Advanced Scooter Workshop V2.82

User manual

April 2013

support@immo-tools.lt

1. Introduction

Advanced Scooter Workshop is a K-line tool that incorporates ignition control unit (CDI) internal memory modification functions without cutting its plastic package, scrape sealant, soldering any wires or de-soldering memory IC. All you have to do is to connect four wires to controller connector. EEPROM Read/Write functions will help you:

- To **copy** data from faulty CDI controller **into another** (even used one)
- To read T5-11 formatted Key Data from CDI controller if all keys are lost

• To **reset** used CDI controller to the state of a brand NEW controller All functions works by K-line.

NOTE1: This tool cannot program key by itself – it just reads out transponder key data that you have to program into T5 transponder using any suitable transponder programmer.

NOTE2: You must to have at least 2 keys to complete key learning auto-procedure after CDI controller has been reset to NEW state.

2. System requirements

USB / K-line interface of **Advanced Scooter Workshop** connects to desktop or laptop PC using any free USB port. It is powered from an external power supply (+12V / 800mA Min). Scooter battery can also be used as a power supply. Software runs on Windows 98, Windows XP, Windows Vista, Windows 7.

3. Supported CDI controller systems

Software version V2.82 supports:

MAGNETI MARELLI ACI100 / ACI50x / ACI60x with MC68HC05B8/B16 inside MAGNETI MARELLI IMM003/IMM006 with MC68HC05E6 (0F82B / 0G72G) inside MAGNETI MARELLI MIU1.XX / MIU2.XX with ST10F269-T3 inside MAGNETI MARELLI MIU G3 with Infineon SAK-XC2060 and 95320 inside MAGNETI MARELLI IAW15 with MC68HC11F1 (2E87J) inside EFI TECHNOLOGY ACII/AC2I/AC5I/AC8I/AC21I/AC23I with ST72 and 95040 EFI TECHNOLOGY AC19I / AC20I / AC25I / AC32I with ST72 MCU and 95080

NOTE3. If you have **EFI TECHNOLOGY** controller that is not in the list but it has the same connector and internal hardware architecture like one of these from the list, it is **possibly** supported, but you must to check out for power supply and K-line pins in the wiring diagram of the particular scooter.

4. Connection

NOTE4: Always observe polarity when connecting external power supply! Red terminal must be connected to **+12V**, black terminal to the **GND**.

5. Software hints and special functions

Double click with mouse on the Key Data fields to save data to binary file. File name is created from the key data:

Save file	8 500 / 501 / 502 / 503 / 504
Look in: 📜 Desktop 💿 🕤 🖄 👔	🗓 🔽 500 / 601 / 602 / 603 / 604
	006 1 Controller Info
	Ta (T5-11 transponder formated) TD 5F 00 00 80 70 74 8A TD 5F 00 00 80 70 7C 61
File name: 7D5F00008070748A_MASTER.bin Save	EEPFOM Eunctions Double click here ad MC68HC05E6 EEPROM
File type: Binary files Cancel	rite MC68HC05E6 EEPROM
	RESET TO NEW

Right Click with mouse to **Copy** calculated key data to the Clipboard (no need to transfer data manually – now you can **Paste** it to the transponder programmer application when preparing transponder key from calculated data):

Key Data (T5-11 transponder formated)
MASTER 7D SE 00 00 80 70 74 8A Copy SERVICE 7D SF 00 00 80 70 7C 61
EEPROM Functions
Read MC68HC05E6 EEPROM
Write MC68HC05E6 EEPROM
RESET TO NEW

Transponder Data Converter for TEMIC11 / T5-TYPE11. Can convert transponder reader data to EEPROM file format and prepares data from EEPROM file to use with transponder programmer. **Copy/Paste** operations are enabled in Key/File data fields – **Right Click** mouse to copy/paste data.

Converter requires USB/K-line interface to be connected to the PC! External +12V power supply is not necessary.

