
18 easy to follow

physical computing

activities for the

ThinkerShield.

Get on with it!

ThinkerShield for Arduino quick-start guide

Peter M
ahony / Jam

es O
liver

GET.(ON).WITH.IT

Acknowledgements
Making and documenting something like the ThinkerShield requires input from lots of
clever people — probably too many to thank. We would however like to acknowledge some
key individuals who made major contributions to the project: John Hirsch, Arturro Rivillo,
Robbie Mudrazija, Joy Suliman, Samuel Bruce, Mark Scarcella, Curtis Black, Lucy McGinley,
Fil Bartkoviak and Craig Browne. Thank you guys! Thanks also to the countless young
enthusiastic participants who helped us test the product in our Thinkspace workshops.

We would also like to acknowledge the creative electronics expertise and support provided by
the team over at Freetronics: Jonathan Oxer, Marc Alexander and Angus Gratton.

While care has been taken in the preparation of this book, the MAAS and the authors assume no liability for
errors or omissions, or for damages or loss resulting from the use of the information contained in its contents. In
addition no responsibility is taken for any information or services which may appear on any linked websites.

You may reproduce this document for your personal and educational use. You may also reproduce and share
your projects and code that include information contained in this book provided that you acknowledge this
book as the source. You may not however imply that the MAAS endorses you or your use of the material without
expressed written permission.

The Museum of Applied Arts and Sciences is an executive agency of the NSW Government.

©2015-2016 Copyright Museum of Applied Arts and Sciences. ‘Arduino’ is a brand of Arduino LLC.

Contents

Introduction 5

Get.Connected. 6

What’s.On.Board?. 9

In.A.Blink. 10

What’s in an Arduino program?. . . . 12

Getting.Flashy 14

Even.Flashier. 16

Pot.Basics. 18

A.Light.Dimmer. 20

Decode the light dimmer code. . . . 22

POT.LED.Bouncer. 24

LDR.Basics. 26

LDR.Night.Light 28

Push.Button.Basics. 30

Get.A.Toggle.On. 32

Buzzer.Basics. 34

Pitch.Changer. 36

Play.A.Song. 38

Electronic.Dice. 40

Buzzing.Light.Meter. 44

LED.Magic.Sign. 48

Connect.A.LED. 52

Traffic.Lights. 54

Digital.Spoon.Piano 56

What.Next?. 60

3

All you need:*

ThinkerShield
board
A quick-start board made
up of a unique blend of
on-board components
to make it easy to start
doing computer controlled
activities. It can also be
expanded using standard
Arduino compatible
components.

Personal
computer
running Arduino
software
Arduino software is free to
download and use from:

www.arduino.cc

Arduino board
Such as:

•	 Arduino Uno

•	 Freetronics Eleven

•	 Genuino Uno

•	 or any Arduino
compatible board that
has a standard Arduino
UNO header layout.

USB cable
To connect your Arduino
board to your computer.
This provides power to the
board and allows program
upload.

*Well, almost! You will need a few other components for the Let’s.Get.Beyond.It projects:
3 LEDs (red, green, yellow) , 3 resistors (220 ohm) and 9 wires with alligator clips.
Get’em from any electronics shop for just a few dollars.

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

4

The ThinkerShield for Arduino is a learn-by-making product by
Thinkspace at the Museum of Applied Arts and Sciences in
Sydney, Australia.

At Thinkspace we love learning-by-making. We think everybody should be
able to dive in and just start playing and learning right away.

The Arduino board and programming language is a worldwide
phenomenon bringing the exciting world of electronics and computer
control to anyone with a computer and a USB cable.

So, together with the clever folks at Freetronics, we created the
ThinkerShield for Arduino. The ThinkerShield makes it easy for you, your
family, your schoolmates and friends to start programming and controlling
things with your computer in minutes! No need for any wiring or soldering
or program knowledge.

Even if you have never seen a computer program before, we guarantee
you will be making things flash, buzz, beep and respond in no time.

Then, when you are ready to move on to bigger things, the ThinkerShield
has 8 built‑in external connectors that make it easy for you to connect all

manner of devices like switches, lights, motors and sensors.

So, don’t just watch what’s going on in the world of electronics and
computing. Take a step to start understanding it. Grab your ThinkerShield
and get.on.with.it!

IntroductionDon’t spend too long

on this page. Just grab

your ThinkerShield and

Arduino and let’s

get on with it!

5

Get.Connected

Make sure everything is
aligned, otherwise you may
bend the pins or the sockets.

1. Install Arduino
Installing the Arduino software for
your computer is usually pretty
straightforward.

Just go to the Arduino website and
follow the links to the downloads
page. Select the latest version for
your computer (Windows, Mac
or Linux).

www.arduino.cc
The site covers everything you
need to get up and running and to
troubleshoot any problems you
may have.

2. Install drivers
Depending on your computer and
operating system, you may need
to install a driver for your Arduino
board. Again, the best advice we can
give you is to follow the steps set
out on the Arduino site. Just search
‘install drivers’ or go straight to:

www.arduino.cc/en/
Guide/Howto
Of course, if you are using an
Arduino compatible board
you should install the drivers
recommended by the board’s
manufacturer.

3. Connect your
ThinkerShield to your
Arduino and computer
Carefully align all your
ThinkerShield’s leg pins with the
sockets on your Arduino and
press them together.

6

http://www.arduino.cc/en/Guide/Howto
http://www.arduino.cc/en/Guide/Howto

If your
ThinkerShield is
getting power
from the
Arduino, this
blue LED will
stay on.

Once your board is connected, both the
serial port and board selections can be
made from the Arduino ‘Tools’ menu.

Connect your Arduino
to your computer using
the appropriate USB
connector such as a USB
B-Type cable or micro
USB cable (as per your
board manufacturer’s
specifications).

4. Select the board
and serial port
The Arduino software
needs to know which
communication port is
being used and what type
of Arduino board you have.
The board type will be
stated in the manufacturer’s specifications (such as
Arduino UNO).

The serial port on Windows will likely
be COM3, COM4 or COM5. On a
Mac it will be something like:
 /dev/cu.usbserial-1B1.

If you can’t easily see which port is
being used, try:

•	 using system profiler (on Mac) or
device manager from the control
panel (on Windows) to identify
which port the board is using

•	 look at the list of available serial ports (in the
Tools menu), then unplug your board and re‑open
the menu. The entry from the list that disappears
is the correct serial port for your board

•	 checking troubleshooting on the Arduino site.

7

5. Download
ThinkerShield
program code files
All activities in this book have
associated program code for you to
load and complete.

Before you start your Arduino
software, download all the program
code files from our site:

ma.as/
thinkershieldresources

Copy the files to a convenient
location on your computer. The
code files are divided into two
folders: activity and completed. The
files in the activity folder are for
working through the activities. The
completed versions are ready to be
uploaded and run at any time.

6. Launch!
Launch the Arduino application
(arduino.exe) you have previously
downloaded.

When it opens:

1/	 go to File/Open...

2/	 navigate your way to your
ThinkerShield folder you just
downloaded

3/	 open the folder called

ts_In_A_Blink

4/	 double-click on the file

ts_In_A_Blink.ino

5/	 Get on with it!

[Turn to the first activity]

What is Arduino?
Arduino is an open-source electronics
prototyping platform based on
flexible, easy-to-use hardware and
software. It’s intended for artists,
designers, hobbyists and anyone
interested in creating interactive
objects or environments.

Arduino can sense the environment
by receiving input from a variety
of sensors and can affect its
surroundings by controlling lights,
motors and other actuators.

The microcontroller on the board
is programmed using the Arduino
programming language (based on
Wiring) and the Arduino development
environment (based on Processing).
Arduino projects can be stand‑alone
or they can communicate with
software running on a computer
(eg Flash, Processing, MaxMSP).

www.arduino.cc
source: Arduino site

8

http://ma.as/thinkershieldresources
http://ma.as/thinkershieldresources

6 green light-emitting
diodes (LEDs)
for making light

USB port
(on Arduino board)
to connect to your
computer

external power socket
(on Arduino board)
to power board when not
connected to a computer

potentiometer
a controllable
variable resistor

piezo buzzer
for making sound
and music

detachable buzzer jumper
pull it off to silence the
buzzer

external digital pin connections
(D6, D5, D4, D2)
for connecting additional
components (+5 volts)

external analog pin connections
(A0, A1, A2, A3)
for connecting additional
sensors (+5 volts)

light dependent resistor
for sensing light

reset button
press to reset and
rerun the currently
loaded program

push button
a simple
momentary
switch

GND (0 volts)

Vcc (+5 volts)

What’s.On.Board?

9

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

G
re

en
LE

D
s

D8
D9

D10
D11
D12
D13

Ingredients

Component: LEDs

Start by flashing a LED

Check that
everything
works and start
experimenting
in a blink!

Connect your

ThinkerShield to your

Arduino and then to your

computer with the USB

cable.

Open a very simple
Arduino program that will
make the LED on pin D13
flash on and off.

