The Roadmap Series

Mapping The Perimenopausal Metabolic Switch

Tanya Borowski Head of Education

menopause transition

Late reproductive Cycles regular/ slightly irregular Normal to variable FSH Ovarian reserve low

Early peri-meno; cycles variable >7d late; FSH variable; ovarian reserve low Late perimenopause Cycles >60 days FSH high Ovarian reserve low 12m since LMP=menopause Menses have ended FSH high Ovarian reserve undetectable

simplified timeline of the transition into menopause adapted from the *summary data of the Staging of Reproductive Aging Workshop* (https://www.ncbi.nlm.nih.gov/pmc/art-cles/PMC3580996/)

menopause transition

Ovarian hormones through the lifespan

menopause transition -Perimenopause-

Metabolic Reserve

- > Cell membrane integrity & receptor sensitivity
- Antioxidant Capacity
- Micronutrient reserves
- Mitochondrial capacity & health
- Digestive system and barriers
- > Immune system
- Neuro-Endocrine systems
- Liver Detoxification
- Nutrigenomics

Stressors & Metabolic Reserve

menopause transition -Perimenopause-

The	• Heterogeneous patterns of E2 decline and F5H rise • Menstrual cycle irregularity • Between-woman heterogeneity is related to factors such as ra	ce/ethnicity
Changes in Symptoms and Mental Health	↑ Depression and Anxiety 7re	nsient
	↓ Cognitive Performance (After Menopause)	
	 ↑ Vasomotor Symptoms (Hot Flashes and Night Sweats) Tra ↑ Sleep Complaints 	nsient
	↑ Cognitive Difficulties	nsient
	↑ Vaginal Dryness	
	\uparrow Sexual Pain \downarrow Sexual Desire	
Changes in Physiological System: and Functions	↓ Physical Function Performance	nsient
	\uparrow Lipids $~\uparrow$ Vascular Remodeling $~\uparrow$ Metabolic Syndrome	
	↑ Body Mass Index ↑ Blood Pressure	
	\downarrow Bone Mineral Density	
	↓ Lean Mass ↑ Fat Mass	
Windo	+ w of Opportunity Adopt health Design early preventiv	Awarenes behavior e practice

Study of Women's Health Across the Nation

Menopause, high-risk stage

Metabolic dysfunction & Insulin Resistance Sarcopenic Obesity Chronic Inflammation

So whats going on Why do these occur

Diva Oestrogen – except when unopposed

Oestrogen is our beauty & vitality hormone:

- Creates an hourglass shape
- Promotes insulin sensitivity
- Supports healthy muscle mass- essential for metabolism
- o Maintains metabolic rate
- o Acts as a natural appetite suppressant

But, when high and fluctuating:

- Climacteric symptoms
- Sleep disturbances and migraines
- Heavier periods and pain
- Weight gain
- Mood disturbances

Main factors contributing menopausal body composition changes

Genetic Factors

- Genetic predisposition
- Ethnicity
- Epigenetic changes (Lifecode Metabolics Panel)

Hormonal Factors

- Rapid hypoestrogenaemia
- Relative hyperandrogenemia
- Low SHBG levels

Stressors

- Poor nutrition/alcohol
- Low physical activity
- Medications
- Diseases
- And on.....

Increase in body weight

Increase and redistribution of fat mass (from gynoid to abdominal obesity)

Decrease in fat-free mass

Common challenges- Soultions

Sarcopenia

"It is known that the decline of oestrogen levels and receptors contributes to the loss of muscle function and the development of sarcopenia in postmenopausal women".

Buckinx and Aubertin-Leheudre, 2022

Sarcopenia

International Journal of Women's Health

Open Access Full Text Article

REVIEW

Dovepress

Sarcopenia in Menopausal Women: Current Perspectives

Fanny Buckinx^{1,2}, Mylène Aubertin-Leheudre^{1,2}

'During the menopausal transition, lean body mass decreased by 0.5% (annually) while fat mass increased by 1.7% per year... being postmenopausal is associated with a higher risk of presenting with sarcopenia.'

Sarcopenia = Osteoporosis of muscle

Sarcopenia obesity

https://doi.org/10.3389/fendo.2020.00332 - sarcopenic obesity

Endocrinology of the Heart in Health and Disease. DOI: http://dx.doi.org/10.1016/B978-0-12-803111-7.00007-5

Muscle Activation & Immuno-metabolic Modulation

Muscle-Organ Crosstalk: Focus on Immunometabolism

Immunometabolism. Front. Physiol. 11:567881.