	ADVANCED SCOOTER WORKSHOP V2.7
	Transponder Data Converter
Key: 7D5F000080519468	TEMIC-11 (TK5530) or T5-TYPE11 holds 8 bytes of data. Data of transponders, used in the keys for motor scooters supported by this software is always programmed to 7D 5F at first two bytes from the factory: 7D 5F XX XX XX XX XX XX. **** Key data stored in the memory of CDI/Injection control unit is formated to look like BE FA XX XX XX XX XX. Some of control units stores all 8 bytes of transponder data (MIU), some uses only 6 last bytes without leading BE FA. Add "BEFA" at the begining of "File" field if you want to convert 6 data bytes from EEPROM file to get correct transponder data in the "Kev" field: BEFA0000018BA23C instead of 0000018BA23C

When to use Transponder Data Converter?

Data may differ when reading same transponder key with several transponder readers:

C0284AB4BE2F0000 TVP:11	DATA: SF0000805194687D TYPE: 11 TEMIC WR ZED-BULL
Key: C0284AB4BE2F0000	Key: 5F0000805194687D
File to Key Key to File 48	↑ ⁰¹ / ₀₁ File to Key Key to File ♣ ⁰¹ / ₀₁
File: BEFA00000000000	File: BEFA00000000000

Enter data from transponder reader to the "Key" field and press button with blue arrows to realign data bits.

This will result finding **7D 5F** bytes in the bit stream and placing them to the two first positions in the "Key" field:

			Press this button to realign transponder data bits
Key:	7D5F0000	80519468	Key data will be formatted as 7D5FXXXXXXXXXXXXXX
1 0 01	File to Key	Key to File 븆 🖁	Key data stored in the memory of CDI/Injection control unit is formated to look like BE FA XX XX XX XX XX XX.
File:	BEFA0000	0000000	Some of control units stores all 8 bytes of transponder data (MIU), some uses only 6 last bytes without leading BE FA. Add "BEFA" at the begining of "File" field if you want to convert 6 data bytes from EEPROM file to get correct transponder data in the "Key" field: BEFA0000018BA23C instead of 0000018BA23

Now key data is formatted properly and is ready to be converted for writing to the file of CDI / INJECTION / IMMOBILIZER control unit:

		1	Transponder Data Converter
Кеу:	7D5F0000	80519468	Press this button to convert transponder data
1 01 01	File to Key	Key to File	At first two Write data from this field to the EEPROM Key da is form
File:	BEFA0000	018A2916	Some d data (and EFI TECHNOLOGY (00 00 01 8A 29 16 in this example).
			in the Use all 8 data bytes for MIU controllers

6. Key programming procedure after ignition/injection controller has been reset to NEW

- 1) Insert **MASTER** key (usually red or brown), turn ignition to ON for 2 seconds (until immobilizer LED goes OFF). Remove key from lock;
- Insert SERVICE key (usually black or blue), turn ignition to ON for 2 seconds (until immobilizer LED goes OFF). Remove key from lock. Repeat for all SERVICE keys;
- 3) Insert **MASTER** key again and turn ignition to ON for 2 seconds (until immobilizer LED goes OFF) to close key programming procedure.

NOTE5: First key you will switch ignition on will be stored as a **MASTER** regardless of its color.

7. Additional key programming procedure

If **MASTER** key absent then read **MASTER** key data from particular control unit and program it to the **T5** transponder using any transponder programmer. Perform key programming procedure described in **chapter 6** using this **T5** transponder as a **MASTER** key.

8. How to know what is inside of your EFI TECHNOLOGY CDI controller if it is not in the list of supported controllers?

CDI Control	ler Type Selection	
GNETI MARELLI	EFI TECHNOLOGY	
	System	1
🔿 ACII / AC2I /	AC23I / AC5I	
AC20I / AC25	Controller Info)
Key Data (T5-11	transponder formated)
MASTER SERVICE		
EEPRO	OM Functions	
Read ST7	internal EEPROM	ו
Read exter	nal 95080 EEPROM	
Write ST7		
Write exter	nal 95080 EEPROM	

✓ Select system with external EEPROM of type 95080

✓ Read EEPROM as 95080

✓ If you have part number at addresses 0030-0035 but data in the range of 0100-03FF looks like in the picture (00 00 02 02 04 04 06 06 ...) then the real type of external EEPROM is 95040 and there is ST72C334 MCU with internal EEPROM inside that CDI controller. Select correct system with external EEPROM 95040 and ST72C334 MCU in that case.