The words ‘Compiling sketch’
should appear momentarily in
the status bar as the green
upload bar updates. If everything
works, you will see the message
‘Done uploading’ and the D13 LED
will flash twice to let you know it
has finished uploading.

We think the best way to make sure your ThinkerShield is
connected correctly and everything is working properly is to make
it do something — straight away! So let’s make one of those cute
little LEDs blink!

In.A.Blink

Upload the
program to your
ThinkerShield.

LED on pin D13

10

LET’S.GET.(ON).WITH.IT
1/	 Set up and connect your ThinkerShield and Arduino

software as shown in the previous pages.

2/	 Open the file ts_LED_In_A_Blink.ino

3/	 Upload your program by clicking on the icon.

4/	 The LED on pin D13
should begin to flash
slowly on and off once
every second. If it does,
everything is working
fine (yippee! — move
on to step 5). If not
check everything in the
‘Not working?’ column
until you solve the
problem.

5/	 Try this:
Look at the program
code on your screen
and find this section.

Try changing the
delay(1000) to
another number such
as delay(500)and
click upload to make
the LED flash at a
different rate!

 Not working?
 Is the Arduino getting power? If it

is connected correctly you should
see a tiny green LED next to the
word ON. If not, check your USB
connection.

 Is your ThinkerShield connected
correctly to your Arduino board?
Make sure all legs are nicely aligned
and embedded in the black sockets.

 Have you selected the correct board
type from the ‘Tools > Board’ menu
on your Arduino software?

 Have you selected a serial port from
the ‘Tools > Serial Port’ menu on
your Arduino software?

 Is the program uploading
successfully? Do you see the
message ‘Done uploading’?

Still not working?
 Shutdown the Arduino program on

your computer and unplug the USB
from your computer and go through
steps 1 to 3 again.

 Go to: www.arduino.cc click on
Forum and look for troubleshooting.

 /* This is the COMPLETE program for the ThinkerShield In A Blink Activity
 Written by Thinkspace www.maas.museum/thinkspace
 This code is based on the public-domain code created by www.arduino.cc
 */

 // Your ThinkerShield has an LED connected // to Pin 13 (as have most Arduino boards). // Give the pin a name: `led` int led = 13;

 // The setup routine runs once when you press reset: void setup() { // Initialize the digital pin as an output. pinMode(led, OUTPUT); }
 // The loop routine runs over and over again forever: void loop() {
 digitalWrite(led, HIGH); // Turn the LED on (HIGH is the voltage level) delay(1000); // Wait for a second digitalWrite(led, LOW); // Turn the LED off by making the voltage LOW
 delay(1000); // Wait for a second }

11

http://www.arduino.cc

 /* This is the COMPLETE program for the ThinkerShield In A Blink Activity

 Written by Thinkspace www.maas.museum/thinkspace

 This code is based on the public

-domain code created by www.arduino.cc

 */

 // Your ThinkerShield has an LED connected

 // to Pin 13 (as have most Arduino boards).

 // Give the pin a name: `led`

 int led = 13;

 // The setup routine runs once when you press reset:

 void setup() {

 // Initialize the digital pin as an
output.

 pinMode(led, OUTPUT);

 }
 // The loop routine runs over and

over again forever:

 void loop() {
 digitalWrite(led, HIGH); // Turn the LED on (HIGH is the voltage level)

 delay(1000); // Wait for a second

 digitalWrite(led, LOW); // Turn the LED off by making the voltage LOW

 delay(1000); // Wait for a second

 }

void loop () {...} This section of
the program runs continuously after
the setup() function has run.

Constants:
Are predefined
expressions in the
Arduino language
(like HIGH, LOW,
INPUT, OUTPUT,
true, false). They
will appear in blue
or orange.Semicolon: Each line of code

ends with a ;
{ } Curly braces: Your code
must be enclosed between
curly braces.

void setup () {...} This runs
once after the program is uploaded
and run — you will always use this
to setup pinModes.

Debugger area:
Any errors will be
displayed here.

Status bar: Displays the current board type
and which COM port is being used.

keyWords: These words have particular meaning in the
Arduino language. They always appear in orange.

 Comments: appear in grey. They are explanatory
notes used to tell yourself (and other programmers)
what the next bit of code is supposed to do or where
it is from. Single line comments begin with //.

Blocks of comments are enclosed between /* */

12

What’s in an Arduino program?

Verify program:
Check your program for errors before
uploading. You probably won’t need
to verify before uploading programs
in this book, but it might help as you

create larger programs.

Upload program: Click this icon
to transfer your program to the
ThinkerShield. This little arrow will
quickly become your favourite button!

Sketch: Arduino people like to
call their programs ‘Sketches’.

Serial monitor:
Open the serial monitor
for watching serial
communication.

There are zillions of Arduino based programs all over the
web that you can download, try out and try to understand.
And you can be pretty sure that they will all have the basic
elements and structure shown here on these pages.

Need help, or just want
to start exploring on
your own?
Whatever your question, chances are
the answer is waiting for you on the
official Arduino website. It’s easy to
follow and filled with solutions, forums
and ideas for everything Arduino!

www.arduino.cc

Arduino software

is free and allows

you to program the

micro‑controller on

your ThinkerShield.

It doesn’t get easier or

better than that!

13

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

G
re

en
LE

D
s

D8
D9

D10
D11
D12
D13

Ingredients

Now let’s start talking to your ThinkerShield and take control
of those LEDs so you can make any of them flash how you
want them to!

Controlling a LED

Then we use a function
called pinMode() to set
the pin as an OUTPUT.
Otherwise it will default
to an input.

Next we do what’s
called a digitalWrite to
the ledPin and send it
HIGH to turn it on.

Do another
digitalWrite to the
ledPin and send it
LOW to turn it off.

Wait one
second. Wait one

second.

Loop around
forever.

Light-emitting
diode (LED) on
digital pin D12

We first create a

variable that we can

use to hold the number

of the digital pin of the

LED we want to control.

We’ll start with pin 12.

The waiting time is
entered as milliseconds
(thousandths of a
second). So delay(1000)
tells the program to
wait one second.

Getting.Flashy

Component: LEDs

14

LET’S.GET.(ON).WITH.IT
1/	 Open the file ts_LED_Getting_Flashy.ino

2/	 Look for the comment // Setup LED variables
// Setup LED variables.

// The setup routine runs once when you press reset:
void setup()

and insert the following line of code:
int ledPin = 12;

3/	 Find the comment // Set the LED pin as an output
 // Setup the LED pin as an output.

}

and insert the following line of code:
pinMode(ledPin, OUTPUT);

4/	 Look for the comment // Turn the LED on and off
{
 // Turn the LED on and off.

}
and add the following 4 lines of code:
digitalWrite(ledPin, HIGH); // LED on
delay(1000); // Wait 1 sec
digitalWrite(ledPin, LOW); // LED off
delay(1000); // Wait 1 sec

5/	 Upload your program. The LED on pin 12 should
flash on and off each second.

This creates a
variable called
‘ledPin’ that we can
use to refer to the
LED on pin 12.

This gets the LED
on pin 12 ready for
flashing.

Turn the LED on
by setting the voltage
HIGH. Wait, then set the
voltage LOW (and the LED
goes off).

I know this is pretty much the same as the first activity, but now you know how to write the code to initialise a digital pin and set it as an output using pinMode. Try changing the ledPin number!

15

void setup()
Then, in void
setup(), use
pinMode to set
each LED pin as an
OUTPUT.

void loop()
Next, in void loop(),
do various patterns of
digitalWrites to send each
LED high or low according
the on/off pattern you
want to create. D8

D9
D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

G
re

en
LE

D
s

D8
D9

D10
D11
D12
D13

Ingredients

Your ThinkerShield has six LEDs (on digital pins D8-D13). With some
simple changes to your program code you can easily control them
— one at a time, all at once or in patterns and sequences.
Let’s start with two of them!

Even.Flashier
Controlling multiple LEDs
at the same time

Get flashier and
flashier and
flashier!

Set up variables for each

of the digital pins for

each of the LEDs you will

be flashing. We chose

pins 8 and 13.

Light-emitting
diodes (LEDs) on
digital pins D8
and D13

Component: LEDs

16

LET’S.GET.(ON).WITH.IT
1/	 Open the file ts_LED_Even_Flashier.ino

2/	 Look for the comment // Setup LED variables
// Setup LED variables
int led1Pin = 13;

and insert the following code:
int led2Pin = 8;

3/	 Find the comment // Set LED pins as digital outputs
// Set LED pins as digital outputs
pinMode(led1Pin, OUTPUT);

}
and insert the following code:
pinMode(led2Pin, OUTPUT);

4/	 Look for the comment // Turn the LEDs on and off
// Turn the LEDs on and off

}
and add the following code:
digitalWrite(led1Pin, HIGH); // LED1 on
digitalWrite(led2Pin, LOW); // LED2 off
delay(500);
digitalWrite(led1Pin, LOW); // LED1 off
digitalWrite(led2Pin, HIGH); // LED2 on
delay(500);

5/	 Upload your program. The LEDs on pins D13 and D8
should flash on and off every half second.

This will define our
second LED pin.

Our second LED is
now ready for use as
an output.

