

MYTHS & FACTS

In this Issue

Hormonal Balance | Fertility | Thyroid Function | Breast Cancer Risk | Allergies | Soy Infant Formula

Soyfoods are common in Asian and many health-conscious Western diets, and thus it is pertinent to explore the safety of soy as documented in the body of accumulated research. Consumers can be encouraged to continue feeding their families soyfoods for generations to come.

Introduction

Traditional soyfoods have played an important role in East Asian diets for centuries, and have been consumed by health-conscious individuals in Western countries for decades. More recently, soyfoods have become increasingly popular among mainstream consumers in the West, largely because of research suggesting they offer health benefits independent of the nutrients they provide and because of an increased interest in plant-based diets. Possible benefits include reduced risk of coronary heart disease,^{1.3} osteoporosis^{4.6} and some forms of cancer.⁷ Many of the proposed benefits of soyfoods are attributed to their uniquely rich isoflavone content. However, isoflavones, which are diphenolic molecules with estrogen-like properties, are also the primary reason for concerns about the potential adverse effects of soyfoods.

In 1999, as part of the process for approving the coronary heart disease-health claim, the U.S. Food and Drug Administration (FDA) extensively reviewed the scientific literature and concluded that soyfoods are safe for all except those who are allergenic to soy protein.⁸ Most of the concerns being raised today were considered by the FDA; although not unexpectedly, considerably more research has been published since their comprehensive

review. In 2005, the Agency for Healthcare Research and Quality identified only minor problems associated with the intake of large amounts of soy, such as mild gastrointestinal disturbances, although most of the research they evaluated wasn't designed specifically to address safety issues.⁹ Nevertheless, a similar conclusion was reached through a meta-analysis conducted by Austrian researchers, which was undertaken specifically to address the safety of isoflavone supplements.¹⁰ Still, discussions about the safety of soy continue to appear in the scientific literature and popular media.

The FDA concluded that soyfoods are safe in its review when approving the health claim for soy protein and coronary heart disease.

How Much Soy Protein do Asians and Americans Consume?

There is considerable confusion about the role soy plays in the diets of Asian populations and about how much soy protein and isoflavones Americans consume. Soy protein is widely used by the food industry and is found in small amounts in an extensive array of foods in the United States.

Soy protein is added to foods primarily for its functional properties, i.e., to improve shelf stability and texture. Consequently, U.S. daily per capita soy protein intake is only 1 to 2 g per day, representing about 2% of total protein intake.¹¹ Since soy protein intake is low, isoflavone intake is also very low. This is the case not only due to the low soy protein intake but also because the protein used by the food industry is often quite low in

isoflavones. According to a recent analysis, which used the USDA isoflavone database and the National Health and Nutrition Examination Survey III 24-hour dietary recall data to estimate intake, Americans ingest only 2.35 mg isoflavones daily {Bai, 2014 #17061}. There are approximately 25 mg isoflavones in one cup of soymilk.

Traditional Japanese diets include 10 g/day soy protein for 10% of total protein needs.

In Japan, the daily intake of soy protein by older individuals is approximately 8 to10 g, which represents slightly more than 10% of their total protein intake.¹² Chinese soy intake varies markedly among regions. Large studies from Shanghai, a high-soy-consuming area, indicate men consume anywhere from about 9 g to as much as 12 to 13 g of soy protein per day,¹³ the latter figures represent about 15% of total protein intake.¹⁴ Shanghainese women consume about 9 g per day.¹⁵ Individuals in the upper one-quarter of intake consume about 15 to 20 g soy protein daily. Ten grams of soy protein translates to about 1.5 servings since one serving of a traditional soyfood provides about seven 7 g protein, although some soyfoods can provide considerably more than this amount.

Approximately half of the soy consumed in Japan comes from unfermented foods, with four foods – tofu, miso, natto and fried tofu – accounting for about 90% of all soy consumption.^{16,17} In Shanghai, and throughout much of China, most of the soyfoods consumed are unfermented, and soymilk, tofu and processed soy products other than tofu account for about 80% of total soy consumption.¹

In conclusion, U.S. intake data indicates that most Americans need to substantially increase their soy intake to match the levels common to the traditional cuisines of many Asian populations. Doing so is relatively easy with the wide variety of fermented and unfermented soyfoods readily available.

Considerations in Evaluating Soy Research

Most scientists can probably agree that there is a legitimate basis for discussion about potential adverse effects of soy consumption, at least in some individuals and under certain circumstances. Indeed, some types of in vitro and animal studies have raised concern. The fact that some studies raise concern is hardly surprising given the sheer volume of research conducted. Almost 2,000 soy-related scientific papers are published annually. Unfortunately, sensationalized media stories — and especially online articles lacking editorial oversight — often focus on a tiny minority of studies unrepresentative of the scientific literature overall. Furthermore, they often don't assign proper weight to the type (in vitro, animal, human, clinical, epidemiologic, etc.) of study being highlighted.

The relevance of in vitro and animal studies to humans is always a matter of debate. Clearly, in vitro conditions cannot duplicate the complexity of living organisms, human or otherwise. By necessity, these studies typically examine the effects of isolated compounds, which may be quite different from the effects seen when these compounds are examined in their natural milieu. The biological impact of one nutrient or non-nutrient in a food can be affected by the presence of others.^{18, 19}

Studies in rats and mice, while certainly part of the scientific literature, often have limited value for predicting effects in humans because of the many physiological and anatomical differences between rodents and humans. In the case of soy, there is an additional caveat; most animals, including rodents and non-human primates, metabolize isoflavones very differently than humans.²⁰⁻²⁵ Therefore, one may derive at most, only very limited insight about the possible effects of soyfoods in humans based on the results from studies in which rodents are fed isoflavone-rich soy protein or mixed isoflavones as are naturally found in soybeans.

It is also important to recognize that many highly investigated foods and food components have been linked with adverse effects in a small minority of studies including foods that are recommended by most nutritionists for their healthful properties. For example, whole grains contain phytate (as do soyfoods), which can decrease mineral absorption.²⁶ Nevertheless, the nutrition community recommends the intake of whole grains because the overwhelming preponderance of evidence indicates that they are nutritionally beneficial.^{27, 28} Conclusions about the healthfulness of any food need to be based on the totality of the evidence with careful consideration given to the strengths and weaknesses of study designs.

Evaluating the Evidence

Hormonal Balance

Isoflavones bind to and transactivate estrogen receptors and can potentially influence steroid hormone synthesis and metabolism via their effects on enzymes involved in a variety of metabolic pathways.^{29, 30} Not surprisingly, there has been much investigation of the effects of isoflavone-rich soy products and isoflavone supplements on hormone levels in both men and women. Some of this research was aimed at determining whether decreases in testosterone and estrogen levels might account for the proposed role of soy in reducing risk of hormonally-influenced cancers.

The vast majority of studies show no effects on circulating reproductive hormone levels in men or women in response to the intake of soy protein or isoflavones.