MAGNETI MARELLI ACI100

CDI controller hardware

Microcontroller

- MOTOROLA MC68HC05B8 (0D54J)

Internal EEPROM memory - 256 bytes. Stores Key Data, ignition advance tables

EEPROM functions

Read MC68HC05 EEPROM

Press this button to read MC68HC05B8 internal EEPROM memory by K-line. Memory content can be modified and saved to disk with desired filename. Output file size – 256 bytes. File is compatible with **TMPro** products.

Write MC68HC05 EEPROM

Open file, containing data to be programmed and press this button to write it to the MC68HC05B8 internal EEPROM by K-line. Writes data from "Memory Dump" window. Data can be modified prior to writing procedure. Input file size – 256 bytes.

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Ε	F
00000000	FF	00	FF	02	00	0.0	01	1E		79	0.0	00	01	1E	18	СВ
00000010	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	FF	FF	8F	00		01	1E	25	79	00	0.0	01
00000020	1E	18	CB	FF	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F} \mathbf{F}$	FF	8 F	FF	FF	FF	FF	FF	FF
00000030	00	04	FF	FF	FF	FF	FF	FF	FF	FF	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$
00000040	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$
00000050	FO	FO	FO	ΨO	DC	<u> </u>	ЪΛ	70	90	70	64	50	3C	28	14	00
00000060	1A	1A	1A	NU	MBE	R OF S	TORE	D KEY	<mark>'S</mark> (01	- 03)	.A	16	12	12	12	12
00000070	2A	0 D	02			M	ASTER	KEY			F	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	38	FO	FO
00000080	FO	FO	DC								C	28	14	00	1A	1A
00000090	1A	28	28			SER	VICE	KEY 1			.2	12	12	12	2A	0 D
000000A0	02	54	81			SER	VICE	KEY 2			F	38	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$
000000в0	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$			CRC C	DE KEN	BLO	СК		F	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$
000000000	33	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$								F	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$
00000000	55	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	FF	FF	FF	FF	FF	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$
000000E0	AA	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$						
000000F0	CC	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	50	50	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF

EEPROM memory map

Up to 3 keys can be stored – 1 MASTER and 2 SERVICE keys. Areas of unused keys are filled with **FF**s.

How to store transponder data directly into MC68HC05 EEPROM file

✓ Read EEPROM data from ACI100

0xC0 33 FF FF

0xD0 55 EE EE

OXED AA FF FF FF FF

FF FF

FF FF

- ✓ Read key data using any transponder reader
- ✓ Convert transponder data using **Transponder Data Converter** (read Chapter 5)
- Transfer last 6 bytes of calculated data to the position of any key in the file MASTER or SERVICE1, SERVICE2. Every key position is repeated twice in the file – transfer it into both places!
- ✓ Recalculate CRC of Key_Block1 area (address 0004-0015) and change its corrected value at the address 0016
- ✓ Recalculate CRC of Key_Block2 area (address 0017-0028) and change its corrected value at the address 0029
- ✓ Write modified this way EEPROM file into ACI100

Select desired memory block with mouse in the **Memory Dump** window and **click Right Mouse Button** For CRC recalculation:

FF FF FF FF FF

0xF0 CC FF FF FF FF FF FF 50 50 FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF

3

Harry warmen

· · · · · · . . PP.

MAGNETI MARELLI ACI500 / ACI501 / ACI502 / ACI503 / ACI504 / ACI600 / ACI601 / AC602 / ACI603 / ACI604

CDI controller hardware

Microcontroller –	MOTOROLA MC68HC05B16 (0D60J)
Internal EEPROM memory –	256 bytes. Stores Key Data, Part Numbers (some
	newer types), ignition advance tables

EEPROM functions

• Read MC68HC05 EEPROM

Press this button to read MC68HC05B16 internal EEPROM memory by K-line. Memory content can be modified and saved to disk with desired filename. Output file size – 256 bytes. File is compatible with **TMPro** products.

• Write MC68HC05 EEPROM

Open file, containing data to be programmed and press this button to write it to the MC68HC05B16 internal EEPROM by K-line. Writes data from "Memory Dump" window. Data can be modified prior to writing procedure. Input file size – 256 bytes.