Turn LED1 on
and LED2 off
(it won’t matter if
it’s already off).

Do the opposite.

I added a
third LED to my
program. Then I
re-arranged the

code so that
all the LEDs
were blinking
together and
with different
patterns and
different
delays!

PICK A PATH

Page 48
Make a LED
magic sign

Next Page
Learn to use the
potentiometer

17

Pot.Basics

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

Ingredients

Learn to read the ThinkerShield’s potentiometer (a variable resistor)
and how to print the values to the serial monitor so you can see
them on your computer screen.

Component: potentiometer

Reading the potentiometer

Potentiometer
on analog
pin A5

Then find out
how the values
change as
you turn the
potentiometer
back and forth.A potentiometer is an

analog device so we
use the analogRead()
function to get a
value from it.

Create a variable

to hold the

potPin value.

Send the value to
the serial monitor.

Analog devices like

potentiometers (or

‘pots’) are often used

as faders on lights.

Turn on the
serial port with
Serial.begin so
we can see the
values from the
potentiometer on
analog pin A5.

POT A5

18

Not working?
 Check your code for missing

; or () or . or { }
 Make sure potPin = 5 (not

some other number).
 Do the baud rates in the

code and on the serial
monitor match?

LET’S.GET.(ON).WITH.IT
1/	 Open the file ts_Pot_Basics.ino

2/	 Find the comment // Define potentiometer pin
// Define potentiometer pin

and insert the following code:
int potPin = A5;

3/	 Find the comment // Turn the serial port on
{
 // Turn the serial port on.

}
and insert the following code:
Serial.begin(115200);

4/	 Locate the comment // Read the input pin
// Read the input pin

and insert the following code:
potValue = analogRead(potPin);

5/	 Lastly, find the comment // Print the contents of ...
// Print the contents of the variable to the serial monitor.

// Short delay before reading again.
and insert this line of code:
Serial.println(potValue);

6/	 Upload your program and open the serial monitor.
Turn the pot back and forth and see how the values change!

The serial
monitor lets
you see the
values coming
from your
components.

See also:
cereal monster

Activate the serial monitor so
you can use it to see values on
your computer screen.

This will put the value of
the potentiometer into a
variable called ‘potValue’.
It will return values
between 0 and 1023.

This line prints the
value to the serial
monitor so you can see
it. Once the program
is running, click this
icon!

Create a variable
for analog pot pin A5.

baud rate

19

A.Light.Dimmer

Component: potentiometer

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

G
re

en
LE

D
s

D8
D9

D10
D11
D12
D13

POT A5

Ingredients
Potentiometer
on analog
pin A5

Light-emitting
diode (LED) on
digital pin D9

Now that we know how to read the values from the potentiometer
we can use it to control the brightness of the ThinkerShield’s LEDs
— just like a light dimmer.

Make a light dimmer control

Experiment with different
potentiometer positions to
see the effect on the LED
brightness and create some
romantic mood lighting!

Then we insert a line of
code that uses the map()
function to convert values
coming from the (analog)
potentiometer so we can send
them to the (digital) LED.

We start by initialising

one of the LED pins that

supports a technique

called PWM. On

ThinkerShield these are

pins 9, 10 and 11. This

will be our light.

Do an analogWrite() to
the LED pin. This gives
us more control than
just a digitalWrite()
which can only switch
between high and low.

20

LET’S.GET.(ON).WITH.IT
1/	 Open the file ts_Pot_Light_Dimmer.ino

2/	 Look for the comment // Define pins
// Define pins.

int potPin = A5;

and insert the following code:
int ledPin = 9;

3/	 Look for the comment // Map the function as
PWM supports 0 to 255 not 0 to 1023
// Map the function as PWM supports 0 to 255 not 0 to 1023.

// Write the value to the LED.

and insert the following:
value = map(value, 0, 1023, 0, 255);

4/	 Find the comment // Write the value to the LED
// Write the value to the LED.

// Short delay before reading again.

and insert the following code:
analogWrite(ledPin, value);

5/	 Upload your program.

6/	 Try turning the potentiometer. You should see
the brightness of the LED change in response.

This creates a
variable for digital
LED pin D9.

This will send
our value to our
selected LED pin.

Be careful it doesn’t
get too romantic! 

This will
convert our
potentiometer
values, which
have a range of

0-1023 to PWM
friendly values
in the range of
0-255.

The light dimmer is using something called Pulse Width Modulation (or PWM) to send varying amounts of power to the LED — which changes it’s brightness. PWM works by switching the power on and off very fast. The longer it is on compared to off, the higher the amount of power supplied (and the brighter your LED!)
On the ThinkerShield you can do PWM on digital pins 3, 5, 6, 9, 10, 11. And we have already have a LED on 9, 10 and 11.

PICK A PATH

Page 26
Jump
straight
to the LDR

Next Page
Gimme
more
POT stuff

21

Let’s decode the Light Dimmer Code

int ledPin = 9;
Declares a variable called
‘ledPin’ and assigns it the
value ‘9’ which corresponds
to the number of the pin
that our LED is connected
to. We did a similar thing
for the potPin but we
used A5 so we know we are
referring to an analog pin.

void setup(){...}
Set up the serial port
and the baud rate so
we can send data to
the serial monitor.

By default all pins are set
as INPUT. So, we need to
set the pinMode for the
ledPin as OUTPUT. The
potPin will default to
input as we need it to be.

In programming, a variable is a value that can change, depending on conditions or on information passed to the program. You will use variables all the time in your code to make it easier to do things.

continued on opposite page

/* This is the COMPLETE program
 for the ThinkerShield Pot Light Dimmer Activity

 Written by Thinkspace www.maas.museum/thinkspace

*/

// ThinkerShield has a potentiometer connected to analog pin 5

// Pins that support PWM are 3,5,6,9,10,11. We already have LEDs

// permanently connected to pins 9,10,11.

// Define pins.
int potPin = A5;
int ledPin = 9;

// Create a variable to hold the data we read in.

int value = 0;

void setup()
{
// Turn the serial port on.
Serial.begin(115200);

// Initialize the LED pin as a digital output.

pinMode(ledPin, OUTPUT);
}

22

value = analogRead(potPin);
This is a very common command
used to read the current value on
an analog pin and store it in the
variable called ‘value’.

Everything between the { } after the
void loop() function runs repeatedly
until the program is stopped.

analogWrite(ledPin, value);
The opposite of an analogRead, this
writes a value to the analog pin.
Because this pin supports PWM it
means that we can send different

amounts of power to the LED.

delay(25);
This literally means do nothing
for 25 milliseconds. It stops us
getting zillions of readings.

value = map(value, 0, 1023, 0, 255);
The map function makes it easy to scale, or

map, one range of values to another range. In
this case, it converts from the potentiometer’s
values that range from a lowest value of 0 and
highest value of 1023 to a range from a lowest
of 0 to a highest of 255. So, if the value from
the pot was 1023 it will be mapped to 255. If

it was say 512 (half-way between 0 and 1023)
it will be mapped to a value of 127 (half-way
between 0 and 255).

continued...

void loop()
{

// Read the input pin.
 value = analogRead(potPin);

 // Print the contents of the variable to the serial monitor.

 Serial.println(value);

 // Map the function as PWM supports 0 to 255 not 0 to 1023.

 value = map(value, 0, 1023, 0, 255);

 // Write the value to the LED.
 analogWrite(ledPin, value);

 // Short delay before reading again.
 delay(25);
}

23

POT.LED.Bouncer

Component: potentiometer

G
re

en
LE

D
s

D8
D9

D10
D11
D12
D13

Ingredients

With just a little bit of extra code you can turn the potentiometer
into a switch-type control and use it to bounce between two of the
ThinkerShield’s LEDs.

Using analog values to switch
LEDs on and off

If it is one of these values we
use digitalWrite() to change the
state of the two LEDs ... the one
that’s on gets turned off and the
one that’s off gets turned on.

Read the value
coming from
the pot on pin
A5 and store
the value in a
variable.

Wait a moment
and loop
around again.

Now, test the value
to see if it is either
1023 or 0. These
values tell us that
the pot is turned all
the way to the left
or all the way to
the right.

Start by initialising

two LED pins as

outputs. We picked

pins D8 and D13.

So, when you turn the knob all the way from one side to the other, the LEDs bounce back and forth!

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

Light-emitting
diodes (LEDs)
on digital pins
D8 and D13

POT A5

Potentiometer
on analog
pin A5

24

LET’S.GET.(ON).WITH.IT

1/	 Open the file ts_Pot_LED_Bouncer.ino

2/	 In the void setup section, find the comment // Initialise the
LED pins as digital outputs
// Initialise the LED pins as digital outputs.

// Turn the serial port on.
and insert these two lines of code:
pinMode(led1Pin, OUTPUT);
pinMode(led2Pin, OUTPUT);

3/	 Find the comment // Read the input pin
// Read the input pin.

// Print the contents of the variable to the serial monitor.
and insert the following code underneath:
value = analogRead(potPin);

4/	 Find the comment // Use if statement to
turn LEDs on and off
// Use if statement to turn LEDs on and off.