However, according to the conclusions of two recently published meta-analyses, the purported chemopreventive effects of soyfoods are unlikely to be related to their effects on blood hormone concentrations. The vast majority of studies have shown no effects on

2

circulating reproductive hormone levels in men^{31, 32} or women^{33, 35} in response to intakes of soy protein and isoflavones. One meta-analysis, which included 32 studies and 36 treatment groups, evaluated the effects of soy products on total and free testosterone in men.³⁶ The other, which included 47 studies, evaluated the effects of soy products on levels of estradiol and other reproductive hormones in pre- and postmenopausal women.³⁷ In addition, a comprehensive review of the clinical research, found no evidence that isoflavone exposure affects circulating estrogen levels in men.³⁸ Estrogen is typically thought of as a female hormone but men also synthesize estrogen; in fact, estrogen levels in older men are higher than in older women.³⁹

Fertility

Given the large populations of Asian countries that have historically consumed soy, it is somewhat ironic and almost nonsensical that concerns regarding soy intake and fertility have been raised. On the other hand, in many respects the biological effects of isoflavones first came to the attention of the scientific community in the 1940s because of breeding problems experienced by female sheep in Western Australia grazing on a type of clover rich in isoflavones.⁴⁰⁻⁴² Furthermore, two decades ago it was established that isoflavone-rich soy, which was part of the standard diet of cheetahs in North American zoos, was a factor in the decline of fertility in these animals.⁴³

However, problems in the latter are thought to have arisen because felines are only poorly able to glucuronidate phenolic compounds, a major step in the bodily elimination of isoflavones — a good example of differences in isoflavone metabolism between animals and humans.^{44,46} In the case of the sheep, serum levels of equol — a bacterially synthesized metabolite of the soybean isoflavone daidzein — far exceeded anything approaching human levels simply because daily isoflavone intake was estimated to be several grams,⁴⁷ which dwarfs the 40 mg typically consumed by older Japanese.¹²

Fast Facts about Isoflavones

- Isoflavones are one of five chemical classes of anticarcinogens found in soy.
- Soyfoods are the only significant natural dietary source of isoflavones.
- Research shows isoflavones may prevent the onset of osteoporosis and may protect against various forms of cancer.

In women, soyfoods appear to increase the length of the menstrual cycle. However, ovulation is not prevented, but is simply delayed by one day.³⁷ Interestingly, longer cycles are associated with a decreased breast cancer risk.⁴⁸ In men, a small pilot epidemiologic study found that very modest soy consumption was associated with lower sperm concentration (sperm count was not decreased) but there were many weaknesses to this study. In fact, much of the decreased sperm concentration occurred because there was an increase in ejaculate volume in men consuming higher amounts of soy, a finding which seems biologically implausible.⁴⁹ Furthermore, in contrast to this one epidemiologic study, all three of the clinical studies conducted show that isoflavones have no effect on sperm concentration or quality.⁴⁹⁻⁵¹ Interestingly, a case report actually noted that isoflavones increased sperm count. Daily isoflavone supplementation for six months in the male partner of an infertile couple with initially low sperm count led to normalization of sperm quality and quantity and allowed the couple to conceive.⁵²

Soy, Isoflavones and Thyroid Function

The first animal studies investigating the effects of soy intake on thyroid function were published 80-years ago.⁵³⁻⁵⁵ Concerns about the anti-thyroid effects of soy are based primarily on in vitro research^{56, 57} and studies in rodents administered isolated isoflavones.^{58, 59} Although several cases of goiter were attributed to the use of soy infant

formula, this problem was eliminated in the mid-1960s with the advent of iodine fortification of the formula. $^{\rm 53,\,54,\,60}$

A comprehensive review published in 2006 that included 14 clinical trials found that the totality of the evidence showed that neither soyfoods nor isoflavones adversely affect thyroid function in healthy men or women.⁶¹ Studies published since this review are supportive of the conclusion.⁶²⁻⁶⁶ One of these is a 3-year study that included more than 200 postmenopausal women who were given isoflavone supplements at either 80 mg or 120 mg per day (personal communication, Lee Alekel, National Institutes of Health). Another noteworthy study, which supports the safety of soy, was also three years in duration. In this case, the intervention product was high-dose genistein (the isoflavone shown in vitro to inhibit the activity of thyroid peroxidase). In addition to measuring thyroid, hormones (thyroid stimulating hormone, thyroxine and triiodothyronine) investigators study assessed thyroid hormone receptor and retinoid receptor expression from peripheral blood monocytes, which are thought to be very sensitive indicators of thyroid function.⁶⁷

Although soy has no effect on thyroid function in euthyroid individuals, soyfoods may increase the amount of thyroid medication needed by hypothyroid patients, not because of an effect on the thyroid, but because soy protein may interfere to some extent with the absorption of the medication.⁶⁸⁻⁷¹ Soy is not unique in this regard, however, as many herbs, drugs, fiber and calcium supplements have similar effects.⁷²⁻⁸⁰ In any event, it is not necessary for thyroid patients (with the exception of infants with congenital hypothyroidism) to avoid soyfoods since thyroid medication is taken on an empty stomach and dosages can easily be adjusted to compensate for any effects of soy.

One serving of a traditional soyfood provides about 20 to 35 mg of isoflavones.

According to a recent position paper from the Pharmacy and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society, it is not necessary to avoid any particular food, or even to take thyroid hormone during the fasting state, but rather, it is important to maintain consistency in medication administration and dietary habits. As long as the medication is taken in a consistent manner and the amount of soyfoods consumed is relatively constant, soyfoods are not problematic.⁸¹

Questions remain about the effects of soy in individuals whose thyroid function may be compromised, such as subclinical hypothyroid patients and those whose iodine intake is marginal. Individuals consuming soy should be sure their iodine intake is adequate since there is a theoretical basis for postulating that soy could exacerbate thyroid function when iodine intake is inadequate.⁸² In the United States, iodine intake is generally quite good, however subpopulations may not be getting sufficient amounts of this mineral.⁸³ In any event, when an individual whose iodine intake is suboptimal, the appropriate recommendation is to increase iodine intake, not to avoid soyfoods. Furthermore, clinical research published in 2012 strongly suggests even those whose iodine intake is inadequate are unlikely to be adversely affected by soy consumption {Sosvorva, 2012 #16614}.

Only recently has information on the effects of soy intake on thyroid function in subclinical hypothyroid patients become available. Estimates vary, but approximately 5% of the general adult population, and a higher percentage among individuals over the age of 60, have subclinical hypothyroidism.⁸⁴ With time, a certain percentage ($\sim 2-6\%$ /year) of these patients, who have normal triiodothyronine and thyroxine levels but elevated levels of thyroid stimulating hormone, will spontaneously progress to overt hypothyroidism.⁸⁵ Only one study, a crossover study in which 60 middle-aged, overweight British patients (52 females) consumed in random order for eight weeks, 30 g isolated soy protein (ISP) containing 2 or 16 mg isoflavones separated by an eight week washout, evaluated the effects of soy on subclinical hypothyroid patients {Sathyapalan, 2011 #14675}. During the entire 6-month study period, 6 (10%) of the participants consuming the higher-isoflavone-ISP progressed to overt hypothyroidism whereas none did in the low isoflavone group. As a result, it was estimated that exposure to 16 mg per day isoflavones increased the likelihood of converting to overt hypothyroidism approximately 3.6-fold.