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
00000000	$\mathbf{F}\mathbf{F}$	00	FF	02	00	0.0	0.0	FA	3D	5 F	00	00	0.0	ЕC	5C	1 F
00000010	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	37	00		00								
00000020	FA	ЗD	5F	00	00	00	ЕC	5C	1F)	FF						
00000030	FF	FF	FF	$\mathbf{F}\mathbf{F}$	FF	37	FF									
00000040	00	04	FF	FF	FF	FF	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$
00000050	FF	DC	C8	В						01 (4)	3C	1D	1B	0C	00
00000060	13	1D	1D	1	VUIVI		r 310	KED I		01-0	J 4)	45	45	45	45	45
00000070	33	0A	02	1			MAST	FER KI	EY			02	01	0C	10	E2
00000080	FF	DC	C8	в		5	SERVI		Y 1			3C	1D	1B	0C	00
00000090	13	1D	1D	1								45	45	45	45	45
000000A0	33	0A	02	1			SERVI	CE KE	Y 2			02	01	0C	10	E2
000000в0	50	97	03	0		S	SERVI	CE KE	<mark>Y 3</mark>			FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$
000000000	33	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	F		CR	C OF I	KEY B	ОСК			FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$
00000000	55	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	F								FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$
000000E0	AA	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$								
000000F0	CC	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	FF	60	60	FF	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF

EEPROM memory map

Up to 4 keys can be stored – 1 MASTER and 3 SERVICE keys. Areas of unused keys are filled with **FF**s.

How to store transponder data directly into MC68HC05 EEPROM file

- ✓ Read EEPROM data from ACI500/600
- \checkmark Read key data using any transponder reader
- ✓ Convert transponder data using **Transponder Data Converter** (read Chapter 5)
- Transfer last 6 bytes of calculated data to the position of any key in the file MASTER or SERVICE1, SERVICE2, SERVICE3. Every key position is repeated twice in the file – transfer it into both places!
- ✓ Recalculate CRC of Key_Block1 area (address 0004-001B) and change its corrected value at the address 001C
- ✓ Recalculate CRC of Key_Block2 area (address 001D-0034) and change its corrected value at the address 0035
- ✓ Program modified this way EEPROM file into ACI500/600

Use same technique for CRC recalculation as described above in the section of ACI100 control unit.

												AD	VAN	CED 9	5005	DTER	WORKSHOP ¥2.7
[🗾 LOG WI	(NDO	W	01 10	MEM	ORYI	DUMF		Кsb	ECIA	L FUN	ICTI	ONS					
3		l c.		ЪГ													
p Open		1 Da	але ч	s L	G:\SC	2001	rer s	CR\6	8HCC)5_or	ig_ok	(,bin					
	00	01	02	03	04	05	06	07	08	09	0 A	08	0C	0D	0E	0F	0123456789ABCDEF
0x00	FF	00	FF	02	00	00	00	FΑ	ЗD	5F	00	00	00	ЕC	5C	1 F	\ldots
0×10	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	37	00	00	00	
0x20	FA	ЗD	C	ору								FF	FF	FF	FF	FF	$\overline{} = \underline{} \cdot $
0x30	FF	FF	C	heck	sum f	or AC	1100	/ACI	50X//	ACI60)X 👘	FF.	FF	FF	FF	FF	7
0x40	00	04	С	heck	sum fi	or EF	I					FF	FF	FF	FF	FF	
0×50	FF	DC	- -	beck	curo (86iF)						BC	10	18	00	00	xdZPF<
0x60	13	10		1.0		obic)	D 4	D.C	D.A.	0.1	24	45	45	45	45	45	·····=CCDDEEEEE
0x70	33	DC	02	19	00	06	70	E A	DA EA	50	44	202	101	10	10	E2	3
0,00	13	10	1.0	13	13	20	30	43	43	44	40	45	45	45	45	45	
0×40	33	0.4	02	19	8E	D6	D4	DC	DA	01	0.6	02	01	00	10	F2	3
0xB0	50	97	03	03	02	00	98	11	06	FF	FF	FF	FF	FF	FF.	FF	P
0xC0	33	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	3
0xD0	55	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	U
0×E0	AA	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
0xF0	CC	FF	FF	FF	FF	FF	FF	60	60	FF	FF	FF	FF	FF	FF	FF	
	00	01	02	03	04	05	06	07	08	09	0 A	08	0C	0D	0E	0F	0123456789ABCDEF
0×00	FF	00	FF	02	00	00	00	FA	ЗD	5F	00	00	00	ЕC	5C	1 F	= \ .
0x10	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	37	00	00	00	7
0x20	FA	ЗD	5F	00	00	00	EC	5C	1F	FF	FF	FF	F E	FF	FF	FF	$\overline{\ } = _ \cdot \cdot$
0x30	FF	FF	FF	FF		37		Info	rma	tion			FF)FF	FF	7
0x40	00	04	FF	F									1		F	FF	
0×50	FF	DC	C8	E (i)	CH	neck <i>s</i> i	um A		0004	00	1B] =	37) C	00	×dZPF<
0x60	13	1D	1 D	1	\checkmark			-							15	45	=CCDDEEEEE
0x/0	33	UA DC	02					_	_							E2	J
0×00	12	10	1.0	1					0	К						45	
0×40	33	0.4	02	1		110	1.14		17.0		11.2	117			- 0	40 F2	3
0.40	100	0 M	02	19	01	00	04	DC	UA	01	00	02	01	00	10	62	3

