JM50 Build Guide Combustor WEAR GLOVES AND EYE PROTECTION.

Cut out front and rear combustor end caps using sharp metal shears. Use a bench grinder to remove excess edges and make as round as possible while leaving 90 deg. lip. Determin the best method with the tools you have available to remove centers. make sure to not over cut vaportube ring center where it sit: on NGV. As a decent seal is neccessary.

Use hose clamps to hold outer liner and endcaps together. Using an electric spot welder tack outer shell and front cap first. With NGV attached to vapor tube ring as if final, set the appropriate length on the inner liner making sure it slides INTO center recessed hole in the NGV. NOT around the outside of the center hole. Use vapor ring to mock up combustor and tack areas together. DO NOT TACK VAPOR RING YET.

Drill vapor tube ring seperate. Once cut out, the ring will be fragile so start your drill holes small and work your way up. Insert vapor tubes and braze tubes to ring.

The inner (center) combustor liner will determin the flushness of the vapor ring face onto the NGV. The inner (center) combustion liner will need to be trimmed at the front slightly. Adjust inner liner length into NGV hole so that face of the vapor ring and NGV edge are flush and check that outer combustor liner is correctly placed. Braze inner liner to front end cap and secure. Dremel off the front of the inner (center) combustor liner once basket is tacked together and completed.

The NGV outer edge should match up with the inner face of the vapor tube ring and provide a smooth transition for exhaust gases to exit without turbulance. Did we mention to WEAR GLOVES AND EYE PROTECTION?

Hightemp silver solder can be used to tack front cap to inner and outer liner and vaportubes to vapor ring as well as fuel manifold. An electric spot welder works well for tacking liners together (round) and rear vapor tube ring to outer liner. As long as areas brazed are impinged with air, high temp (1200deg) silver solder can help finalize the last steps as spot welding tight areas of the combustor can be difficult.

JM50 Build Guide Start Up

Mix oil with kero or diesel at 4% oil to fuel ratio.
Always wear proper PPE.

Mobile Jet Oil II is a good choice of lubricant. Do not use 2 cycle oil or standard oil. Very high temps will cause standard lubricants to fail.

Diesel fuel is recommended for your first run.

Pre lube bearings by adding a little fuel with throttle prior to running. Do not pool fuel in engine. Blow air to clear residual fuel prior to starting process.

Set engine up in a secure stand. Use an air compressor to spool engine up to RPM. A leaf blower may not put out enough air and you could potentially overheat your engine.

Use a 12v RC fuel pump and an voltage attenuator for throttle.

Use a propane valve for propane start throttle control. Open propane valve with low RPM and light rear of engine using a torch. Once lit open propane more and slowly bring RPMs up with compressed air while heating engine with propane for aprox 45-60 secs. Be sure to add liquid fuel soon as that is your bearing lubrication.

Once liquid fuel is added engine should spool up RPMs. SHUT OFF PROPANE & KEEP BLOWING AIR into engine until engine is at running temp and rpms. Find the sweet spot of compressor wheel for max rotation. Listen to engine and get those RPMs up. Too much flame out the back is a sign of too much fuel or not enough RPMs.

JM50 BUILD GUIDE START UP (CONT)

Once your engine is running feel engine for vibration. Engine may be hot so be careful. Keep your fingers away from compressor wheel. It can easily remove a finger tip. If there is vibration (lots) try rotating compressor wheel from turbine wheel 90 degrees.

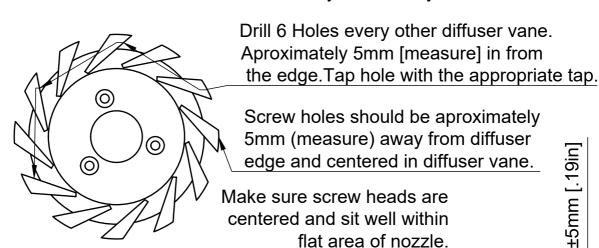
Shut off engine by decreasing voltage supply to throttle. ADD SUFFICIENT COOL AIR while engine is spooling down to allow engine to cool.