// Short delay before reading again.
and insert these ten lines of code:

if(value == 1023)
{
 digitalWrite(led1Pin, HIGH);
 digitalWrite(led2Pin, LOW);
}
else if(value == 0)
{
 digitalWrite(led1Pin, LOW);
 digitalWrite(led2Pin, HIGH);
}

5/	 Upload your program.

6/	 Try turning the potentiometer
from left to right and see if the
LEDs bounce back and forth.

7/	 If you turn on the serial monitor
you will be able to see the values
as they change!

Set the LED pins
as OUTPUTS

Use analogRead()
to get the current
value from the
pot and store it
in ‘value’.

Test to see if the value equals 1023.
If it does, do the first bit (led1 on,

led2 off). If not, test to see if it
equals zero. If it does, it does the
second bit. If it doesn’t equal either
1023 or 0 don’t change anything.

== means ‘is equal to’
25

LDR.Basics

Component: LDR

Read the LDR to sense light

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

A4
LDR

Ingredients

Learn to read the values of the ThinkerShield’s light sensor
(called a light dependent resistor) and see how it responds to
different light conditions.

Light
dependent
resistor (LDR)
on analog
pin A4

Then have some fun
testing with different
amounts of light on
the sensor.The LDR is an analog

device so we use the
analogRead() function
to get a value from it.

Turn on the serial port

with Serial.begin so

we can see the values

from the sensor.

Send the value
to the serial
port.

26

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

LET’S.GET.(ON).WITH.IT

1/	 Open the file ts_LDR_Basics.ino

2/	 Find the comment // Turn the serial port on
 // Turn the serial port on.

}

and insert the following code:
Serial.begin(115200);

3/	 Find // Read the input pin
// Read the input pin.

and insert the following code:
LDRvalue = analogRead(LDRPin);

4/	 Lastly, locate the comment // Print the contents of the variable ...
// Print the contents of the variable to the serial monitor.

// Short delay before reading again.

delay(25);
and insert this line of code:
Serial.println(LDRvalue);

5/	 Upload your program and then open the serial monitor by
clicking the magnifying glass icon in the top right corner.
Make sure the baud rate is set to 115200.

6/	 Expose the light sensor to varying amounts of light
and discover how the values change.

Remember to click the serial monitor icon to see the values coming from your components.

This will activate the
serial monitor so you
can use it to read
values.

This will put the value of
the light sensor into a
variable called ‘LDRvalue’.
It will return values between
0 and 1023.

This will print the
value to the serial
monitor so you can
see it.

PICK A PATH

Page 36
Use the POT
to control the
buzzer Next Page

More LDR:
scare some
roaches!

27

LDR.Night.Light

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

A4
LDRG

re
en

LE
D

s

D8
D9

D10
D11
D12
D13

Ingredients

Light dependent
resistor (LDR) on
analog pin A4

Light-emitting
diode (LEDs) on
digital pin D10

Read the analog values from the LDR and use changes in the values
to control the state of the ThinkerShield’s LEDs — just like an
automatic night light!

Make an automatic night light

And then we do a
digitalWrite to an LED
pin to turn it on and off
as the values change.

Then we can use
what we find out to
decide when it’s day
and when it’s night.

We’ll need to use the
Arduino map() function
so we can send the right
values to the LED pins.

Component: LDR

First we do a few tests

to find out the range of

values that your LDR

produces — this will

always be different

depending on the lighting

conditions and may

vary a tiny bit between

ThinkerShields.

Make
it stop!

28

 Serial port errors?
If you ever get errors such as
‘Serial Port COM 4 already
in use’ or ‘Serial Port not
available’, try closing all
Arduino programs, unplug
the USB from your computer
and start everything again.

LET’S.GET.(ON).WITH.IT
1/	 Open the file ts_LDR_NightLight.ino

2/	 Upload your program and then open
the serial monitor by clicking on this icon

3/	 Try to find the highest and lowest values that the light
sensor will produce in the place you are sitting, by exposing
it to different amounts of light.

4/	 Look for the comment // Map the values
// Map the values.

// Use conditional statement to turn LEDs on and off.
and insert this line of code:

 value = map(LDRvalue, 97, 330, 0, 100);

5/	 Look for the comment // Use conditional statement to
turn LEDs on and off
// Use conditional statement to turn LEDs on and off.

// Short delay before reading again.

and insert these eight lines of code:
if(value < 50)
{
 digitalWrite(ledPin, HIGH);
}
else
{
 digitalWrite(ledPin, LOW);
}

6/	 Upload again and start scaring some roaches!

Change these
two numbers to
the low and high
values you get
from your sensor.

After uploading your
program, the LED should
switch on when the light
sensor detects darkness

or low light levels! In our
code a low light level is
anything that gives a
mapped value of <50.

You can find the lowest value by covering the LDR with your finger or a piece of thick cardboard. To find the highest value put it in full sunlight or another really bright light.

Low value

High value

29

Push.Button.Basics

Component: push button

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

Button
D7G

re
en

LE
D

s

D8
D9

D10
D11
D12
D13

Ingredients

Light-emitting
diodes (LEDs)
on digital pins
D8-D13

Learn to read the state of the ThinkerShield’s push button and use it
to switch a LED on and off — while the button is held down the LED
will come on.

Program the push button as a
momentary switch

Next we do a
digitalWrite() to set
the buttonPin HIGH
to make it ready for
use (by turning on a
pull‑up resistor).

Then we just keep
reading the state
of the buttonPin
and act when it
changes.

Initialise a boolean
variable called
buttonState to hold
the state of the
button. Boolean
variables are either
true or false.

We start by defining

and initialising the

buttonPin as INPUT

and an LED pin as an

OUTPUT.

If buttonState is
true it means it’s
being pressed
and we use a
digitalWrite() to
turn on the LED.

Push button on
digital pin D7

more about this on
the opposite page

30

The electronics in the ThinkerShield are very sensitive to tiny changes in current and could at times give random readings.
So, it is good practice to use a pull-up resistor that will ‘pull’ the buttonPin to HIGH when it is not receiving any input.

That way we can be sure that our LED will only come on when the button is pressed.

Set up a boolean
(true or false)
variable for the
buttonState

This conditional
statement will switch
the LED on if the
buttonState variable
is true an keep it off
if it’s not.

LET’S.GET.(ON).WITH.IT
1/	 Open the file ts_PushButton_Basics.ino

2/	 Find the comment // Variables
// Variables.

void setup()
 and insert the following line of code:
boolean buttonState = false;

3/	 Look for the comment // Initialise button pin as INPUT
 // Initialise button pin as INPUT.

}
and insert these 3 lines of code:
pinMode(buttonPin, INPUT);
digitalWrite(buttonPin, HIGH);
pinMode(ledPin, OUTPUT);

4/	 In the void loop section, find // Read button value
 // Read button value.

}
and insert this code, then upload and run it!
buttonState = digitalRead(buttonPin);
// Turn the LED on and off
if (buttonState == true)
{
 digitalWrite(ledPin, HIGH);
}
else
{
 digitalWrite(ledPin, LOW);
}

PICK A PATH

Page 34
Show me
how to use
the buzzer

Next Page
More push
button: make a
toggle switch

31

Ingredients

Get.A.Toggle.On

Component: push button

Make the push button into
a toggle switch

Program the push button to behave as a toggle switch — press
once for on, press again for off. And, if you want, you can try
some debouncing!

Then, when the button
is pressed, we check
to see what state
things were in the last
time it was pressed
and act accordingly.

This time we will start

by creating a couple of

boolean variables to store

the current state of the

button and of the LED.

If the LED was off, we flip
our two boolean variables
so that it is turned on
(sent HIGH). If it was
on, we will invert the
variables to turn it off.

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

Button
D7

G
re

en
LE

D
s

D8
D9

D10
D11
D12
D13

Light-emitting
diodes (LEDs)
on digital pins
D8-D13

Push button on
digital pin D7

Wow! My debouncing code really works!

32

LET’S.GET.(ON).WITH.IT

1/	 Open the file ts_PushButton_GetAToggleOn.ino

2/	 Find the comment // Boolean (or true/false) variables
and insert these two lines of code:

// Boolean (or true/false) variables.

boolean lastButton = LOW;
boolean ledOn = false;

3/	 In the void loop section, look for the comment
 // Read button value and insert this conditional code:

// Read button value.

 if (digitalRead(buttonPin) == HIGH && lastButton == LOW)
{
 ledOn = !ledOn; // This inverts (switches) the value.
 lastButton = HIGH; // This stores the last button state.
}
else
{
 lastButton = digitalRead(buttonPin);
}

4/	 Have a look a the code that starts with if(ledOn).
Can you understand what this bit of code does?
Nothing to add, just have a quick read of the code.

5/	 Upload and give it a try. Your button should now
behave as a toggle switch.

Boolean variables
can be either
HIGH/LOW,
true/false or even
just 1/0.