EFI TECHNOLOGY ACII / AC2I / AC5I / AC8I / AC21I / AC23I

CDI controller hardware

Microcontroller–SGS-THOMSON ST72C334N4Internal EEPROM memory–256 bytes. Stores Key Data, part numbersExternal EEPROM memory–95040 (512 bytes). Stores ignition advance tables

EEPROM functions

• Read ST72 internal EEPROM

Press this button to read ST72C334 internal EEPROM memory by K-line. Memory content can be modified and saved to disk with desired filename. Output file size – 256 bytes. File is compatible with **TMPro** products.

• Write ST72 internal EEPROM

Open file, containing data to be programmed and press this button to write it to the ST72C334 internal EEPROM by K-line. Writes data from "Memory Dump" window. Data can be modified prior to writing procedure. Input file size – 256 bytes.

Read external 95040 EEPROM

Press this button to read 95040 EEPROM memory by K-line. Memory content can be modified and saved to disk with desired filename. Output file size – 512 bytes.

• Write external 95040 EEPROM

Open file, containing data to be programmed and press this button to write it to the 95040 EEPROM by K-line. Writes data from "Memory Dump" window. Data can be modified prior to writing procedure. Input file size – 512 bytes.

• Reset to NEW (Make a backup copy of ST72 EEPROM before doing this!)

Press this button to reset CDI controller to its **factory state**. Key Data will be cleared. Engine will run in limited up to **2000 rpm** mode with immobilizer aerial plug disconnected. Immobilizer status LED will illuminate for 2 seconds on ignition set to ON. You must to have **at least 2 keys** to carry out a key programming procedure:

- 4) Insert **MASTER** key (usually red or brown), turn ignition to ON for 2 seconds. Remove it.
- 5) Insert **SERVICE** key (usually black or blue), turn ignition to ON for 2 seconds. Remove it. Repeat for all **SERVICE** keys.
- 6) Insert **MASTER** key again and turn ignition to ON for 2 seconds to close procedure.

EFI TECHNOLOGY AC19I / AC20I / AC25I / AC32I (EURO3)

CDI controller hardware

Microcontroller –	SGS-THOMSON ST72F521
Internal EEPROM memory –	NO INTERNAL EEPROM
External EEPROM memory –	95080 (1024 bytes). Stores Key Data, part
	numbers, ignition advance tables

NOTE6: EFI TECHNOLOGY CDI controllers with system type **AC19 / AC20 / AC25 / AC30** has no immobilizer function. Letter "I" stand for "IMMOBILIZER". For example **AC19I** is immobilized CDI controller while **AC19** means non immobilized version.

EEPROM functions

• Read external 95080 EEPROM

Press this button to read 95080 EEPROM memory by K-line. Memory content can be modified and saved to disk with desired filename. Output file size – 1024 bytes. File is compatible with **TMPro** products.