These results are unexpected given the relatively small isoflavone intake of the study participants and because the progression of subclinical to overt hypothyroidism among Japanese patients is not elevated;⁸⁶ nor does Japan have higher rates of hypothyroidism.⁸⁷ Nevertheless, the results of the British study can't be dismissed. It is important to note, however, that in the study participants overall (including those who became hypothyroid), there were dramatic reductions in systolic and diastolic blood pressure, insulin resistance and inflammation (as assessed by C-reactive protein). Therefore, in theory, isoflavones markedly reduced risk of cardiovascular disease and diabetes in people with subclinical hypothyroid function. Additional research is required before firm conclusions about the effects of soyfoods on thyroid function in these patients can be made.

Isoflavone Content of Soyfoods

Soyfood	Serving size	Total (Mg) Isoflavone/ serving
Miso	1 Tbsp	7
Soybeans, Green, Cooked	1⁄2 cup	50
Soybeans, Black, Cooked	½ cup	40
Soybeans, Yellow, Cooked	½ cup	78
Soybeans, Roasted, Plain	1⁄4 cup	78
Soymilk, Plain, Unfortified	1 cup	10
Soymilk, Plain, Fortified	1 cup	43
Soy Flour, Defatted	1⁄4 cup	42
Soy Flour, Full-Fat	1⁄4 cup	33
Soy Flour, Low-Fat	1⁄4 cup	50
Soy Crumbles	1⁄2 cup	9
Soy Protein Isolate Powder, Plain	1⁄3 сир	53
Textured Soy Protein, Dry	1⁄4 cup	33
Tempeh	1⁄2 cup	53
Tofu	1⁄2 cup	25

Soyfoods and Breast Cancer Risk

The estrogen-like effects of isoflavones form the theoretical basis for concern that soyfoods are contraindicated for women who are at increased risk of breast cancer and women with estrogen-sensitive breast cancer.⁸⁸⁻⁹² Isoflavones bind to estrogen receptors, stimulate the growth of human estrogen receptor positive breast cancer cells in vitro and, in certain types of experimental rodent models, stimulate the growth of existing estrogen-responsive mammary tumors.^{93, 94} However, not all rodent models show that soy or isoflavones stimulate the growth of existing mammary tumors⁹⁵⁻⁹⁷ and even in rodent models that do, minimally processed soyfoods do not have this effect.⁹⁸ More importantly, the human data indicate that isoflavones, regardless of the source, do not exert harmful effects on breast tissue.

Human data indicates that isoflavones, regardless of the source, do not exert harmful effects on breast tissue.

In none of the five clinical trials in which researchers took breast tissue biopsies before and after exposure to isoflavones — three involving postmenopausal, one premenopausal, and one with both pre- and postmenopausal women — were statistically significant effects on cell proliferation noted.^{33, 99-102} Increased cell proliferation is generally regarded as a risk factor for cancer. Isoflavone exposure also has no effect on breast tissue density (increased density is a marker of cancer risk).¹⁰³⁻¹⁰⁶ For a comprehensive review of this data, see reference {Messina, 2013 #16493} {Fritz, 2013 #17036}. In contrast to the lack of effects of isoflavones, estrogen plus progestin hormone therapy, which increases breast cancer risk,¹⁰⁷ increases breast tissue density and breast cell proliferation.^{108, 109}

The American Cancer Society concluded that soyfoods can be consumed by breast cancer patients.

Even more impressive than the lack of effect of soy noted in the clinical studies are the results of prospective epidemiologic studies, which show that post-diagnosis soy intake improves the prognosis of breast cancer patients. In 2012, Nechuta et al. {Nechuta, 2012 #15652} published a pooled analysis of three studies, two from the United States and one from China, which involved 9,514 patients and included a 7.4-year follow up period. Results showed that higher soy intake was associated with reduced mortality and tumor recurrence:

- 13% reduction in all-cause mortality
- 17% reduction in breast cancer-specific mortality
- 25% reduction in tumor recurrence (statistically significant)

Of the patients in this study, approximately half were from China and half from the United States and there were approximately equal numbers of pre-and postmenopausal women. Sub-analysis of the results failed to find statistically significant differences of soy intake according to whether women were pre-or postmenopausal, estrogen receptor negative or positive, or users or non-users of tamoxifen.

More recently, Chi et al. {Chi, 2013 #16490} conducted a meta-analysis of prospective studies, which included the three studies in the pooled analysis by Nechuta et al. {Nechuta, 2012 #15652} and two small Chinese studies, for a total of 11,206 breast cancer patients. They found post-diagnosis soy intake was associated with statistically significant 15 and 21% reductions in mortality and recurrence, respectively. One of the studies in this meta-analysis also found that soy intake enhanced the efficacy of anastrozole, an aromatase inhibitor. As a result of their findings, Chi et al. {Chi, 2013 #16490} recommended that breast cancer patients consume soyfoods. Both the American Cancer Society {Rock, 2012 #15829} and the American Institute for Cancer Research have concluded that soyfoods can be safely consumed by breast cancer patients.

Effects of Soy on Mineral Status

Soyfoods are frequently used in place of animal foods, many of which are good sources of iron, zinc and, in the case of dairy foods, calcium. Relatively little red meat is needed to meet daily iron and zinc requirements, so questions about the effects of soy on the status of these two minerals pertains mostly to those eating a predominately plant-based diet.¹¹⁰

New research indicates that iron absorption from soy may be much higher than previously thought because the majority of iron in soy is in the form of ferritin, which recent research has shown is highly bioavailable.

As noted previously, soybeans, like other legumes and whole grains, are high in phytate, ¹¹¹ which reduces the absorption of some minerals, including zinc and iron.¹¹² Zinc absorption from soyfoods is only modestly lower than that from other sources. However, because

soybeans contain relatively little zinc, unfortified soyfoods are not particularly good sources of this mineral.¹¹³⁻¹¹⁶ Zinc status is difficult to assess^{117, 118} and those consuming a plant-based diet are advised to identify good plant sources of zinc in their diet or to take a zinc supplement.¹¹⁹⁻¹²³

In contrast to zinc, soyfoods are relatively high in iron.¹²⁴ Until recently, it was believed that the iron in essentially all plant foods, including soyfoods, was poorly absorbed. However, new research utilizing improved methodology indicates that iron absorption from soy may be much higher than previously thought because most of the iron in soy is in the form of ferritin. Although there is debate about the bioavailability of ferritin iron, two important clinical studies in which subjects were fed either soyfoods or soybean ferritin show it to be highly bioavailable.^{125, 126}

In support of these observations are the results from a study designed specifically to examine the effect of soyfoods on mineral status. In this study, young premenopausal women consumed either 2-3 servings of soyfoods daily or non-soyfoods matched for type of food — such as hamburgers in place of soy burgers or cow's milk in place of soymilk. Results showed there were no statistically significant effects of soy on urinary and serum zinc, serum hemoglobin and iron, or transferrin saturation {Zhou, 2011 #14712}.

While mineral absorption may be very slightly improved with fermentation and may give rise to other potentially beneficial compounds, there is little evidence that these foods are superior to unfermented ones.

