optimizer performs optimizations on the neural 
network graphs, such as node merging, batch normalization 
elimination, and constant folding. The resulting output is an 
intermediate representation (IR) .xml file and a .bin file that 
contains the model weights. Model optimization is a one-
time, offline process.

Next, the IR files are programmatically loaded into the 
Inference Engine, along with information specifying the 
target hardware back end, which can be any Intel Xeon 
processor, Intel® Core™ processor, Intel Atom® processor, 
Intel® Processor Graphics, an Intel® field-programmable 
gate array (FPGA), or an Intel® Movidius™ Myriad™ vision 
processing unit (VPU).
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Figure 1. The Intel® Deep Learning Deployment Toolkit (part of the OpenVINO™ toolkit) optimizes the trained model, performs 
inference analysis, and provides an API for applications to use to send data to the inference engine
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Figure 2. Inference performance increased dramatically after optimizations from the OpenVINO™ toolkit1

Intel has libraries for each of the hardware types that 
implement highly efficient deep learning kernels, such as 
convolutions, rectified linear unit (RELU), and others. For 
this Philips use case, the target back end is an Intel Xeon 
processor. Therefore, the library associated with CPUs (the 
Intel® Math Kernel Library for Deep Neural Networks [Intel® 
MKL-DNN]) is loaded.

The Inference Engine provides lightweight APIs in C++ 
and Python* that can be accessed by the custom Philips 
application. The application calls the APIs and inputs the 
image data. The Inference Engine then executes the inference 
and provides the results.

The baseline results improved significantly after 
optimizations from the OpenVINO toolkit, as shown  
in Figure 2.

2. Parallelize the Workload: Running Multiple  
Instances of the OpenVINO Toolkit

Higher throughput (images per second) can be obtained by 
running multiple instances of the OpenVINO toolkit on each 

of the sockets, instead of running just one instance of the 
toolkit. Each instance is bound to one or more cores, which 
results in better core utilization.

For the bone-age-prediction model, Intel and Philips 
achieved maximum throughput running 24 concurrent 
OpenVINO toolkit instances and binding each instance  
(batch size = 1) to two cores. As shown in Figure 4, this 
resulted in the throughput increasing from 74.8 images 
per second to 267.1 images per second, which is 3.6 times 
faster than running a single toolkit instance on all 48 cores. 
In addition, this optimized result is 188.1 times faster than 
baseline performance.

For the lung-segmentation model, Intel and Philips achieved 
maximum throughput running 12 instances and binding 
each instance (batch size = 1) to four cores. This resulted 
in increased throughput from 14.2 images per second to 
37.0 images per second: 2.6 times faster performance than 
running a single OpenVINO toolkit instance on all 48 cores. 
These optimizations also increased performance 19.5 times 
over the baseline inference performance.
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Figure 3. Sub-socket partitioning across dual-socket Intel® Xeon® platforms for multiple inference streams
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Figure 4. Parallel execution optimizations further improved inference execution performance1

3. Additional Optimizations

Winograd* convolutions and optimizations for resampling 
were applied to the lung-segmentation model (U-Net 
architecture). Conventional General Matrix Multiplication 
(GEMM)-based convolution is fast for large filters, but  
many state-of-the-art convolutional neural networks use 
small, 3 x 3 filters. The Philips topology used in the testing 
had several 3 x 3 convolutions that could be computed  
more efficiently using Winograd convolutions. With this 
change, Intel and Philips obtained optimal performance 
by increasing the number of instances to 24, binding each 
instance to two cores.

These optimizations were not applicable to the  
bone-age-prediction model.

With these techniques, lung-segmentation inference 
performance reached a maximum throughput of 71.7 images 
per second, which is 37.7x faster than the baseline inference 
performance (see Figure 5).

Assessing the Results

The results for both use cases surpassed expectations. The 
bone-age-prediction model went from an initial baseline 
test result of 1.42 images per second to a final tested rate of 
267.1 images per second after optimizations—an increase 
of 188.1x. The lung-segmentation model far surpassed the 
target of 15 images per second by improving from a baseline 
of 1.9 images per second to 71.7 images per second  
after optimizations.