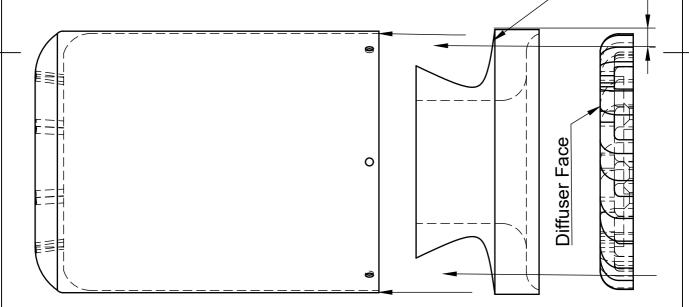
To ensure success take a scientific approach to your jet engine project. Take your time and do it right. And you will experience the joy of a successful first run.

Wear GLOVES AND EYE PROTECTION and keep a fire extinguisher close.

If at anytime you are experiencing issues STOP AND FIX THE PROBLEM! This is very important.

The problem is not going to magically go away. And repeating the same thing while getting the same results will not increase your chances of success. Infact it lowers them.

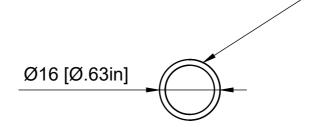

Questions?

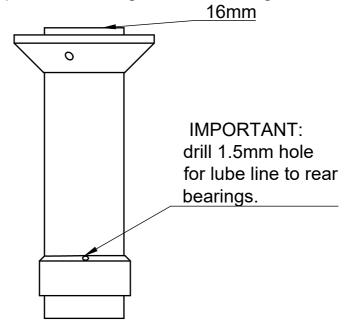

MINIJETENGINE@GMAIL.COM WWW.MINIJETENGINE.COM

ALIGNMENT

For accurate alignment of diffuser, compressor wheel and nozzle, Invert diffuser and nozzle into shell when marking holes. (hint:The entire assembly can be inserted into shell with nozzle facing exhaust hole and will give you a visual on where you may need to center your compressor wheel.)

Mark 6 holes every other diffuser vane being careful not to drill outside the diffuser vane edges. Once holes are drilled in diffuser, insert diffuser and nozzle inverted into shell and mark where you will drill your holes on nozzle.




Dept.	Technical reference	Created by		Approve	ed by	
Design	Jm50Kit Align	Minijets	3/2021	ср		3/202
		Document type		Docume	ent status	
		build		Acti	ve	
		Title		DWG N	lo.	
		j50 nozzle	e Align			
				Rev.	Date of issue	Sheet
						1/1

Axle hub and wave spring

Make sure wave spring fits snug into hole. If wave spring is smalller than axle hub hole diameter, slightly bend outwards untill outer wave spring measurment is 16mm

Wave spring goes on the front of axle hub and must be inserted FIRST into axle hub prior to inserting FRONT bearing.

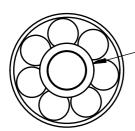
IMPORTANT:

Bearings will bind under heat/stress without a wave spring and damage will occure!

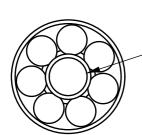
Dept.	Technical reference	Created by		Approved by	
Design	JM50 AXLEHUB	Carlos Perez 3	3/27/2021	CP1411	03/21
		Document type		Document status	
		BUILDGUIDE		ACTIVE	
		Title		DWG No.	
		JM50AxleHU	В	1119	
				Rev. Date of issue	Sheet
					1/1

Bearings

IMPORTANT:


FAILURE TO FOLLOW THESE INSTRUCTIONS WILL DAMAGE BEARINGS. DO NOT APPLY PRESSURE ON INNER RACE FROM THE THIN SIDE OF BEARING!