When you run this, you may notice
that the button doesn’t always

behave exactly as expected. Using
our button in this way is a little
like turning a hose off at the tap —
sometimes there is still some electricity
that will leak through at the last
minute — just like water in a hose.
The problem can be solved using a
technique called debouncing. Maybe
you can work out a way to do it. You
can also find an example in the:
File\Sketchbook\Digital
menu in your Arduino software.

33

Ingredients

Buzzer.Basics

Component: buzzer

Learn to make sounds
with the buzzer

We’ve learned how to make some light with the LEDs, let’s make
some sound with the ThinkerShield’s on-board buzzer (a piezo
electric speaker).

That’s it.
Simple.

Then we use a nice little
function called tone()
to tell the program what
frequency (ie what pitch)
to play and how long to
play that tone for.

We initialise the pin that
our buzzer is connected
to, digital pin D3, and
set it as an OUTPUT.

Inside your ThinkerShield’s buzzer is a disk made from a special piezo electric material.
When you apply an electrical signal to piezo electric
substances they stretch or compress, according to the frequency of that signal. This shape changing produces sound of a corresponding frequency and duration.

Buzzer or piezo
speaker on
digital pin D3

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

Buzzer

34

LET’S.GET.(ON).WITH.IT
1/	 Open the file ts_Buzzer_Basics.ino

2/	 Find the // Define pin comment and define the
buzzer pin by adding the following line of code:
// Define pin.
int buzzerPin = 3;

3/	 In the void loop section, add these lines of code:

// Play a tone with the buzzer.
tone(buzzerPin, 659, 20);
delay(200);

4/	 That’s it! Upload and make some sound!
Experiment with different frequency values.

5/	 Make music!
We can now start to construct a musical phrase by
using different frequencies, note durations and delays.

Experiment with multiple lines of code like these:
tone(buzzerPin, 659, 20);

delay(200);

tone(buzzerPin, 165, 50);

delay(100);

tone(buzzerPin, 400, 80);

delay(200);

Using the buzzer is fun, but if

you (or those around you) need

a break from the beeping, you

can temporarily slide off the

little ‘jumper’ that normally

connects the buzzer to
the power.

This will tell the buzzer
to play a tone with a
frequency (or pitch)
of 659 Hertz for 20
milliseconds. The delay
of 200 milliseconds
creates some silence
between the notes.

You will also see in
the code that the
pinMode is set to
OUTPUT.

You don’t actually need
to put a duration. If you
don’t the sound will keep

on playing until you
either give it another
tone command or
use the noTone(pin)
command.

PICK A PATH

Page 38
Jump straight
to making
music! Next Page

More buzzer:
control the
frequency

35

Ingredients

Pitch.Changer

Component: buzzer

Control the buzzer frequency
with the potentiometer

Just like we used the potentiometer to vary the power sent to
an LED, let’s use it to change the pitch (or frequency) produced
by the buzzer.

Use tone() to write the
frequency value (freq)
to the buzzer and listen
to the results.

void loop()
Do an analogRead of the potPin
and store it in potValue.

Map the potValue to our desired
frequency range of 30-5000Hz.

void setup()
Turn on the serial port
so we can see the
frequencies the buzzer is
producing and set buzzer
pinMode to output.

Define our pot and buzzer

pins and initialise a couple

of variables to hold the

values from the pot

(potValue) and our mapped

frequency (freq).

Buzzer or piezo
speaker on
digital pin D3

Ear muffs?

Potentiometer
on analog pin A5

POT A5

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

Buzzer

36

LET’S.GET.(ON).WITH.IT

1/	 Open the file ts_Buzzer_Pitch_Changer.ino

2/	 Find the comment // Create variables to hold data we read
and insert these lines:
// Create variables to hold data we read.
int potValue = 0;
int freq = 0;

3/	 In void loop, find the comment // Read the input pin
and add the following:
// Read the input pin.
potValue = analogRead(potPin);

4/	 Find the comment // Map the potValue for PWM

and add the following code:
// Map the potValue for PWM.
freq = map(potValue, 0, 1023, 30, 5000);

5/	 Then, under // Write the value to the buzzer add
the following:
// Write the value to the buzzer.
tone(buzzerPin, freq, 20);

6/	 Upload your program and try changing the pitch of the buzzer by
turning the potentiometer back and forth.

7/	 Try modifying the frequency values in your map function and the
delay value in the tone function. Listen to the results!

The map function
will take the pot
value which will be in
the range 0-1023
and convert it to a
range of 30-5000
which will give us a
good scale of pitch
change.

If you turn on the serial

monitor you will be able to see

the frequency (in Hertz) as

you hear it.

PICK A PATH

Page 44
Make a
buzzing
light meter

Next Page
More
buzzer:
play a song

37

Buzzer or piezo
speaker on
digital pin D3

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

Buzzer

Ingredients

Play.A.Song

Component: buzzer

Make the buzzer
make music

Create musical notes and string them together in arrays to make
music. Hear your ThinkerShield play your favourite songs!

Call the buzzerPlay()
function, then loop
around and play it again.

Start changing the
note and duration array
values to play your
favourite songs!

Initialise a melody[] array
to hold the sequence
of notes for our song.
Initialise a noteDuration[]
array to hold the duration
of each of the notes.

Set up our pins
and pinModes.

Create a special function we
call buzzerPlay() that will read
the array values and write them
to the buzzer in sequence.

Use #define to create

constants for each of

the musical notes we

will be using.

38

middle CNOTE_C4 262

NOTE_D4 294

NOTE_E4 330

NOTE_F4 349

NOTE_G4 392

NOTE_A4 440

NOTE_B4 494

NOTE_C5 523

An array is a special type of variable that stores lists of values. Arrays are very useful in programming. You create (or declare) an array with the following syntax:

type name[] = {item1, item2, ...};
Here’s the melody array from our code:
int melody[] = { NOTE_G3, NOTE_G3, NOTE_G3, NOTE_DS3, NOTE_AS3, NOTE_G3, NOTE_DS3, NOTE_AS3, NOTE_G3, NOTE_D4, NOTE_D4,NOTE_D4, NOTE_DS4, NOTE_AS3, NOTE_FS3, NOTE_DS3, NOTE_AS3, NOTE_G3};

LET’S.GET.(ON).WITH.IT
1/	 Open ts_Buzzer_Play_A_Song.ino

2/	 In this file we have created variables that
represent musical notes that will be played
by the buzzer. Each note looks like this:
#define NOTE_G3 196

3/	 Look for the comment // Notes in the
melody. Below this line is an array (or list)
of notes. This is a list of all the notes that
go together in a particular order to form a
melody. Changing the first note in the list
will change the first note of the melody.

4/	 Look for the comment // Note durations:
4=quarter note, 8=eighth note ...

Below this line is another array which
contains the note durations (or lengths).
Each of the note lengths in this list
corresponds to one of the notes in our
melody. Once again changing the first note
length in the list will alter the length of the
first note in our melody.

5/	 Upload the program and listen. Do you
recognise the tune?

6/	 Now, try editing each of the arrays in order
to change the music. Making changes to
the notes array will change the pitch of the
notes. Making changes to the durations
array will affect the rhythm of the melody.

#define NOTE_G3 196

value name value

We are using a useful technique
that let’s us give a name to
a CONSTANT value at the
start of the program. We can
then use the name instead of
the value. This is perfect for
storing musical notes.

Take a look at the
code that starts
with:

void buzzerPlay()

This is a special
function we have
included that our
program uses (or
‘calls’) to play the
notes and durations
in the arrays.

39

40

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

Ingredients

LEDs on pins
D8-D13

Push button
on pin D7

Buzzer on
pin D3

Combine all six LEDs, the buzzer, the pot and the push button to
make a cool flashing and beeping variable roll electronic dice to use
with your games.

Pot on
pin A5

Jump to the roll()
function which will scroll
the LEDs back and forth
for the selected time and
then return a random
dice number.

Scroll the LEDs
to the random
dice number
position.

Flash the chosen LED
and make a buzz.
Leave the LED on.

wait for
a button

press

return to
main loop

Get the current
buttonState and
map a value from
the potPin to use
to determine how
long the roll will
scroll back and forth
before stopping.

Electronic.Dice

Project 1

Make a working six light
electronic dice

All pin variables

are defined. For

convenience, LEDs are

defined using an array.

We also a declare a

‘float’ variable to use

with the randomSeed()

function.

Go back to
the top of the loop
and wait for the
next button press.

Randomise the
random number
generator, set
all pinModes are
required and start
the serial monitor.

G
re

en
LE

D
s

D8
D9

D10
D11
D12
D13

Button
D7

POT A5

Buzzer

LET’S.GET.(ON).WITH.IT
1/	 Open the file tsproj_Electronic_Dice.ino

2/	 Find the comment // Declare ledPins array and insert the
following line of code:

// Declare ledPins array.
int ledPins[] = {8, 9, 10, 11, 12, 13};

3/	 Now, in void setup find the comment // Set the seed to
be random by reading in an unconnected pin and insert
these two lines of code:

// Set the seed to be random by reading in
// an unconnected pin.
seed = analogRead(0);
randomSeed(seed);

4/	 Find the comment // Set all leds to OUTPUT by looping
through the array immediately underneath your last entry
and add the following:

// Set all leds to OUTPUT by looping through
the array.
for (int i=0; i<6; i++)
{
 pinMode(ledPins[i], OUTPUT);
}

The electronic dice project
is totally cool but it does
have some pretty advanced
code that you may not
completely understand
straight away. But don’t
worry, you can still enter
it in and play around
changing things here and
there to try to discover
how it works!