In addition to phytate, soybeans are also high in oxalate, another compound that binds calcium and reduces its absorption.¹²⁷ Oxalate is one reason that spinach, despite being high in calcium, is not a good source of this mineral. Despite the presence of both phytate and oxalate, calcium absorption from soybeans is surprisingly good.¹²⁸ This is also true for calcium-set tofu¹²⁹ and calcium-fortified soymilk.^{130, 131} In fact, the absorption of calcium from these foods is comparable to the absorption of calcium from cow's milk. Bioavailability of calcium from calcium-fortified products, such as soymilk, depends to some extent on the type of supplemental calcium used.¹²⁹ When calcium carbonate is used as the fortificant in soymilk, absorption is similar to that seen with cow's milk.¹³⁰ In contrast, calcium absorption from soymilk fortified with tricalcium phosphate is about 25% lower than from cow's milk.¹³² However, because of the high amounts of tricalcium phosphate added, the amount of calcium available to the body from both types of calcium-fortified soymilk is similar to that from cow's milk.¹³⁰

There have been questions about the solubility of calcium in soymilk. Some research indicates that, even with vigorous shaking, the calcium in soymilk comes out of the solution.¹³³ While some sedimentation may occur in certain soymilks, this sediment is re-suspended with mild shaking for the majority of soymilk purchased in the United States.

Allergies

Soy protein can cause allergic reactions in sensitive individuals, as is the case for essentially all food proteins. Soy protein is one of the eight foods responsible for approximately 90% of all food-induced allergic reactions in the United States.¹³⁴ However, these foods are not equally allergenic and allergy to soy protein is relatively rare.¹³⁵ A recent nationally representative telephone survey found that an estimated 1 in 2,500 adults reported having a doctor-diagnosed allergy to soy protein.¹³⁶ The results of this survey indicate that cow's milk allergy (CMA) is about 40 times more common than soy allergy. The prevalence of soy allergy is higher in children than adults, as children are more likely to have food allergies.¹³⁷ Consequently, it is estimated that by that age, only approximately 1 out of 1,000 children are allergic to soy.

Recent research shows that only about one out of 2,500 American adults are allergic to soy protein.

According to the American Academy of Pediatrics (AAP), extensively hydrolyzed protein formula should be considered as the first alternative for infants with documented CMA (especially for IgE-mediated reactions) because 10 to 14% of these infants will also have a soy protein allergy.¹³⁸ However, recently conducted British research found that of the 60% of all infants with CMA were initially treated with soy, only 9% of patients remained symptomatic.¹³⁹ In contrast, of the 18% of patients treated with extensively hydrolyzed formula, 29% remained symptomatic. The results from a small retrospective study from Portugal, which evaluated children with persistent CMA, also suggest that soy formula may have advantages over hydrolyzed formulas.¹⁴⁰

Finally, in 2013, the first systematic review and meta-analysis of studies evaluating the prevalence of IgE-mediated soy allergies in infants and children was published {Katz, 2014 #16956}. The analysis, which included 40 studies, found that the prevalence of soy allergies ranged from 0 to 0.5% for the general population, 0.4 to 3.1% for the referred population (those referred to an allergy clinic for evaluation of food-related problems or other allergy issues), and 0 to 12.9% for allergic (atopic) children. The authors concluded concern about soy allergy is no reason to postpone the use of soy infant formula in IgE-mediated cow's milk allergy infants.

Soy Infant Formula

Soy infant formula (SF) has been in use for more than 50-years. Currently, it accounts for about 13% of all dollars spent on infant formula in the United States. An estimated 20 million infants have used SF over the past 40-years. Soy formula produces normal growth and development; nevertheless, SF use has become controversial because of its high

isoflavone content. In 2009, the U.S. National Toxicology Program (NTP) concluded there was minimal concern about the safety of SF {McCarver, 2011 #15016}. In response to this conclusion, the AAP submitted a letter to the NTP, which is now part of the public record, stating that, in their view, there was negligible concern about the safety of SF. The five levels of concern are negligible, minimal, some, concern and serious concern.

Over the next few years, considerable insight to the health effects of SF will be gained as a result of research underway at the Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences. At this center, the health status of infants fed breast milk, cow's milk formula and SF is being compared. Thus far, findings indicate that all health parameters assessed in infants fed SF are well within the normal range.¹⁴¹⁻¹⁴⁴ Nevertheless, continued research in this area is warranted.

Soyfood Processing

Tofu and miso are the most commonly consumed soyfoods in Japan and China, whereas in the United States, many people choose more processed forms of soy such as meat analogs and energy bars.¹⁴⁵ Numerous human studies demonstrate that processed soy products provide very high-quality protein.^{146, 147}

Depending on processing methods, the isoflavone content of these foods can be markedly reduced.¹⁴⁸ The isoflavone content of a large number of soy-containing foods can be found in an online database created by Iowa State University and the United States Department of Agriculture at: http://www.ars.usda.gov/services/docs.htm?docid=6382

Many traditional soyfoods such as miso, tempeh and natto undergo fermentation. While mineral absorption may be very slightly improved with fermentation and may give rise to other potentially beneficial compounds, there is little evidence that these foods are superior to unfermented ones. In fact, several epidemiologic studies show protective effects of non-fermented but not fermented soyfoods.^{149, 150} Non-fermented soyfoods have been consumed in Japan¹⁵¹ and China¹⁵² for at least 500-years and 1,000-years, respectively. In Japan, where many fermented foods are popular, at least half of the total soy consumed comes from foods that are not fermented^{16, 17} and in China, most of the soy is consumed in non-fermented form.¹

Summary and Conclusions

When evaluating the safety of soyfoods, it is imperative to consider the totality of the scientific research and to place weight on studies according to their experimental design. The research overall indicates that soyfoods can be safely incorporated into the diets of essentially all healthy individuals with the exception of those allergic to soy protein. Nevertheless, because all foods have the potential to cause undesirable effects in some individuals, people with specific health concerns should consult their healthcare provider regarding unique nutritional needs.

References

- 1. Zhang, X., et al., Soy food consumption is associated with lower risk of coronary heart disease in Chinese women. J Nutr, 2003. **133**(9): p. 2874-8.
- Kokubo, Y., et al., Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarctions in Japanese populations: the Japan Public Health Center-based (JPHC) study cohort I. Circulation, 2007. 116(22): p. 2553-62.
- Messina, M. and B. Lane, Soy protein, soybean isoflavones, and coronary heart disease risk: Where do we stand? Future Lipidology, 2007. 2: p. 55-74.
 Ma, D.F., et al., Soy isoflavone intake inhibits bone resorption and stimulates bone
- Ma, D.F., et al., Soy isoflavone intake inhibits bone resorption and stimulates bon formation in menopausal women: meta-analysis of randomized controlled trials. Eur J Clin Nutr, 2007.
- Marini, H., et al., Effects of the phytoestrogen genistein on bone metabolism in osteopenic postmenopausal women: a randomized trial. Ann Intern Med, 2007. 146(12): p. 839-47.
- Koh, W.P., et al., Gender-specific associations between soy and risk of hip fracture in the Singapore Chinese Health Study. Am J Epidemiol, 2009. 170(7): p. 901-9.
- Shu, X.O., et al., Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women. Cancer Epidemiol Biomarkers Prev, 2001. 10(5): p. 483-8.
- Food Labeling: Health Claims; Soy Protein and Coronary Heart Disease, in Federal Register: (Volume 64, Number 206))1999. p. 57699-57733.
- Balk, E., et al., Effects of soy on health outcomes. Evidence report/technology assessment No. 126 (prepared by Tufts-New England Medical Center Evidence-based Practice Center under Contract No. 290-02-0022.) AHRQ Publication No. 05-E024-2., July 2005: Rockville, MD Agency for Healthcare Research and Quality.
- Tempfer, C.B., et al., *Side effects of phytoestrogens: a meta-analysis of randomized trials*. Am J Med, 2009. **122**(10): p. 939-46 e9.
- Smit, E., et al., Estimates of animal and plant protein intake in US adults: results from the Third National Health and Nutrition Examination Survey, 1988-1991. J Am Diet Assoc, 1999. 99(7): p. 813-20.