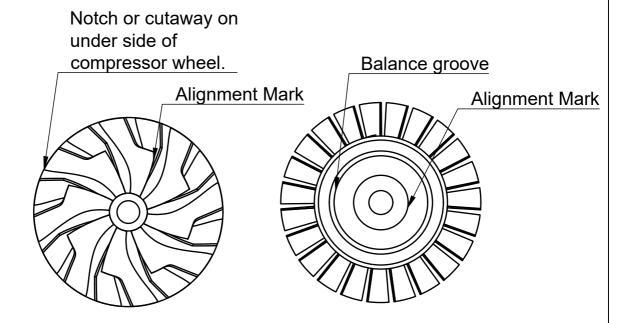
The bearings included in this kit are angular bearings so they must be inserted a specific way or damage to bearing will occure.


Each bearing has a thick center race on one side and a thin center race on the other side.

The thick side must face outwards towards turbine/compressor wheel. And the thin side must face inwards towards center of engine. An improperly inserted bearing will not rotate freely and cause drag.

Excessive pressure on thin side of bearing while assembling your engine may cause inner chase and ceramic balls to disassemble.

Thick center race side faces outwards away from center of engine.

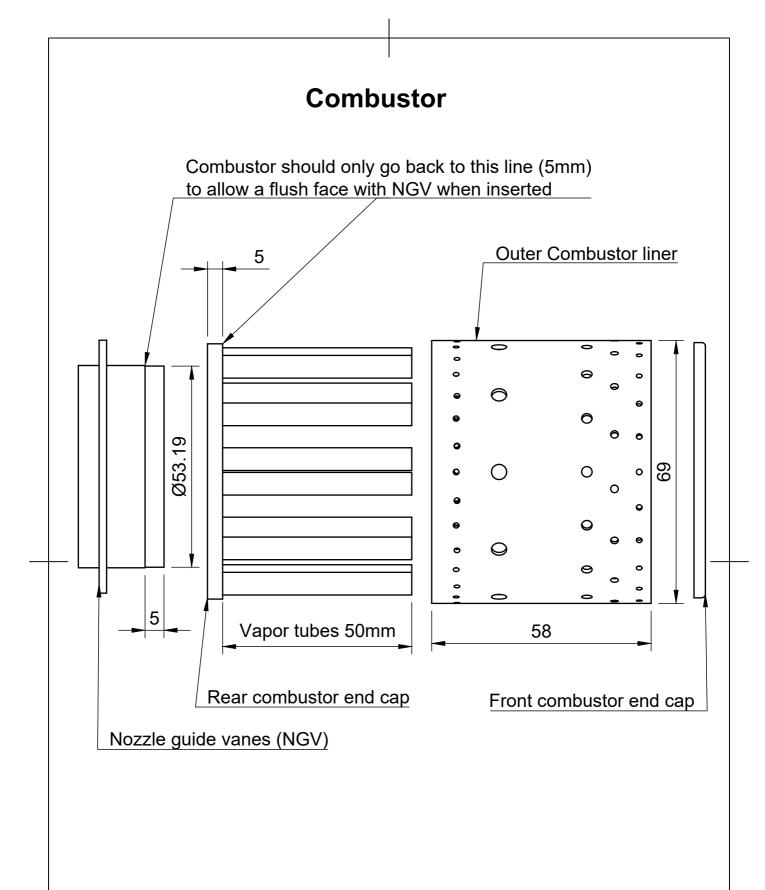


Thin center race side faces inwards toward center of engine.