By storing the pin
values for each of the
LEDs in an array,
we can easily cycle
through them later in
the program.

These two lines of code
start up and randomise
the random number
generator in the
microprocessor.

Here we use the
ledPins array to
set the pin mode
for all the LEDs
in just a few
lines of code!

41

5/	 Move down into the void loop section, locate the comment // Read in the
button and pot values and carefully insert these two lines:

// Read in the button and pot values.
buttonState = digitalRead(buttonPin);
scrollMaxDelay = map(analogRead(potPin), 0, 1023, 0, 500);

6/	 Now find the comment // Check the button state and carefully insert
this if statement and its opening { curly bracket:
// Check the button state.
if (buttonState == HIGH)
{

7/	 Under // Jump to the dice roll function add the
following call to the dice roll function:

// Jump to the dice roll function.
diceValue = roll();

8/	 Finally, scroll all the way to the bottom of the
program (past the last curly bracket). Now
carefully enter the big block of code that makes
up the dice roll function (on the next page).

9/	 Upload your program and start rolling some dice!

10/	Try turning the pot to different locations
to see how it affects the roll rate.

Electronic.Dice [cont]

The map function is being
used to convert the current
value from the potPin value
from its range of 0-1023 to
0-500. This number is then
stored in a variable we called
scrollMaxDelay.

Don’t do anything
until the button is
pressed.

42

Electronic.Dice [cont]

// Dice roll function.
int roll()
{
// Clear all leds.
 for (int i=0; i<6; i++)
 {
 digitalWrite(ledPins[i], LOW);
 }
 // Scroll the leds up and down until
 // ScrollMaxDelay is reached.
 while (scrollDelay < scrollMaxDelay)
 {
 for (int i=0; i<6; i++)
 {
 Serial.println(i+1);
 digitalWrite(ledPins[i], HIGH);
 tone(buzzerPin, 100, 20);
 delay(scrollDelay);
 digitalWrite(ledPins[i], LOW);
 scrollDelay += 10;
 }
 for (int i=4; i>0; i--)
 {
 Serial.println(i+1);
 digitalWrite(ledPins[i], HIGH);
 tone(buzzerPin, 100, 20);
 delay(scrollDelay);
 digitalWrite(ledPins[i], LOW);
 scrollDelay += 10;
 }
 }
 // Return a random integer between 0 and 6.
 return random(0,6);
}

See the dice value on the serial monitor.

You might like to make a
little paper template like this
to make it easy to see the
dice numbers.

Put this code all the way down at the bottom

Loop through the
LED array to turn
all the LEDs off.

The value of scrollMaxDelay
comes from the current
position of the pot.

Scroll backwards through
LEDs 5,4,3 and 2.

Then, when all the
fancy scrolling is done,
return a random dice
number. Back in the
main program the LEDs
will slowly scroll to stop
on this chosen position.

Send dice number to
the monitor.
Turn on the first LED
in the array.
Make a buzz.
Wait for ‘scrollDelay’ milliseconds.
Turn off the same LED.
+10 to the scrollDelay value.

43

44

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

A4
LDR

Ingredients

Buzzing.Light.Meter

Project 2

LDR on
pin A4

Turn off the LEDs, send
a noTone() to the buzzer,
then loop around.

Initialise the
serial port and
set all LED pins
and the buzzer
pin as OUTPUTS.

Begin by defining all

required pins: LDR,

buzzer and all 6 LEDs.

Create 3 variables to

hold the raw sensor and

mapped values.

Read the LDR to get a light
level. Then map that value
to a range that we can use
for PWM on the buzzer.

Read the LDR to get a
light level. Then map
that value to a range
that we can use for
beeping and turning
on LEDs.

Use if-then
statements to turn
on the right number
of LEDs and send a
tone to the buzzer.

Delay for a
time based on
the light value.

Combine the light sensing capacity of the LDR, all six LEDs and
the buzzer to make a great light level meter or scanner.

Make a device to scan the light
levels in your environment

LEDs on pins
D8-D13

Push button
on pin D7

Buzzer on
pin D3

G
re

en
LE

D
s

D8
D9

D10
D11
D12
D13

Button
D7

Buzzer

LET’S.GET.(ON).WITH.IT

1/	 Open tsproj_Buzzing_Light_Meter.ino

2/	 Find the comment // Define pins and add the following:

// Define pins.
int LDRPin = A4;
int buzzerPin = 3;
int led8 = 8, led9 = 9, led10 = 10;
int led11 = 11, led12 = 12, led13 = 13;

3/	 Find the comment // Create variables to hold data
and add the following code:

// Create variables to hold data.
int LDRvalue = 0;
int value = 0;
int beepRate = 0;

4/	 Then, under // Initialise the LEDs set the LED pinModes
by inserting the following six lines:

// Initialise the LEDs.
pinMode(led8, OUTPUT);
pinMode(led9, OUTPUT);
pinMode(led10, OUTPUT);
pinMode(led11, OUTPUT);
pinMode(led12, OUTPUT);
pinMode(led13, OUTPUT);

We’ve done pretty much all of this sort of stuff before. No need for any explanations!

45

5/	 In void loop, add the following line to read the LDR:

// Read the LDR pin
LDRvalue = analogRead(LDRPin);

6/	 Use the map function to convert the LDRvalue to a
convenient range we can use for switching the LEDs
and the beepRate of the buzzer.

Add the following line of code:

// Map the LDRvalue to a convenient range
value = map(LDRvalue, 97, 330, 100, 350);

7/	 Now we will add a series of if-then statements to switch on

between one and all six LEDs according to the mapped value.

Carefully add the following lines of code:

// Light up the leds to show the level.
if (value > 100) {
 digitalWrite(led13, HIGH);
}
if (value > 150) {
 digitalWrite(led12, HIGH);
}
if (value > 200) {
 digitalWrite(led11, HIGH);
}
if (value > 250) {
 digitalWrite(led10, HIGH);
}

You might be able to
come up with better,

more compact ways to
do this LED switching,
but this is fine for our purposes at the
moment.

You will definitely want
to play around with these
first two values in this map
function (97, 330) to
tune the meter for your
light conditions. But start
with these ones first.

Buzzing.Light.Meter [cont]

continued on next page

46

if (value > 300) {
 digitalWrite(led9, HIGH);
}
if (value > 350) {
 digitalWrite(led8, HIGH);
}

8/	 Send a tone to the buzzer and make it beep
according to the mapped value from the LDR
by adding the following:

// Write the value to the buzzer.
tone(buzzerPin, 650);
beepRate = value;
delay(beepRate);
noTone(buzzerPin);

9/	 Wait a jiffy then turn off the LEDs.

// Wait a jiffy then turn off the LEDs.
delay(60);
digitalWrite(led13, LOW);
digitalWrite(led12, LOW);
digitalWrite(led11, LOW);
digitalWrite(led10, LOW);
digitalWrite(led9, LOW);
digitalWrite(led8, LOW);

10/	Upload and start exposing the LDR to different light levels.
Try to find the highest and lowest light levels in your room.

Turn on the serial monitor

to see the light value coming

from the LDR and see how it

corresponds to the beep rate.

Try playing
around with the
beepRate = value
code to create
different effects.
Maybe something like:
beepRate = value/5;
Can you figure out
how this will change
the beeping?

The tone frequency
of 650 is a nice
frequency with good
volume. But feel free
to change this value
and see what happens.

GET.(ON).WITH.MORE
•	 Make the beep slow down when it’s dark and speed up when it’s light.

•	 Change the beep tone as the light changes instead of the beep rate.•	 Can you work out a way to add the potentiometer into the code to use as a sensitivity dial?

Buzzing.Light.Meter [cont]

47

48

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

G
re

en
LE

D
s

D8
D9

D10
D11
D12
D13

Light-emitting
diodes (LEDs)
on digital pins
D8-D13 Ingredients

LED.Magic.Sign

Project 3

Take advantage of the persistence of vision effect to create a magic
sign to spell out words. Have fun making up your own characters.

Loop around forever.

Create an array to
hold all the 0s and
1s that make up the
letters in the word
to be displayed.

Define variables

for all six LED pins

and other required

values.

Set pinMode for
all LED pins as
outputs. Initialise
other values.

Jump to
printWord
function to
print the word
to the LEDs.

Short delay.

See how this
is done on the
next page.

Make a cool magic sign
using all six LEDs

LET’S.GET.(ON).WITH.IT

1/	 Open tsproj_LED_Magic_Sign.ino

2/	 Upload the program and you will see the LEDs start to
flash rapidly.

3/	 Move the ThinkerShield back and forth in a waving motion as
shown. You should start to see the word ‘THINK’ appearing.

If you are having trouble seeing the word, try varying your
speed or movement until the word becomes clear.