Vijayananda J., Chief Architect and Fellow, Data Science and 
AI at Philips HealthSuite Insights was excited to see such 
outstanding performance from a CPU-based system. “Intel 
Xeon Scalable processors appears to be the right solution 
for this type of AI workload. Our customers can use their 
existing hardware to its maximum potential, without having 
to complicate their infrastructure, while still aiming to achieve 
quality output resolution at exceptional speeds.”
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Figure 5. Additional optimizations helped boost inference execution performance for the lung-segmentation model1 
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Healthcare AI Inferencing on Affordable  
CPU-Based Systems

Inferencing applications in healthcare typically process 
workloads in small batches or in a streaming manner, which 
means they do not exhibit large batch sizes. CPUs are a great 
fit for these types of low batch or streaming applications. In 
particular, Intel Xeon Scalable processors offer an affordable, 
flexible platform for AI models—particularly in conjunction 
with tools like the OpenVINO toolkit, which can help deploy 
pre-trained models for efficiency, without sacrificing accuracy.

The imaging use cases in this study show that healthcare 
organizations can implement healthcare AI workloads without 
expensive hardware investments. And companies like Philips 
can offer AI algorithms for download through an online store 
as a way to increase revenue and differentiate themselves 
from growing competition.

Learn More
See how Philips is transforming healthcare with AI at usa.philips.com/healthcare/innovation/artificial-intelligence.

Learn about the full range of AI tools available for developers and explore other ways companies are using Intel® 
technologies to power AI at ai.intel.com.

Learn more about Intel Xeon Scalable processors at intel.com/xeonscalable.

The OpenVINO™ Toolkit Accelerates 
Deep Learning Deployments
This case study used the Intel® Deep Learning 
Deployment Toolkit—just one of several tools built into 
the OpenVINO toolkit. Based on convolutional neural 
networks (CNN), the toolkit:

• Enables CNN-based deep learning inference  
on the edge

• Supports heterogeneous execution across  
computer vision accelerators—CPU, GPU, Intel® 
Movidius™ Neural Compute Stick, and FPGA— 
using a common API

• Speeds time to market via a library of functions and 
pre-optimized kernels

• Includes optimized calls for OpenCV* and OpenVX*

Learn more on the OpenVINO web site.
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Appendix A

Hardware configuration details:

Model Name Intel® Xeon® Platinum 8168 processor at 2.70 GHz, Intel® Hyper-Threading Technology  
(Intel® HT Technology) disabled

BIOS Version SE5C620.86B.0D.01.0010.072020182008

System Memory 192 GB, 2,666 MHz

Intel® Turbo Boost Technology Enabled

Solid state drive (SSD) details:

ATA Device, with Non-removable Media

Model Number INTEL SSDSC2CW240A3

Software configuration details:

Ubuntu* Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-29-generic x86_64*)

Keras* 2.1.1

TensorFlow* 1.2.1

OpenVINO™ Toolkit 2018 R2

Intel® Math Kernel Library Intel Math Kernel Library for Deep Neural Networks (Intel® MKL-DNN) v0.14

Datasets:

Bone-Age-Prediction Model 299x299x3 .png images

Lung-Segmentation Model 512x512 .dcm images 
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1  Results were determined with the same system configuration as shown in Appendix A. The baseline shows zero optimizations. The optimized data used the same system configuration, in 
    conjunction with the noted optimizations.

Performance results are based on testing as of August 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be  
absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are 
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other 
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more 
information go to intel.com/benchmarks.

Optimization Notice - Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These 
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on 
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel 
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered 
by this notice. Notice revision #20110804

Cost reduction scenarios described are intended as examples of how a given Intel- based product, in the specified circumstances and configurations, may affect future costs and provide cost 
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data  
are accurate.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system 
configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any 
warranty arising from course of performance, course of dealing, or usage in trade.

Philips disclaims all express and implied warranties whatsoever, including without limitation, the implied warranties of merchantability, non-infringement and fitness for any particular purpose. 
Further, Philips will not be liable for any direct, indirect, special, incidental, punitive, or consequential damages of any kind.

Intel, the Intel logo, Intel Atom, Intel Core, Movidius, Movidius Myriad, OpenVINO, and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation.
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