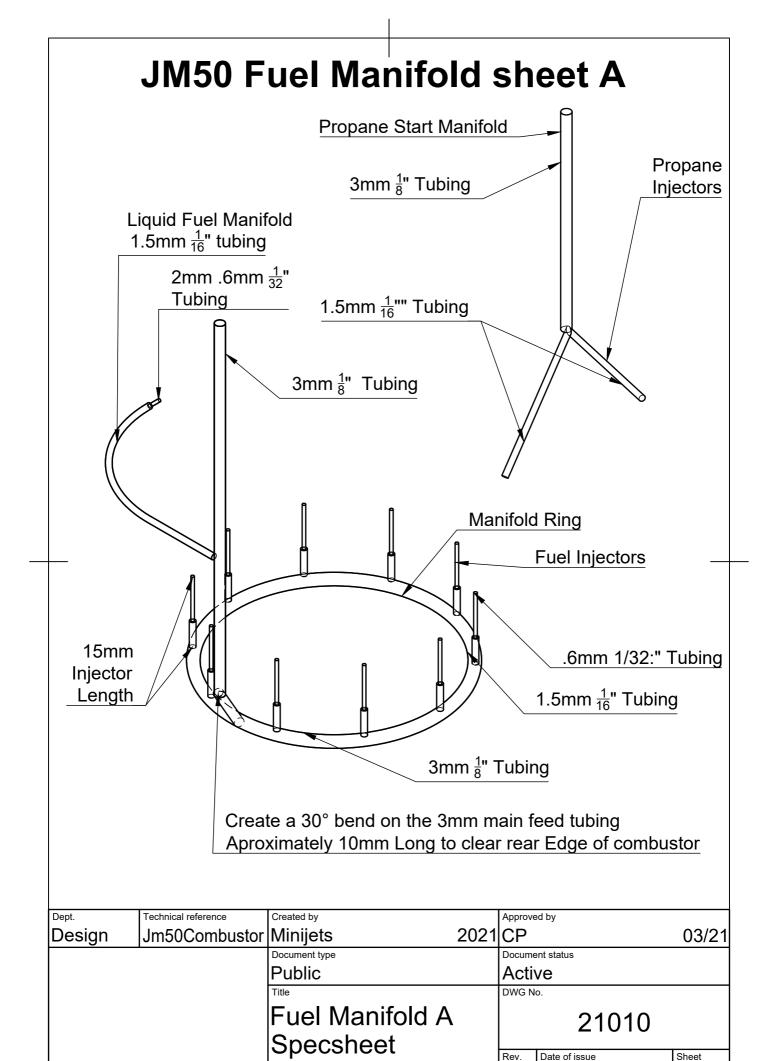
The bearings are 8x16x6mm hybrid ceramic angular bearings with steel chase and silicon nitride ceramic balls.

Dept.	Technical reference	Created by		Approved by	
DESIGN	JM50BEARINGS	CP1411	3/2021	CP1411	03/21
	-	Document type		Document status	
				ACTIVE	
		Title		DWG No.	
		JM50bearing		11115	
				Rev. Date of issue	Sheet
					1/1