4/	 Take a look at the code and find the comment // The word to
display. Locate the blocks of zeroes and ones like these:

 0,0,0,0,0,0, // T
 0,0,0,0,0,1,
 1,1,1,1,1,1,
 0,0,0,0,0,1,
 0,0,0,0,0,0,

This particular block represents the letter T. Have a look at
the arrangement of the zeroes and ones.

Can you see how the letter is represented? You might need
to twist your head to the side!

5/	 In a new Arduino window, open the second project file:
tsproj_LED_Magic_Sign_Alphabet.ino

6/	 Let’s try modifying our existing example by copying and
pasting one of these letter code blocks. We’ll change the
word ‘THINK’ into ‘THANK’.

This file contains
code blocks to
produce all the
letters in the
alphabet.

When waving the Shield back and forth, be careful not to pull the USB cable out (and make sure you don’t hit anyone!)

49

7/	 Find the code block for the letter A. It will look like this:

 0,0,0,0,0,0, // A
 1,1,1,1,1,0,
 0,0,1,0,0,1,
 0,0,1,0,0,1,
 1,1,1,1,1,0,
 0,0,0,0,0,0,

8/	 Copy this A block from the alphabet file to the clipboard. Then, back in the
main file, find the code block for the letter I. Let’s replace the I in THINK
with the code for the letter A.

9/	 Upload and try it out!

10/	Now that you have changed our existing example, try creating your own
word from scratch. It’s easy. Just copy and paste the letters you need from
the alphabet file into the main file.

With a little creativity it’s easy to create your own symbols or patterns. Use
this grid (showing the letter A) as a guide and see what other shapes, letters
and symbols you can come up with.

Make sure you
don’t forget this

last comma on
each of the
letter blocks.

Make up your own characters
and symbols on a simple 6x6
grid. Just put a ‘0’ where
you want a space and a ‘1’
in each space you want to
be solid. Try these!

0,0,1,1,0,0,
0,0,1,1,0,0,

1,1,1,1,1,1,

1,1,1,1,1,1,

0,0,1,1,0,0,

0,0,1,1,0,0,

1,1,1,1,1,1,
1,0,0,0,0,1,

1,0,0,0,0,1,

1,0,0,0,0,1,

1,0,0,0,0,1,

1,1,1,1,1,1,

0,0,1,1,0,0,
0,0,1,1,1,0,

1,1,1,1,1,1,

1,1,1,1,1,1,

0,0,1,1,1,0,

0,0,1,1,0,0,

LED.Magic.Sign [cont]

50

How does the printWord
function work?

The void loop section
repeatedly runs the special
function in your code that
we have called printWord.
Each time it runs it passes
the data ‘phrase’ which is
our word.

The variable, sizeWord,is kind
of like the number of ‘pixels’ that
will make up the phrase. As each
character is six ‘pixels’ high,
numRows becomes the number of
rows of ‘pixels’ needed to make
the phrase. Then, we used two
nested loops to cycle through
each row, for each ‘pixel’ and
turn on the appropriate LED.

LED.Magic.Sign [cont]

GET.(ON).WITH.MORE
•	 Create your own

characters
•	 Work out a way to make

two separate words
come up one after the
other

•	 Try varying the delay
amounts to suit different
waving speeds

•	 Find a way to combine
sound with your sign.

void setup()
{
 pinMode(led1Pin, OUTPUT);

 pinMode(led2Pin, OUTPUT);

 pinMode(led3Pin, OUTPUT);

 pinMode(led4Pin, OUTPUT);

 pinMode(led5Pin, OUTPUT);

 pinMode(led6Pin, OUTPUT);

 columnDelay = 2.5;
 sizeWord = NUM_ELEM(phrase);

}

// Main loop which runs infinitely.

void loop()
{
 // Display the word using the printword function.

 printWord(phrase);
 delay(5);
}

void printWord(int wordVar[])

{
 int numRows = sizeWord / 6;

 for(int j = 0; j < numRows; j++)

 {
 for(int i = 0; i<6; i++)

 {
 digitalWrite(ledPinArray[i], wordVar[i+j*6]);

 }
 delay(columnDelay);

 }
}

51

52

Connect.A.LED

Project 4

External
connectors
GND, D5

Learn to use your ThinkerShield’s external pin connections to
control components connected by clips and wires.

Set the pin
mode to
output.

Do a digitalWrite
to send the pin
HIGH and turn
the LED on.

Use digitalWrite to
turn the LED off.

Wait one
second.Wait one

second.

Loop
around
forever.

+5 volts

resistor

+-

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

GND

D5

220Ω
resistor

GND

+5V

LED

220 ohm
resistor

3 x wiresLED

Move beyond the shield and
flash an external LED

Create a variable

to hold the number

of the external

digital pin we are

connecting to — we

chose D5.

Ingredients

Build it
1/	 Attach one end of an alligator clip to the short

leg of any one of the LEDs included in your kit.
Attach the other end to one end of the resistor.

2/	 Take a second wire and connect the other end of
the resistor to the GND on the ThinkerShield.

3/	 Using a third wire, attach one end to the long leg
of the LED and clip the other end to the D5 on
the ThinkerShield.

Code it
4/	 From the ‘File’ menu, create a new Arduino

sketch and enter all the following code:

5/	 Upload your program. If all goes well, the
LED should flash.

// Flash external LED.
// Define external pin.
int ledPin = 5;

// Setup.
 void setup() {
 pinMode(ledPin, OUTPUT);
 }
// Program loop.
 void loop() {
 digitalWrite(ledPin, HIGH);
 delay(1000);
 digitalWrite(ledPin, LOW);
 delay(1000);
 }

LET’S.GET.(ON).WITH.IT
BEYOND

LED won’t flash?

 Check all of your
connections. Make
sure the clips have
good contact
with the copper
connector rings.

 Check your code.

 Try clipping to a
different external
pin. Change the
number in the code
and upload.

 Try a different LED.

GET.(ON).WITH.MORE
•	 Can you flash the external LED and one or more of the on-board LEDs?
•	 Use the pot to control the

brightness of the LED.
•	 Use the external LED to effect the values from the LDR and have the buzzer buzz when the light beam is broken.

53

54

D8
D9

D10
D11
D12
D13

Reset

Button
D7

Buzzer

VCCGND

VCCGND

A1A0 A2 A3

D5D6 D4 D2

G
re

en
LE

D
s

POT

A4
LDR

A5

Define all

required LED

pins: D2, D4, D5

and set them all

as OUTPUTs.

DigitalWrite
to turn on the
first LED.

DigitalWrite
to turn it off.

Wait a
moment.

Repeat for
each LED.

Make your traffic lights stand
1.	Cut a piece of cardboard

about 15 x 7 cm.
2.	Punch three holes for the LEDs

down the middle. Holes should
be about 5 mm in diameter.

3.	Cut and fold the flaps to make
it stand.

cardboard

Connect three LEDs to the ThinkerShield’s external connectors
and program them to change just like real traffic lights!

+5V
D5

GND

+5V
D4

+5V
D2

Traffic.Lights

Project 5

Control three external LEDs in a
traffic light sequence

3 x resistors3 x LEDs 9 x wiresIngredients

Build it
1/	 Put all three LEDs into the holes in the cardboard

stand (you might want to hold the stand in place with
a piece of tape).

2/	 Using three wires
and alligator
clips, connect
the short leg of
each of the LEDs
to one end of a
resistor (that’s
three resistors,
one resistor for
each LED).

3/	 Use three more
wires to connect
the other end of
each resistor to GND on the ThinkerShield.

4/	 Finally, use another three wires to connect the long
leg of the red LED to D2, the yellow LED to D4 and
the green LED to D5.

Code it
5/	 From the ‘File’ menu, create a new sketch

and enter the LED traffic light code.

6/	 Upload your file and see how it goes!

// LED traffic lights.
// Define external pins.

int red = 2;
int yellow = 4;
int green = 5;

void setup()
{
 pinMode(red, OUTPUT);
 pinMode(yellow, OUTPUT);
 pinMode(green, OUTPUT);
}

void loop()
{
 digitalWrite(green, HIGH);
 delay(2000);
 digitalWrite(green, LOW);
 digitalWrite(yellow, HIGH);
 delay(1000);
 digitalWrite(yellow, LOW);
 digitalWrite(red, HIGH);
 delay(2000);
 digitalWrite(red, LOW);
}

LET’S.GET.(ON).WITH.IT
BEYOND

55

56

D
8

D
9

D
10

D
11

D
12

D
13

R
eset

Button
D

7
Buzzer

V
C

C
G

N
D

V
C

C
G

N
D

A
1

A
0

A
2

A
3

D
5

D
6

D
4

D
2

Green
LEDs

PO
T

A
4

LD
R

A
5

Use all eight external pins, the buzzer and the potentiometer
to make a fun digital spoon piano, complete with an awesome
‘wah wah’ control!

Loop
around
forever.

Set the mode of all
eight digital and
analog external pins
as INPUT_PULLUP.

Check value
of pot for
wahWah.

