

Technical Data Sheet For Palladium Replenisher Solution

Direction Of Usage:-

- Palladium replenisher solution is highly saturated palladium solution.
- It is required to be diluted with demineralized water only, to prepare a bath for palladium dip plating solution.
- 10 ml of replenisher solution should be diluted with 990 ml of demineralized water. This gives palladium dip plating bath of metal concentration 1 g / 1ltr.
- 20 ml of replenisher solution should be diluted with 990 ml of demineralized water. This gives palladium dip plating bath of metal concentration 2 g / 1ltr.
- 10 ml of replenisher solution should be diluted with 90 ml of demineralized water. This gives palladium pen plating bath of metal concentration 1 g / 100 ml.
- 20 ml of replenisher solution should be diluted with 80 ml of demineralized water. This gives palladium pen plating bath of metal concentration 2 g / 100 ml.

Technical Data Sheet:-

<u>Parameters</u>	<u>Values</u>
Metal Concentration	10 g / 100 ml
Product's pH	Neutral to slight alkaline (7 - 7.8)
Solution form	Liquid
Solution form	Ready-to-use
Plating solution colour	Yellow/Green
Storage Time	2 years
Volume	100 ml
Purity (%)	99.9
Solution appearance	Shiny
Plating colour	White
Voltage [V]	3 volts – 4 volts
Working temperature [°C]	Ambient room temperature
Exposure time (sec)	Immediate (8 – 10) seconds
Anode	Platonized Titanium
L*	84,2
a*	0,4
b*	4,1