6

- Messina, M., C. Nagata, and A.H. Wu, Estimated Asian adult soy protein and isoflavone intakes. Nutr Cancer, 2006. 55(1): p. 1-12.
- Lee, S.A., et al., Assessment of dietary isoflavone intake among middle-aged Chinese men. J Nutr, 2007. 137(4): p. 1011-1016.
- Villegas, R., et al., Validity and reproducibility of the food-frequency questionnaire used in the Shanghai men's health study. Br J Nutr, 2007. 97(5): p. 993-1000.
- Yang, G., et al., Longitudinal study of soy food intake and blood pressure among middle-aged and elderly Chinese women. Am J Clin Nutr, 2005. 81(5): p. 1012-7.
- 16. Wakai, K., et al., *Dietary intake and sources of isoflavones among Japanese*. Nutr Cancer, 1999. **33**(2): p. 139-45.
- Somekawa, Y., et al., Soy intake related to menopausal symptoms, serum lipids, and bone mineral density in postmenopausal Japanese women. Obstet Gynecol, 2001. 97(1): p. 109-115.
- Rozen, P., et al., Calcium supplements interact significantly with long-term diet while suppressing rectal epithelial proliferation of adenoma patients. Cancer, 2001. 91(4): p. 833-40.
- Bolca, S., et al., Cosupplementation of Isoflavones, Prenylflavonoids, and Lignans Alters Human Exposure to Phytoestrogen-Derived 17{beta}-Estradiol Equivalents. J Nutr, 2009.
- Wisniewski, A.B., et al., Exposure to genistein during gestation and lactation demasculinizes the reproductive system in rats. J Urol, 2003. 169(4): p. 1582-6.
- Fielden, M.R., et al., Effect of human dietary exposure levels of genistein during gestation and lactation on long-term reproductive development and sperm quality in mice. Food Chem Toxicol, 2003. 41(4): p. 447-54.
- Ojeda, S.R., et al., Recent advances in the endocrinology of puberty. Endocr Rev, 1980. 1(3): p. 228-57.
- Robinson, J.D., et al., Amniotic fluid androgens and estrogens in midgestation. J Clin Endocrinol Metab, 1977. 45(4): p. 755-61.
- Gu, L., et al., Metabolic phenotype of isoflavones differ among female rats, pigs, monkeys, and women. J Nutr, 2006. 136(5): p. 1215-21.
- Setchell, K.D., et al., Soy isoflavone phase II metabolism differs between rodents and humans: implications for the effect on breast cancer risk. Am J Clin Nutr, 2011. 94(5): p. 1284-94.
- Larsson, M., et al., Improved zinc and iron absorption from breakfast meals containing malted oats with reduced phytate content. Br J Nutr, 1996. 76(5): p. 677-88.
- 27. Harris, K.A. and P.M. Kris-Etherton, *Effects of whole grains on coronary heart disease risk*. Curr Atheroscler Rep, 2010. **12**(6): p. 368-76.
- Slavin, J., Whole grains and human health. Nutr Res Rev, 2004. 17(1): p. 99-110.
 Rice, S., H.D. Mason, and S.A. Whitehead, *Phytoestrogens and their low dose combinations inhibit mRNA expression and activity of aromatase in human granulosa-luteal cells*. J Steroid Biochem Mol Biol, 2006. 101(4-5): p. 216-25.
- Lacey, M., et al., Dose-response effects of phytoestrogens on the activity and expression of 3beta-hydroxysteroid dehydrogenase and aromatase in human granulosa-luteal cells. J Steroid Biochem Mol Biol, 2005. 96(3-4): p. 279-86.
- Dillingham, B.L., et al., Soy protein isolates of varying isoflavone content exert minor effects on serum reproductive hormones in healthy young men. J Nutr, 2005. 135(3): p. 584-91.
- Hamilton-Reeves, J.M., et al., Isoflavone-rich soy protein isolate suppresses androgen receptor expression without altering estrogen receptor-{beta} expression or serum hormonal profiles in men at high risk of prostate cancer. J Nutr, 2007. 137(7): p. 1769-1775.
- Cheng, G., et al., Isoflavone treatment for acute menopausal symptoms. Menopause, 2007. 14(3 Pt 1): p. 468-73.
- Brown, B.D., et al., Types of dietary fat and soy minimally affect hormones and biomarkers associated with breast cancer risk in premenopausal women. Nutr Cancer, 2002. 43(1): p. 22-30.
- Duncan, A.M., et al., Modest hormonal effects of soy isoflavones in postmenopausal women. J Clin Endocrinol Metab, 1999. 84(10): p. 3479-84.
- Hamilton-Reeves, J.M., et al., Clinical studies show no effects of soy protein or isoflavones on reproductive hormones in men: results of a meta-analysis. Fertil Steril, 2009.
- Hooper, L., et al., Effects of soy protein and isoflavones on circulating hormone concentrations in pre- and post-menopausal women: a systematic review and meta-analysis. Hum Reprod Update, 2009. 15(4): p. 423-40.
- Messina, M., Soybean isoflavone exposure does not have feminizing effects on men: a critical examination of the clinical evidence. Fertil Steril, 2010. 93(7): p. 2095-104.
- Greendale, G.A., S. Edelstein, and E. Barrett-Connor, Endogenous sex steroids and bone mineral density in older women and men: the Rancho Bernardo Study. J Bone Miner Res, 1997. 12(11): p. 1833-43.
- Bennetts, H.W., E.J. Underwood, and F.L. Shier, A specific breeding problem of sheep on subterranean clover pastures in Western Australia. Aust J Agric Res, 1946. 22: p. 131-138.
- Bradbury, R.B. and D.R. White, Estrogen and related substances in plants, in Vitamins and Hormones, R.S. Harris, G.F. Marrian, and K.V. Thimann, Editors. 1954, Academic Press: New York. p. 207-230.
- Lundh, T.J.-O., H.L. Petterson, and K.A. Martinsson, Comparative levels of free and conjugated plant estrogens in blood plasma of sheep and cattle fed estrogenic silage. J Agric Food Chem, 1990. 38: p. 1530-1534.
- Setchell, K.D., et al., Dietary estrogens–a probable cause of infertility and liver disease in captive cheetahs. Gastroenterology, 1987. 93(2): p. 225-33.
- Setchell, K.D., N.M. Brown, and E. Lydeking-Olsen, *The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones*. J Nutr, 2002. 132(12): p. 3577-84.
- Rowland, I., et al., *Bioavailability of phyto-oestrogens*. Br J Nutr, 2003. 89 Suppl 1: p. S45-58.
- Rowland, I.R., et al., Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr Cancer, 2000. 36(1): p. 27-32.
- Urpi-Sarda, M., et al., *Tissue distribution of isoflavones in ewes after consumption of red clover silage*. Arch Biochem Biophys, 2008. 476(2): p. 205-10.
- Kurzer, M.S., Hormonal effects of soy in premenopausal women and men. J Nutr, 2002. 132(3): p. 570S-3S.
- Mitchell, J.H., et al., Effect of a phytoestrogen food supplement on reproductive health in normal males. Clin Sci (Lond), 2001. 100(6): p. 613-8.
- Beaton, L.K., et al., Soy protein isolates of varying isoflavone content do not adversely affect semen quality in healthy young men. Fertil Steril, 2009.