Muscle – Myokines – Brain Functionality

"Physical activity enhances circulating levels of myokines in the bloodstream, affects the brain regulating neuronal proliferation and differentiation, plasticity, memory, and learning."

HMB beta-hydroxy beta-methylbutyrate

It has been estimated that approximately 2–10% of leucine is oxidised into HMB.

HMB beta-hydroxy beta-methylbutyrate

- Supercharges muscle gains, with
 or without exercise
- Improves lean body mass
- Mitigates the attack on muscle, even as we sleep

Potential in sarcopenia

frontiers

Effect of β-hydroxy-β-methylbutyrate (HMB) on the Muscle Strength in the Elderly Population: A Meta-Analysis

Results: A total of 9 randomized controlled trials (RCT) studies were included in the study, which comprised 896 subjects. The overall impact on muscle strength-related indicators (SMD = 0.41; 95% CI: 0.28, 0.54); p < 0.00001) was statistically significant. Conclusion: Supplementation of HMB and preparations containing HMB ingredients aid in increasing muscle strength in the elderly population.

HMB combined with exercise

The purpose of this study was to determine whether HMB would similarly benefit 70-y-old adults undergoing a 5 d/wk exercise program. Thirty-one men (n = 15) and women (n = 16) (70 ± 1 y) were randomly assigned in a double-blind study to receive either capsules containing a <u>placebo</u> or Ca-HMB (3 g/d) for the 8-wk study

The Journal of Nutrition Volume 131, Issue 7, July 2001, Pages 2049-2052

Body Composition in 70-Year-Old Adults Responds to Dietary β -Hydroxy- β -Methylbutyrate Similarly to That of Young Adults 1

Results

Vukovich Matthew D. 🝳 🖂 , Stubbs Nancy B. *, Bohlken Ruth M. *

Fat-free mass gain (P=0.08) and

percentage of body fat loss (P = 0.05)

Menopause: a metabolic transition

Menopause: a cardiometabolic transition

Published: May 05, 2022 • DOI: https://doi.org/10.1016/S2213-8587(22)00076-6 • 🦲 Check for updates

NOTE: Few studies of women in *early perimenopause* have been conducted due to the inherent difficulty in categorizing women in this earlier stage. As a result, the cardiometabolic changes that occur during *early perimenopause* have yet to be fully elucidated.

'LATE' PERIMENOPAUSE

Hormones*

, E_2^* and AMH

FSH *

Body Composition

Fat mass (abdominal fat)

Fat-free (lean) mass

Energy Intake & Expenditure

24-h, Sleep, & Physical Activity EE Resting EE (?) Fat oxidation Energy Intake

Cardiovascular Risk Factors

Dyslipidemia (mostly within 1-year of FMP) C-IMT, Aortic PWV, and vascular remodeling Endothelial function (FMD) and cardiac health

Insulin resistance

Sleep disturbances

Myo-inositol

Inositols in Midlife

Kalra, Sanjay; Kalra, Bharti¹

Author Information ⊗

Journal of Mid-life Health 9(1):p 36-38, Jan-Mar 2018. | DOI: 10.4103/jmh.JMH_52_16

This review describes the mechanistic, animal, and clinical data related to the use of inositols in midlife. It covers studies related to the mechanism of action of myo-inositol and D-chiro-inositol and randomized controlled trials conducted in postmenopausal women with metabolic syndrome and supports these data with the results of *in vitro* and animal studies on inositol in nephropathy and other related conditions. Recent advances related to biochemistry, pharmaceutical science, and genetics are discussed. It concludes that inositols have a potential role to play in maintaining metabolic health in postmenopausal women.

Myo-inositol

Inostiols are small molecules similar to sugar

- myo-inositol is the most abundant isomer makes up 95% in the body
- myo-inositol is an intracellular <u>2nd messenger</u> for hormones, especially insulin , FSH and TSH
- Being a 2nd messenger for insulin facilitates a normal response to insulin and thereby improving insulin sensitivity

Myo-inositol for insulin resistance, metabolic syndrome, polycystic ovary syndrome and gestational diabetes <u>https://openheart.bmj.com/content/9/1...</u>

amrita

Inositol

Combination of inositol and alpha lipoic acid in metabolic syndrome-affected women: a randomized placebo-controlled trial

"A significant HOMA-IR reduction of more than 20% was evidenced in 66.7% (*P* <0.0001) of patients, associated with a serum insulin level decrease in 89.3% (*P* <0.0000). A decrease in triglycerides was evidenced in 43.2% of patients consuming the supplement (*P* <0.0001). An increase in HDL cholesterol (48.6%) was found in the group consuming inositol with respect to the placebo group. A reduction in waist circumference and waist-hip ratio was found in the treated group with respect to the placebo group".