• Write external 95080 EEPROM

Open file, containing data to be programmed and press this button to write it to the 95080 EEPROM by K-line. Writes data from "Memory Dump" window. Data can be modified prior to writing procedure.

Input file size – 1024 bytes.

• Reset to NEW (Make a backup copy of 95080 EEPROM before doing this!)

Press this button to reset CDI controller to its **factory state**. Key Data will be cleared. Engine will run in limited up to **2000 rpm** mode with immobilizer aerial plug disconnected. Immobilizer status LED will illuminate for 2 seconds on ignition set to ON. You must to have **at least 2 keys** to carry out a key programming procedure:

- 1) Insert **MASTER** key (usually red or brown), turn ignition to ON for 2 seconds. Remove it.
- Insert SERVICE key (usually black or blue), turn ignition to ON for 2 seconds. Remove it. Repeat for all SERVICE keys.
- 3) Insert **MASTER** key again and turn ignition to ON for 2 seconds to close procedure.

MAGNETI MARELLI IMM003.XX / IMM006.XX IMMOBILIZER

Microcontroller – MOTOROLA MC68HC05E6 (0F82B / 0G72G) Internal EEPROM memory – 160 bytes. Stores Key Data.

NOTE7: IMM003/IMM006 is only one of components in the complete immobilizer system and cannot be checked "on-the-bench" for transponder validity (like stand-alone CDI controllers) without injection/ignition control module connected together with it.

EEPROM functions

• Read MC68HC05E6 EEPROM

Press this button to read out full internal MC68HC05E6 EEPROM memory image by K-line. Memory content can be modified and saved to disk with desired filename.

Output file size – 160 bytes.

• Write MC68HC05E6 EEPROM

Open file, containing data to be programmed and press this button to write it to the MC68HC05E6 internal EEPROM by K-line. Writes data from "Memory Dump" window. Input file size – 160 bytes.

NOTE8: memory area 0003-0062 is write-protected in the diagnostic mode and only 64 bytes out of 160 can be rewritten by K-line (yellow zone in the picture). Anyway is still possible to transfer EEPROM data from one **IMM006** to another or to change key data, using technique described below.

							-							-			
	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Ε	F	0123456789ABCDEF
00000000	00	02	$\mathbf{F}\mathbf{F}$	00	00	01	0E	2 E	51	00	00	01	0 E	3E	86	FF	Q>
00000010	$\mathbf{F}\mathbf{F}$	FF	FF	FF	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	FF	· · · · · · · · · · · · · · · · · · ·								
00000020	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	
00000030	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	00	00	01	0E	2 E	51	00	00	01	0 E	3E	86	FF	Q>
00000040	$\mathbf{F}\mathbf{F}$	FF	FF	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	
00000050	$\mathbf{F}\mathbf{F}$	FF	FF	FF	FF	FF	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	FF							
00000060	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	5C	00	02	FF	00	00	01	0E	2 E	51	00	00	01	Q
00000070	0E	3E	86	FF	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	5C	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$.>
08000000	FF	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	FF	FF							
00000090	FF	AA	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	FF	44	D

There are 3 transponder key data zones in the memory map of HC05E6. Two of them (marked with green) are protected by checksum (marked with blue) for data safety and self-repair purposes in the case of data corruption.

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F	0123456789ABCDEF
00000000	0.0	02	$\mathbf{F}\mathbf{F}$	00	0.0	01	0 E	2 E	51	00	0.0	01	0 E	ЗE	8.6	FF	>
00000010	$\mathbf{F}\mathbf{F}$	FF		$\mathbf{F} \mathbf{F}$		FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	<mark></mark>
00000020	FF	FF	FF	$\mathbf{F}\mathbf{F}$	FF	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	
00000030	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	00	00	01	0 E	2 E	51	00	00	01	0 E	3E	86	FF	Q>
00000040	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	
00000050	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	
00000060	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	5C	0.0	02		00		01		2 E		00		01	<mark>\</mark> Q
00000070	0E	ЗE		$\mathbf{F} \mathbf{F}$		$\mathbf{F}\mathbf{F}$		$\mathbf{F} \mathbf{F}$		5C	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	•>••••
08000000	FF	FF	FF	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	
00000090	FF	AA	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	44	D

support@immo-tools.lt

How to write file to IMM006:

- ✓ Open file you want to write,
- ✓ Check for checksum validity of data block 0x64-0x78. Mark that area, click right mouse button and choose Checksum (8bit) item. Fix it to calculated value at address 0x79 if necessary:

												AD	VAN	CED	500	DTER	R WORKSHOP V2.5	
LOG WI	'NDO'	w	01	MEM	ORYI	DUMP		€ SP	ECIA	l fui		ONS						
🦻 Open		Sa	ive A	s	G:\D	elphi	Proj≬	мото	OROL	ER (N	lewes	stWE	C 78k	(0 CA	N_KL	.INE T	TOOL Delphi V00.04\IMM006_EEPROM.b	in
	00	01	02	03	04	05	06	07	08	09	0 A	0 B	0 C	0 D	0 E	0 F	0123456789ABCDEF	-
0x00	00	02	FF	00	00	01	0 E	2E	51	00	00	01	0 E	3E	86	FF	Q >	
0x10	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		
0x20	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		
0x30	FF	FF	FF	00	00	01	0 E	2E	51	00	00	01	0 E	3E	86	FF	Q>	
0x40	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		
0x50	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	· · · · · <u>· · · · · · · · · · · · · · </u>	
0x60	FF	FF	FF	5 C	00	02	FF	00	00	01	0 E	2E	51	00	0	onv	· · · · · Q. · ·	
0x70	0 E	3E	86	FF	FF	FF	FF	FF	FF	5 C	FF	FF	FF	FF	U	ору		
0x80	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	C	hecks	sum (8bit)	
0x90	FF	AA	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	44	D	

✓ Change bytes at addresses 0x00-0x01 to FF 00. Change byte at address 0x63 to FF (three places marked with yellow in the picture). Press Write MC68HC05E6 EEPROM button

Ξ	ADVANCED SCOOTER WORKSHOP V2.5														WORKSHOP V2.5		
🗾 LOG WI																	
Propen 200	Open Save As C: \Users\Virgis\Desktop\imm006_test.bin																
	00	01	02	03	04	05	06	07	08	09	0 A 0	0 B	0 C	0 D	0 E	0F	0123456789ABCDEF
0x00	FF	00	FF	00	00	01	0E	2E	51	00	00	01	0E	3E	86	FF	Q >
0x10	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
0x20	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
0x30	FF	FF	FF	00	00	01	0 E	2E	51	00	00	01	0 E	3E	86	FF	Q>
0x40	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
0x50	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	· · · · <u>·</u> · · · · · · · · · · · · · ·
0x60	FF	FF	FF	FF	00	02	FF	00	00	01	37	E6	Α9	00	00	01	· · · · <mark>·</mark> · · · · · · 7 · · · · ·
0x70	D1	33	63	FF	FF	FF	FF	FF	FF	2 A	FF	FF	FF	FF	FF	FF	. 3c *
0x80	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
0x90	FF	AA	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	44	D
											C	Confi	rm				8
			Are	VOUL	ure	to wr	ito no	an da	ta in	to M	-2011	COSE		POM	mon		
			Are	you	sure		ite ne	evv ua		LO MIC	2001	CUJE		KOM	men	IOI Y?	
			NOT	TE: E	EPRO	M are	ea in	the a	ddre	ss rai	nge ()x000	3-0x	0062	is wr	ite-pr	otected in the diagnostic mode.
				0	nly di	ata a	t 0x0	000-(0x00	02 an	d Ox	0063	-0x00)9F ca	an be	rewr	itten.
											Vec			Ne			
											Tes			NO			
	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	

✓ Disconnect and reconnect +12V_IGN power supply to IMM006. Data will be transferred from addresses 0x64-0x79 to addresses 0x00-0x14 and checksum at address 0x63 will be self-repaired. Key data block at the middle of the file will be left unchanged but it will be corrected by itself when complete immobilizer system becomes operational

Use same technique to change key data in the IMM006 control unit – modify area 0x64-0x78, recalculate checksum and write its new value into address 0x79. Write FF 00 at first bytes of the file and FF at address 0x63. Program EEPROM of MC68HC05 with this way modified file, disconnect and reconnect power supply.