- Messina, M., S. Watanabe, and K.D. Setchell, Report on the 8th International Symposium on the Role of Soy in Health Promotion and Chronic Disease Prevention and Treatment. J Nutr, 2009. 139(4): p. 796S-802S.
- Casini, M.L., S. Gerli, and V. Unfer, An infertile couple suffering from oligospermia by partial sperm maturation arrest: can phytoestrogens play a therapeutic role? A case report study. Gynecol Endocrinol, 2006. 22(7): p. 399-401.
- 53. Van Wyk, J.J., et al., *The effects of a soybean product on thyroid function in humans*. Pediatrics, 1959. **24**: p. 752-760.
- 54. Shepard, T.H., et al., *Soybean goiter.* New Engl J Med, 1960. **262**: p. 1099-1103.
- Hydovitz, J.D., Occurrence of goiter in an infant on a soy diet. New England J Medicine, 1960. 262: p. 351-353.
- Divi, R.L. and D.R. Doerge, Inhibition of thyroid peroxidase by dietary flavonoids. Chem Res Toxicol, 1996. 9(1): p. 16-23.
- Divi, R.L., H.C. Chang, and D.R. Doerge, Anti-thyroid isoflavones from soybean: isolation, characterization, and mechanisms of action. Biochem Pharmacol, 1997. 54(10): p. 1087-96.
- Chang, H.C. and D.R. Doerge, *Dietary genistein inactivates rat thyroid peroxidase in vivo without an apparent hypothyroid effect.* Toxicol Appl Pharmacol, 2000. 168(3): p. 244-52.
- Chang, H.C., et al., Mass spectrometric determination of genistein tissue distribution in diet-exposed Sprague-Dawley rats. J Nutr, 2000. 130(8): p. 1963-70.
- Pinchera, A., et al., Thyroid refractiveness in an athyreotic cretin fed soybean formula. N Engl J Med, 1965. 273: p. 83-87.
- Messina, M. and G. Redmond, Effects of soy protein and soybean isoflavones on thyroid function in healthy adults and hypothyroid patients: a review of the relevant literature. Thyroid, 2006. 16(3): p. 249-58.
- Ryan-Borchers, T., et al., Effects of dietary and supplemental forms of isoflavones on thyroid function in healthy postmenopausal women. Topics Clinical Nutr, 2008. 23: p. 13-22.
- Romualdi, D., et al., Is there a role for soy isoflavones in the therapeutic approach to polycystic ovary syndrome? Results from a pilot study. Fertil Steril, 2008. 90(5): p. 1826-33.
- Nahas, E.A., et al., Efficacy and safety of a soy isoflavone extract in postmenopausal women: a randomized, double-blind, and placebo-controlled study. Maturtas, 2007. 58(3): p. 249-58.
- Khaodhiar, L., et al., Daidzein-rich isoflavone aglycones are potentially effective in reducing hot flashes in menopausal women. Menopause, 2008. 15(1): p. 125-32.
- Zhou, Y., et al., The effect of soy food intake on mineral status in premenopausal women. J Womens Health (Larchmt), 2011. 20(5): p. 771-80.
 Bitto, A., et al., Genistein aglycone does not affect thyroid function:
- results from a three-year, randomized, double-blind, placebo-controlled trial. J Clin Endocrinol Metab, 2010. 95(6): p. 3067-72.
- Doerge, D.R. and D.M. Sheehan, *Goitrogenic and estrogenic activity of soy isoflavones*. Environ Health Perspect, 2002. 110 Suppl 3: p. 349-53.
- 69. Fitzpatrick, M., Soy formulas and the effects of isoflavones on the thyroid. N Z Med J, 2000. 113(1103): p. 24-6.
- Bell, D.S. and F. Ovalle, Use of soy protein supplement and resultant need for increased dose of levothyroxine. Endocr Pract, 2001. 7(3): p. 193-4.
- Conrad, S.C., H. Chiu, and B.L. Silverman, Soy formula complicates management of congenital hypothyroidism. Arch Dis Child, 2004. 89(1): p. 37-40.
- Liel, Y., I. Harman-Boehm, and S. Shany, Evidence for a clinically important adverse effect of fiber-enriched diet on the bioavailability of levothyroxine in adult hypothyroid patients. J Clin Endocrinol Metab, 1996. 81(2): p. 857-9.
- Chiu, A.C. and S.I. Sherman, Effects of pharmacological fiber supplements on levothyroxine absorption. Thyroid, 1998. 8(8): p. 667-71.
- Shakir, K.M., et al., Ferrous sulfate-induced increase in requirement for thyroxine in a patient with primary hypothyroidism. South Med J, 1997. 90(6): p. 637-9.
- Liel, Y., A.D. Sperber, and S. Shany, Nonspecific intestinal adsorption of levothyroxine by aluminum hydroxide. Am J Med, 1994. 97(4): p. 363-5.
- Sperber, A.D. and Y. Liel, Evidence for interference with the intestinal absorption of levothyroxine sodium by aluminum hydroxide. Arch Intern Med, 1992. 152(1): p. 183-4.
- Sherman, S.I., E.T. Tielens, and P.W. Ladenson, Sucralfate causes malabsorption of L-thyroxine. Am J Med, 1994. 96(6): p. 531-5.
- Siraj, E.S., M.K. Gupta, and S.S. Reddy, *Raloxifene causing malabsorption of levothyroxine*. Arch Intern Med, 2003. 163(11): p. 1367-70.
- Rosenberg, R., Malabsorption of thyroid hormone with cholestyramine administration. Conn Med, 1994. 58(2): p. 109.
- Harmon, S.M. and C.F. Seifert, Levothyroxine-cholestyramine interaction reemphasized. Ann Intern Med, 1991. 115(8): p. 658-9.
- Zeitler, P. and P. Solberg, Food and levothyroxine administration in infants and children. J Pediatr, 2010. 157(1): p. 13-14.
- Doerge, D. and H. Chang, Inactivation of thyroid peroxidase by soy isoflavones, in vitro and in vivo. J Chromatogr B Analyt Technol Biomed Life Sci, 2002. 777(1-2): p. 269-279.
- Caldwell, K.L., et al., *lodine status of the U.S. population, National Health and Nutrition Examination Survey 2003-2004.* Thyroid, 2008. 18(11): p. 1207-14.
- Villar, H.C., et al., *Thyroid hormone replacement for subclinical hypothyroidism*. Cochrane Database Syst Rev, 2007(3): p. CD003419.
- Aoki, Y., et al., Serum TSH and total T4 in the United States population and their association with participant characteristics: National Health and Nutrition Examination Survey (NHANES 1999-2002). Thyroid, 2007. 17(12): p. 1211-23.
- Imaizumi, M., et al., Risk for progression to overt hypothyroidism in an elderly Japanese population with subclinical hypothyroidism. Thyroid, 2011. 21(11): p. 1177-82.
- Kasagi, K., et al., Thyroid function in Japanese adults as assessed by a general health checkup system in relation with thyroid-related antibodies and other clinical parameters. Thyroid, 2009. 19(9): p. 937-44.
- Bouker, K.B. and L. Hilakivi-Clarke, *Genistein: Does it Prevent or Promote Breast Cancer*? Environ Health Perspect, 2000. **108**(8): p. 701-708.
- Messina, M.J. and C.L. Loprinzi, Soy for breast cancer survivors: a critical review of the literature. J Nutr, 2001. 131(11): p. 3095S-108S.
- Affenito, S.G. and J. Kerstetter, Position of the American Dietetic Association and Dietitians of Canada: women's health and nutrition. J Am Diet Assoc, 1999. 99(6): p. 738-51.
- American College of Obstetricians and Gynecologists, Use of botanicals for management of menopausal symptoms. ACOG Practice Bulletin, 2001. 28(June): p. 1-11.