Step through each pin
and test for a LOW.
If a pin is LOW then
send the note value
plus the value of
wahWah to the buzzer.

aluminium foil
or copper tape

metal
spoon

Digital.Piano

Project 6

Make a fun spoon-controlled
piano using all eight external pins

Define eight constants

to hold our note values

(like we did in the

Play.A.Song activity)

and declare variables.

Set pin modes
for the buzzer
and pot.

cardboard9 x wiresIngredients

Build it
1/	 Cut out eight strips of aluminium foil or copper tape

about 2 x 5 cm in size. These will be your piano keys.
Stick them to a piece of cardboard making sure there
is a gap of about 2-3 mm between them. They must
not touch each other.

2/	 Using eight wires and alligator clips, connect the
eight keys to the ThinkerShield in the order: A0, A1,
A2, A3, D2, D4, D5, D6.

3/	 With another wire, connect a metal spoon to the
ThinkerShield’s GND pin (you can use either one).

Code it
4/	 From the ‘File’ menu, create a new sketch and

enter the following block of code to define your
eight notes and declare our variables:

// Digital Spoon Piano.

// Define notes.
#define NOTE_C4 262
#define NOTE_D4 294
#define NOTE_E4 330
#define NOTE_F4 349
#define NOTE_G4 392
#define NOTE_A4 440
#define NOTE_B4 494
#define NOTE_C5 523

// Declare variables.
int potPin = A5;
int buzzerPin = 3;
int wahWah = 0;

5/	 Now, we create our void setup () section. When
connecting to external pins like this we need to
initialise all eight pins as inputs and switch on their
pull-up resistors using a variation of the pinMode
function. Add the following code block underneath
your last entries:

Of course, you
can change
these values to
whatever you
want once you
know everything
works.

LET’S.GET.(ON).WITH.IT
BEYOND

code on next page
57

As you can probably work out,
all the void loop() bit really does is
cycle around checking each pin in
turn to see if it equals ‘LOW’. If it
does then the tone for that note is
sent to the buzzer.

Also, in case you are wondering
... we are testing for LOW and not
HIGH because the INPUT_PULLUP
mode inverts the behaviour of the
pins. When the spoon touches a
key it completes a circuit to GND
which is LOW. Otherwise the pins
are ‘pulled’ HIGH because of the
INPUT_PULLUP.

// Set up all pin modes.
void setup()
{
 pinMode(A0, INPUT_PULLUP);
 pinMode(A1, INPUT_PULLUP);
 pinMode(A2, INPUT_PULLUP);
 pinMode(A3, INPUT_PULLUP);
 pinMode(2, INPUT_PULLUP);
 pinMode(4, INPUT_PULLUP);
 pinMode(5, INPUT_PULLUP);
 pinMode(6, INPUT_PULLUP);
 pinMode(buzzerPin, OUTPUT);
 pinMode(potPin, INPUT);
}

6/	 Finally we add the loop section of the program that will
actually play the notes:

// Program loop.
void loop()
{
 if(digitalRead(A0) == LOW) tone(buzzerPin, NOTE_C4, 100);
 if(digitalRead(A1) == LOW) tone(buzzerPin, NOTE_D4, 100);
 if(digitalRead(A2) == LOW) tone(buzzerPin, NOTE_E4, 100);
 if(digitalRead(A3) == LOW) tone(buzzerPin, NOTE_F4, 100);
 if(digitalRead(2) == LOW) tone(buzzerPin, NOTE_G4, 100);
 if(digitalRead(4) == LOW) tone(buzzerPin, NOTE_A4, 100);
 if(digitalRead(5) == LOW) tone(buzzerPin, NOTE_B4, 100);
 if(digitalRead(6) == LOW) tone(buzzerPin, NOTE_C5, 100);
}

7/	 Upload and give it a try! Touch each key with the spoon to play each note.

Digital.Spoon.Piano [cont]

58

Digital.Spoon.Piano [cont]

8/	 Let’s add a ‘wah wah’ effect!

Now that you can play standard notes with
your piano, let’s use the potentiometer to add a
‘wah wah’ effect.

Replace the program loop code you entered
previously with this modified block that includes a
command to read a value from the pot and add
that value to the frequency of each note:

// Program loop.
void loop()
{
 wahWah = analogRead(potPin);
 if(digitalRead(A0) == LOW) tone(buzzerPin, NOTE_C4 + wahWah, 100);
 if(digitalRead(A1) == LOW) tone(buzzerPin, NOTE_D4 + wahWah, 100);
 if(digitalRead(A2) == LOW) tone(buzzerPin, NOTE_E4 + wahWah, 100);
 if(digitalRead(A3) == LOW) tone(buzzerPin, NOTE_F4 + wahWah, 100);
 if(digitalRead(2) == LOW) tone(buzzerPin, NOTE_G4 + wahWah, 100);
 if(digitalRead(4) == LOW) tone(buzzerPin, NOTE_A4 + wahWah, 100);
 if(digitalRead(5) == LOW) tone(buzzerPin, NOTE_B4 + wahWah, 100);
 if(digitalRead(6) == LOW) tone(buzzerPin, NOTE_C5 + wahWah, 100);
}

9/	 Upload again. This time while a note is playing,
move the potentiometer back and forth to create a
fantastic ‘wah wah’ effect. Rock.On.With.It!

GET.(ON).WITH.MORE
•	 Try adding some code to include the on-board LEDs in your piano’s effects.
•	 Include the serial monitor so that you can always see the setting of the pot.
•	 Use the pushbutton as a

black key so that holding it down in combination with the spoon plays the sharp # value for C, D, F, G, A.

59

Add components
There is a whole world of
components that can be
connected and controlled from
your ThinkerShield:

•	 temperature and moisture
sensors

•	 tilt switches, reed switches
and relays

•	 motors and steppers

•	 LED ribbons, RGB LEDs

•	 digital displays

•	 lights, speakers

•	 home automation devices.

Visit your local or online store
and see what you can find.

Challenge yourself
If you can think it, there’s
probably a way to code it!

The Arduino programming
language is powerful and
flexible and for the most part,
pretty easy to learn.

So challenge yourself, give
yourself a little project you
would like to try — a toy, a
game or an automated piece of
art and just start entering some
code.

When you get stuck, or want
to know more, just search the
web — chances are the answer
is out there and easy enough
to find!

Arduino Sketchbook and
Examples
Under the ‘File’ menu of the Arduino software
you will find the ‘Sketchbook’ and ‘Examples’
sub menus. You will be able to run lots of these
programs with your ThinkerShield. Just remember
to set the pin numbers at the start of the programs
to match the pin numbers of the ThinkerShield’s
on-board components.

Sites
The following websites are great sources
of Arduino based code, projects and
components:

http://playground.arduino.cc/
Projects/Ideas

www.instructables.com/
id/Arduino-Projects/

www.freetronics.com.au

www.stackoverflow.com

What.Next?

60

http://playground.arduino.cc/Projects/Ideas
http://playground.arduino.cc/Projects/Ideas
www.instructables.com/id/Arduino-Projects/
www.instructables.com/id/Arduino-Projects/
http://www.freetronics.com.au
http://www.stackoverflow.com

1 2 3

Or, the awesome, hilarious, sometimes tragic, but

ultimately life-affirming story of the ThinkerShield!

Prototype
Designed to remove
the need for a
breadboard normally
used with Arduino
microcontrollers.
Built in-house at MAAS
with the prototype
going through several
redesigns to suit
education market.

Thinker1 Mark I
Over 500 of the
Thinker1 boards were
made with the majority
ending up in the hands
of young learners
in MAAS holiday
programs.

Thinker1 Mark II
The board was
redesigned to include
additional features
such as keyboard
emulation.

ThinkerShield
In partnership with
Freetronics, the
board was turned
into a ‘shield’ capable
of extending the
functionality of any
standard Arduino
board.

Experience showed
that the additional
functionality made
it less user friendly.

Yay open source!

After seeing our Thinker1, the
Scouts made their own version
of the board.

Thinker.Timeline

4

The ThinkerShield for Arduino makes it easy for anyone
to get started with programming and controlling
things with their computer in minutes! No need for
any wiring or soldering or program knowledge.
Even if you have never seen a computer program before,

we guarantee you will be making things flash, buzz,
beep and respond in no time.

So don’t just watch what’s going on in the world of
electronics and computing. Take a step to start
understanding it. Grab a ThinkerShield and an Arduino,
turn to the first activity in this book, and get.on.with.it!

[ver 1.2]

	Introduction
	Software.Setup
	What’s.On.Board?
	In.A.Blink
	What’s in an Arduino program?
	Getting.Flashy
	Even.Flashier
	Pot.Basics
	A.Light.Dimmer
	Let’s decode the Light Dimmer Code
	POT.LED.Bouncer
	LDR.Basics
	LDR.Night.Light
	Push.Button.Basics
	Get.A.Toggle.On
	Buzzer.Basics
	Pitch.Changer
	Play.A.Song
	Electronic.Dice
	Buzzing.Light.Meter
	LED.Magic.Sign
	Connect.A.LED
	Traffic.Lights
	Digital.Piano
	What next?