Reset to NEW (Make a backup copy of MC68HC05E6 EEPROM before this!)
 Press this button to reset immobilizer control unit IMM006 to its factory state.
 Key Data will be cleared and control unit will be ready to be linked to another injection/ignition control module and transponder keys.

NOTE9: You must to have **MASTER** key that belongs to Injection/Ignition control unit during programming of the **NEW** immobilizer control unit!

Data bytes of **MASTER** key holds information for synchronization between immobilizer and injection/ignition control units and are stored in both of them. If you are replacing immobilizer control unit with brand new (or cleared) you must to use **MASTER** key that was previously programmed to injection/ignition controller to keep synchronization between them.

You must to reset injection/ignition controller to NEW (or replace it with brand new) if key programming is arranged with **MASTER** key that was never been programmed into memory of particular injection/ignition controller.

You must to have at least 2 keys to carry out a key programming procedure:

- 1) Insert **MASTER** key (usually red or brown), turn ignition to ON for 2 seconds. Remove it.
- Insert SERVICE key (usually black or blue), turn ignition to ON for 2 seconds. Remove it. Repeat for all SERVICE keys.
- 3) Insert **MASTER** key again and turn ignition to ON for 2 seconds to close procedure.

MAGNETI MARELLI MIU1.XX / MIU2.XX INJECTION ECU WITH THROTTLE BODY

Control module hardware

Microcontroller–STMicroelectronics ST10F269-T3Internal EEPROM memory–On-FLASH emulated / 16 KilobytesExternal EEPROM memory–NONE OR SPI 95160

EEPROM functions

• Read KEY DATA from ST10F269

Press this button to read out Key Data block (memory range 0x18090-0x1828F) from ST10F269-T3 internal FLASH memory by K-line. Output file size – 512 bytes.

MAGNETI MARELLI MIU G3 INJECTION ECU WITH THROTTLE BODY

Control module hardware

Microcontroller–Infineon SAK-XC2060MInternal EEPROM memory–NOExternal EEPROM memory95320 (4096 bytes)

EEPROM functions

• Read 95320 EEPROM

Press this button to read out data from the external 95320 SPI EEPROM by Kline. Output file size – 4096 bytes.

Write 95320 EEPROM

Press this button to write data to the external 95320 SPI EEPROM by K-line. Writes data from "Memory Dump" window. Input file size – 4096 bytes. CRC check and repair takes place before programming. That will allow you to modify transponder data in the file.

Reset to NEW

Press this button to reset **MIU G3** controller to its **factory state**. Key Data will be cleared. Immobilizer status LED will illuminate for 2 seconds on ignition set to ON. You must to have **at least 2 keys** to carry out a key programming procedure as described in the **Chapter 6**.

MAGNETI MARELLI IAW15 INJECTION ECU

Control module hardware

Microcontroller – MOTOROLA MC68HC11F1 Internal EEPROM memory – 512 bytes External EEPROM memory – NO

EEPROM functions

Read MC68HC11F1 EEPROM

Press this button to read out data from the internal EEPROM of MC68HC11F1 by K-line. Output file size – 512 bytes.

• Write MC68HC11F1 EEPROM

Press this button to write data to the internal EEPROM of MC68HC11F1 by Kline. Writes data from "Memory Dump" window. Input file size – 512 bytes.

Reset to NEW

Press this button to reset **IAW15** controller to its **factory state**. Previously programmed immobilizer data will be cleared and ECU will be set into immobilizer code self programming mode. Turn ignition ON with a valid **MASTER** key that belongs to **IMM006** to link **IAW15** to **IMM006** immobilizer control unit. Read and program **MASTER** key data from **IMM006** into T5 transponder if you do not have a **MASTER** key. Programming is impossible using **SERVICE** key!

9. Copyright information

Advanced Scooter Workshop, ASW^{TM} and a company logo, all the pictures and screen shots used in this user manual is a property of **Immo-Tools** / <u>www.immo-tools.lt</u> and can't be used by any person or business for commercial purposes without an owner's permission.

All other brand names and trademarks mentioned herein are the property of their respective owners.