Myo-inositol 2g BD- 6mths

Significant results observed in:

- •Reduction of more than 20% of the HOMA-IR index
- •Reduction of triglycerides
- •Improvement of HDL-C levels
- •Reduction of anthropometric features such as BMI, WHR

Frontiers | Frontiers in Nutrition

TYPE Original Research PUBLISHED 07 February 2023 DOI 10.3389/fnut.2023.1092544

Myo-inositol supplementation improves cardiometabolic factors, anthropometric measures, and liver function in obese patients with non-alcoholic fatty liver disease

Sara Arefhosseini¹, Neda Roshanravan², Helda Tutunchi³, Somayyeh Rostami¹, Manuchehr Khoshbaten⁴ and Mehrangiz Ebrahimi-Mameghani⁵*

- Anthropometic measures decreased significantly
- Weight reduction (P=0.049)
- Systolic blood pressure (P=0.006)
- Reductions in serum fasting insulin (p=0.008)
- Reductions in HOMA-IR (P=0.046)
- Significant improvements in lipid profile, liver enzymes, AST, ALT and serum ferritin

Myo-Inositol Thyroid & BMI

Specifically, myo-inositol may help with weight loss in several ways:

•By supporting and balancing thyroid function

- •By Improving sensitivity to thyroid hormone
- •By reducing insulin resistance and lowering blood sugar levels
- •By reducing the increases in insulin after glucose intake

Body Mass Index

Obesity Science and Practice

REVIEW 🔂 Open Access 🛛 💿 🛈

Inositol supplementation and body mass index: A systematic review and meta-analysis of randomized clinical trials

Meysam Zarezadeh 🔀, Azadeh Dehghani, Amir Hossein Faghfouri, Nima Radkhah, Mohammad Naemi Kermanshahi, Fatemeh Hamedi Kalajahi ... See all authors \vee

First published: 10 October 2021 | https://doi.org/10.1002/osp4.569 | Citations: 3

Thyroid Dysfunction

frontiers in Endocrinology REVIEW published: 10 May 2021 doi: 10.3389/fendo.2021.662582

The Role of Inositol in Thyroid Physiology and in Subclinical Hypothyroidism Management

Salvatore Benvenga^{1,2}, Maurizio Nordio^{2,3}, Antonio Simone Laganà^{2,4} and Vittorio Unfer^{2,5*}

The Perimenopause Essentials

Magnesium
 Glycine
 Taurine

Resilience & Perimenopause

Nutraceuticals to <u>support</u> Stress

- > Rhodiola
- Holy basil
- Panax ginseng
- > Ashwagandha
- Relora (Magnolia & phellodendron)
- ➤ L-Theanine
- Phosphatidylserine

BUT..... Nothing without METABOLIC RESERVE And resilience Optimal Health

Magnesium

- ✓ Improves metabolic markers
- $\checkmark\,$ Fuels mitochondria- ATP production
- Improves glucose homeostasis and insulin sensitivity
- $\checkmark\,$ Supports oestrogen detoxification
- ✓ Supports thyroid health
- $\checkmark\,$ Stabilises the HPA axis
- \checkmark Increases vitamin D uptake
- $\checkmark\,$ Calms the nervous system

300-600mg glycinate daily

Magnesium Research

Effect of magnesium supplementation on women's health and well-being Debora Porri^{a,*}, Hans K. Biesalski^b, Antonio Limitone^c, Laura Bertuzzo^c, Hellas Cena^{a,d} ^a Laboratory of Dietetics and Clinical Nutrition. Department of Public Health. Experimental and Forensic Medicine. University of Pavia. 27100 Pavia. Italy

ELSEVIER

Magnesium Research

Taurine

- Promotes oestrogen detoxification
 Supports mitochondrial function;
 inhibits ROS
- \checkmark Improves insulin sensitivity
- Anti-inflammatory, quenches oxidative stress
- ✓ Counteracts bone mineral density
 loss

Taurine Research

Amino Acids https://doi.org/10.1007/s00726-020-02859-8

ORIGINAL ARTICLE

The effects of taurine supplementation on glycemic control and serum lipid profile in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial

 ${\sf Vahid\ Maleki^{1,2}} \cdot {\sf Mohammad\ Alizadeh^3} \cdot {\sf Fatemeh\ Esmaeili^2} \cdot {\sf Reza\ Mahdavi^3}$

Received: 6 October 2019 / Accepted: 18 May 2020 © Springer-Verlag GmbH Austria, part of Springer Nature 2020

After 8 weeks:

- ✓ Fasting blood sugar (p=0.01)
- ✓ Insulin (p=0.01)
- ✓ HOMA-IR (p=0.003)
- ✓ Total cholesterol (p=0.013)
- ✓ LDL-C (p=0.041)

Taurine Research

Taurine is a <u>"calming"</u> <u>neurotransmitter similar in structure</u> <u>to GABA (gamma-aminobutyric acid)</u> & Glycine — the brain's other two calming neurotransmitters.

By interacting with GABA receptors, taurine helps to support beneficial "GABAergic" tone or overall GABA activity, thereby improving sleep, preventing migraines & relieving perimenopausal mood symptoms.

Glycine

- ✓ Induces deeper REM restorative sleep
- $\checkmark\,$ Deficiency is associated with obesity and NAFLD
- Lowers markers of oxidative stress
 Improves liver detoxification- glutathione synthesis
- $\checkmark\,$ Calms the brain by inhibiting glutamate
- May control food intake

Glycine Research

Review

Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases

Anaïs Alves¹, Arthur Bassot¹, Anne-Laure Bulteau², Luciano Pirola¹ and Béatrice Morio^{1,3,*}

The study also suggested that decreased plasma glycine concentration was associated with hepatic insulin resistance. This finding is supported by a recent meta-analysis, which showed that plasma glycine concentration is consistently lower in patients with obesity and T2DM compared to healthy individuals (-11 and -15%, respectively) [72]. Another meta-analysis showed that plasma glycine concentration has a very significant inverse association with the risk of developing T2DM [8]. In addition

Gut Dysbiois –Insulin Resistance & Bone loss

Research

Contents lists available at ScienceDirect

Metabolism Open

journal homepage: www.sciencedirect.com/journal/metabolism-open

ORIGINAL RESEARCH article

Front. Microbiol., 12 January 2022 Sec. Microorganisms in Vertebrate Digestive Systems Volume 12 - 2021 | https://doi.org/10.3389/fmicb.2021.752512

Metabolism OPEN

Editors-in-Chief: Maria A. Dalamaga Junli Liu (Shanghai

Effect of 8 Weeks milk thistle powder (silymarin extract) supplementation on fatty liver disease in patients candidates for bariatric surgery

Seyed Hadi Mirhashemi^a, Azadeh Hakakzadeh^{b,c}, Farbod Emami Yeganeh^a, Bahador Oshidari^a, Seyed Parviz Rezaee^{a,d,*}

^a Denartment of the General Survery Loohman Hakim Hosnital Shahid Rehechti University of Medical Sciences Tehran Ira

Berberine Relieves Metabolic Syndrome in Mice by Inhibiting Liver Inflammation Caused by a High-Fat Diet and Potential Association With Gut Microbiota

Impact Systemic Inflammation in Perimenopause

Eating for body type with Mediterranean principles

Eating for body type with Mediterranean principles

References

Slide 23 Int J Womens Health. 2022; 14: 805–819.Published online 2022 Jun 23. doi: 10.2147/IJWH.S340537

Slide 25 Bauer, J.M., Cruz-Jentoft, A.J., Fielding, R.A. *et al.* Is There Enough Evidence for Osteosarcopenic Obesity as a Distinct Entity? A Critical Literature Review. *Calcif Tissue Int* **105**, 109–124 (2019). <u>https://doi.org/10.1007/s00223-019-00561-w</u>

Slide 20 Front. Nutr., 13 July 2022Sec. Clinical NutritionVolume 9 - 2022 | https://doi.org/10.3389/fnut.2022.914866

Slide 26 https://doi.org/10.1186/1745-6215-14-273 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5879846/

 Slide 30 https://doi.org/10.3390/ijms24010223

 https://doi.org/10.3390/ijms20061351

 https://www.sciencedirect.com/science/article/pii/S0891584922000752

 https://doi.org/10.7556/jaoa.2018.037

Slide 32 https://www.e-enm.org/upload/pdf/enm-2022-1443.pdf

Slide 34 https://www.sciencedirect.com/science/article/pii/S0022316622010161#:~:text=The%20present%20study%20revealed%20that,with%20Alzhe imer%20disease%20(52). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7982985/