- American Cancer Society Workshop on Nutrition and Physical Activity for Cancer Survivors, Nutrition during and after cancer treatment: a guide for informed choices by cancer survivors. CA Cancer J Clin, 2001. 51: p. 153-187.
- Ju, Y.H., et al., Physiological concentrations of dietary genistein dose-dependently stimulate growth of estrogen-dependent human breast cancer (MCF-7) tumors implanted in athymic nude mice. Journal of Nutrition, 2001. 131(11): p. 2957-62.
- Allred, C.D., et al., Dietary genistin stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein. Carcinogenesis, 2001. 22(10): p. 1667-73.
- Kang, X., S. Jin, and Q. Zhang, Antitumor and antiangiogenic activity of soy phytoestrogen on 7,12-dimethylbenz[alpha]anthracene-induced mammary tumors following ovariectomy in Sprague-Dawley rats. J Food Sci, 2009. 74(7): p. H237-42.
- Mishra, R., et al., Glycine soya diet synergistically enhances the suppressive effect of tamoxifen and inhibits tamoxifen-promoted hepatocarcinogenesis in 7,12-dimethylbenz[alpha]anthracene-induced rat mammary tumor model. Food Chem Toxicol, 2010.
- Onoda, A., et al., Effects of S-equol and natural S-equol supplement (SE5-OH) on the growth of MCF-7 in vitro and as tumors implanted into ovariectomized athymic mice. Food Chem Toxicol, 2011.
- Allred, C.D., et al., Soy processing influences growth of estrogen-dependent breast cancer tumors. Carcinogenesis, 2004. 25(9): p. 1649-57.
- Sartippour, M.R., et al., A pilot clinical study of short-term isoflavone supplements in breast cancer patients. Nutr Cancer, 2004. 49(1): p. 59-65.
- Palomares, M.R., et al., Effect of soy isoflavones on breast proliferation in postmenopausal breast cancer survivors. Breast Cancer Res Treatment, 2004. 88 (Suppl 1): p. 4002 (Abstract).
- Hargreaves, D.F., et al., Two-week dietary soy supplementation has an estrogenic effect on normal premenopausal breast. J Clin Endocrinol Metab, 1999. 84(11): p. 4017-24.
- Khan, S.A., et al., A phase IIb trial of soy isoflavone supplementation to decrease breast cell proliferation in high risk women. San Antonio Breast Cancer Symposium (Abstract 1049), 2009.
- Maskarinec, G., A.E. Williams, and L. Carlin, Mammographic densities in a one-year isoflavone intervention. Eur J Cancer Prev, 2003. 12(2): p. 165-9.
 Maskarinec, G. et al. Effects of a 2-year randomized sov intervention on
- Maskarinec, G., et al., Effects of a 2-year randomized soy intervention on sex hormone levels in premenopausal women. Cancer Epidemiol Biomarkers Prev, 2004. 13(11): p. 1736-44.
- Atkinson, C., et al., Red-clover-derived isoflavones and mammographic breast density: a double-blind, randomized, placebo-controlled trial. Breast Cancer Res, 2004. 6(3): p. R170-9.
- Messina, M., W. McCaskill-Stevens, and J.W. Lampe, Addressing the soy and breast cancer relationship: review, commentary, and workshop proceedings. J Natl Cancer Inst, 2006. 98(18): p. 1275-84.
- 107. Writing Group for the Women's Health Initiative Investigators, Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA, 2002. 288(3): p. 321-33.
- Boyd, N.F., et al., Mammographic density as a marker of susceptibility to breast cancer: a hypothesis. IARC Sci Publ, 2001. 154: p. 163-9.
- Boyd, N.F., et al., Mammographic density as a surrogate marker for the effects of hormone therapy on risk of breast cancer. Cancer Epidemiol Biomarkers Prev, 2006. 15(5): p. 961-6.
- Johnson, J.M. and P.M. Walker, *Zinc and iron utilization in young women consuming a beef-based diet.* J Am Diet Assoc, 1992. 92(12): p. 1474-8.
 Thompson, D.B. and J.W.J. Erdman, *Phytic acid determination in soybeans.* J Food Sci, 1982. 47: p. 513-517.
- Urbano, G., et al., The role of phytic acid in legumes: antinutrient or beneficial function? J Physiol Biochem, 2000. 56(3): p. 283-94.
- Sandstrom, B. and A. Cederblad, Zinc absorption from composite meals. II. Influence of the main protein source. Am J Clin Nutr, 1980. 33(8): p. 1778-83.
- Sandstrom, B., B. Kivisto, and A. Cederblad, Absorption of zinc from soy protein meals in humans. J Nutr, 1987. 117(2): p. 321-7.
- Davidsson, L., et al., Zinc absorption in adult humans: the effect of protein sources added to liquid test meals. Br J Nutr, 1996. **75**(4): p. 607-13.
 Lonnerdal, B., et al., The effect of individual components of soy formula and cows'
- milk formula and zinc bioavailability. Am J Clin Nutr, 1984. 40(5): p. 1064-70.
 de Portela, M.L. and A.R. Weisstaub, *Basal urinary zinc/creatinine ratio as an*
- indicator of dietary zinc intake in healthy adult women.
 J Am Coll Nutr, 2000. 19(3): p. 413-7.
 Hunt, J.R., Moving toward a plant-based diet; are iron and zinc at risk?
- Hunt, J.R., Moving toward a plant-based diet: are iron and zinc at risk? Nutr Rev, 2002. 60(5 Pt 1): p. 127-34.
- Messina, V., V. Melina, and A.R. Mangels, *A new food guide for North American vegetarians*. Can J Diet Pract Res, 2003. 64(2): p. 82-6.
 Medica de Malina, and A.R. Mangels, *A new food guide for North American vegetarians*.
- Messina, V., V. Melina, and A.R. Mangels, A new food guide for North American vegetarians. J Am Diet Assoc, 2003. 103(6): p. 771-5.
 Mangels, A.R. and V. Messina, Considerations in planning vegan diets: infants.
- Mangels, A.R. and V. Messina, *Considerations in planning vegan diets: infants.* J Am Diet Assoc, 2001. 101(6): p. 670-7.

- 122. Messina, V. and A.R. Mangels, Considerations in planning vegan diets: children. J Am Diet Assoc, 2001. **101**(6): p. 661-9.
- Messina, V.K. and K.I. Burke, Position of the American Dietetic Association: vegetarian diets. J Am Diet Assoc, 1997. 97(11): p. 1317-21.
 Menter Hilardhei L.K. et al. Characteristic and the second sec
- Karr-Lilienthal, L.K., et al., Chemical composition and protein quality comparisons of soybeans and soybean meals from five leading soybean-producing countries. J Agric Food Chem, 2004. 52(20): p. 6193-9.
 Murray-Kolb, L.E., et al., Women with low iron stores absorb iron from soybea
- 125. Murray-Kolb, L.E., et al., Women with low iron stores absorb iron from soybeans. Am J Clin Nutr, 2003. 77(1): p. 180-4.
- Lonnerdal, B., et al., Iron absorption from soybean ferritin in nonanemic women. Am J Clin Nutr, 2006. 83(1): p. 103-7.
 Sandberg, A.S., Bioavailability of minerals in legumes.
- Sandberg, A.S., *Bioavailability of minerals in legumes*. Br J Nutr, 2002. 88 Suppl 3: p. S281-5.
 Heaney, B.P., C.M. Weaver, and M.L. Fitzsimmons. Sci.
- Heaney, R.P., C.M. Weaver, and M.L. Fitzsimmons, Soybean phytate content: effect on calcium absorption. Am J Clin Nutr, 1991. 53(3): p. 745-7.
 Weaver, C.M., et al., Bioavailability of calcium from tofu vs.
- Weaver, C.M., et al., *Bioavailability of calcium from tofu vs.* milk in premenopausal women. J Food Sci, 2002. 68: p. 3144-3147.
- Zhao, Y., B.R. Martin, and C.M. Weaver, *Calcium bioavailability of calcium carbonate fortified soymilk is equivalent to cow's milk in young women.* J Nutr, 2005. 135(10): p. 2379-82.
- Tang, A.L., et al., Calcium absorption in Australian osteopenic post-menopausal women: an acute comparative study of fortified soymilk to cows' milk. Asia Pac J Clin Nutr, 2010. 19(2): p. 243-9.
- Heaney, R.P., et al., Bioavailability of the calcium in fortified soy imitation milk, with some observations on method. Am J Clin Nutr, 2000. 71(5): p. 1166-9.
- Heaney, R.P. and K. Rafferty, *The settling problem in calcium-fortified soybean drinks*. J Am Diet Assoc, 2006. **106**(11): p. 1753; author reply 1755.
- Food and Drug Administration (FDA). Food Allergen Labeling and Consumer Protection (FALCP) Act of 2004, h.w.c.f.g.a.a.p., http:// www.cfsan.fda.gov/~acrobat/alrgact.pdf.
- Food and Drug Administration (FDA), Food Allergen Labeling and Consumer Protection (FALCP) Act of 2004. http://www.cfsan.fda.gov/~acrobat/alrgact.pdf, 2004.
- Vierk, K.A., et al., Prevalence of self-reported food allergy in American adults and use of food labels. J Allergy Clin Immunol, 2007. 119(6): p. 1504-10.
- 137. Savage, J.H., et al., *The natural history of soy allergy*. J Allergy Clin Immunol, 2010. **125**(3): p. 683-686.
- Bhatia, J. and F. Greer, Use of soy protein-based formulas in infant feeding. Pediatrics, 2008. 121(5): p. 1062-8.
- Sladkevicius, E., et al., Resource implications and budget impact of managing cow milk allergy in the UK. J Med Econ, 2010. 13(1): p. 119-28.
- Dias, A., A. Santos, and J.A. Pinheiro, *Persistence of cow's milk allergy beyond two years of age*. Allergol Immunopathol (Madr), 2010. 38(1): p. 8-12.
- Gilchrist, J.M., et al., Ultrasonographic Patterns of Reproductive Organs in Infants Fed Soy Formula: Comparisons to Infants Fed Breast Milk and Milk Formula. J Pediatr, 2009.
- Li, J., et al., Cortical responses to speech sounds in 3- and 6-month-old infants fed breast milk, milk formula, or soy formula. Dev Neuropsychol, 2010. 35(6): p. 762-84.
- Pivik, R.T., A. Andres, and T.M. Badger, Diet and gender influences on processing and discrimination of speech sounds in 3- and 6-month-old infants: a developmental ERP study. Dev Sci, 2011. 14(4): p. 700-12.
- Pivik, R.T., A. Andres, and T.M. Badger, Effects of diet on early stage cortical perception and discrimination of syllables differing in voice-onset time: A longitudinal ERP study in 3 and 6month old infants. Brain Lang, 2011.
- 145. Messina, M., C. Nagata, and A.H. Wu, *Estimated Asian adult soy protein and isoflavone intakes*. Nutr Cancer, 2006. **55**(1).
- Rand, W.M., P.L. Pellett, and V.R. Young, *Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults.* Am J Clin Nutr, 2003. 77(1): p. 109-27.
- Hughes, G.J., et al., Protein digestibility-corrected amino acid scores (PDCAAS) for soy protein isolates and concentrate: Criteria for evaluation. J Agric Food Chem, 2011. 59(23): p. 12707-12.
- Murphy, P.A., et al., Isoflavones in retail and institutional soy foods. J Agric Food Chem, 1999. 47(7): p. 2697-704.
- Kim, J., et al., Fermented and non-fermented soy food consumption and gastric cancer in Japanese and Korean populations: A meta-analysis of observational studies. Cancer Sci, 2010.
- Yang, W.S., et al., Soy intake is associated with lower lung cancer risk: results from a meta-analysis of epidemiologic studies. Am J Clin Nutr, 2011. 94(6): p. 1575-83.
- 151. Shurtleff, *W., Database search of tofu and Japan before 1900,* 2003, The Soyfoods Center: LaFayette.
- 152. Shurtleff, *W., Database search of tofu and China before 1900,* 2003, The Soyfoods Center: Lafayette.

The 70 farmer-directors of USB oversee the investments of the soy checkoff to maximize profit opportunities for all U.S. soybean farmers. These volunteers invest and leverage checkoff funds to increase the value of U.S. soy meal and oil, to ensure U.S. soybean farmers and their customers have the freedom and infrastructure to operate, and to meet the needs of U.S. soy's customers. As stipulated in the federal Soybean Promotion, Research and Consumer Information Act, the USDA Agricultural Marketing Service has oversight responsibilities for USB and the soy checkoff. For more information, please visit SoyConnection.com.