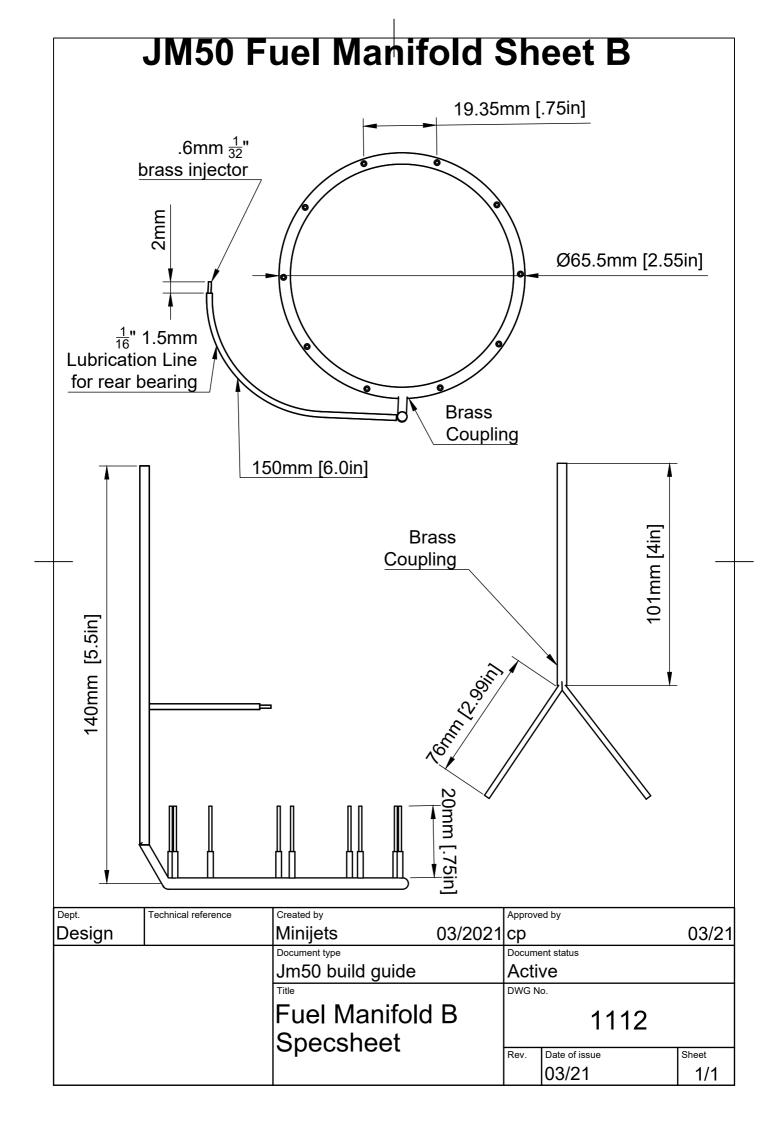
Compressor And Turbine wheel Alignment

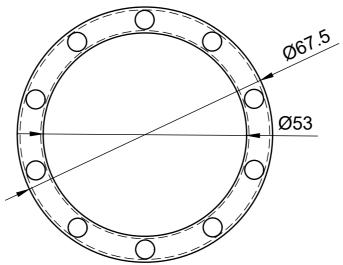

Our turbine wheels and compressor wheels are pre-balanced. Make sure contact areas are clean and there is no debris present when moutning to the shaft with bearings.

Align the markings on the compressor wheel with the turbine wheel.

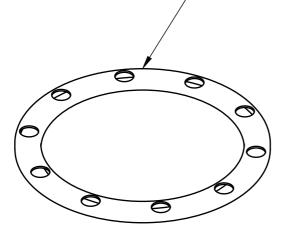

If the alignment marks have worn away, align the balance-cut area of the turbine wheel with the balance-cut (or notch) area of the compressor wheel.

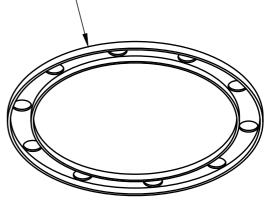
if you feel there is excessive vibration when the engine is running turn wheels 180 degrees with alignment marks opposite of each other. If there is still some vibration present rotate the front or rear wheel 90 degrees in either direction.


Dept.	Technical reference	Created by		Approve	ed by	
		MiniJets	8/2021			
	-	Document type		Docume	ent status	
				AC1	ΓIVE	
		Title		DWG N	0.	
	JN	JM50 Bala	JM50 Balance			
				Rev.	Date of issue	Sheet
						1/1


Dept.	Technical reference	Created by		Approved by	
Design	Combustor build	MINIJETS	3/28/2021	cp1411	03/21
		Document type		Document status	
		JM50buildguide		ACTIVE	
		Title		DWG No.	
		jm50combust	or build	11116	
				Rev. Date of issue	Sheet
					1/1

1/1





Smooth side faces inwards into combustion chamber.

Recessed side faces outwards towards NGV

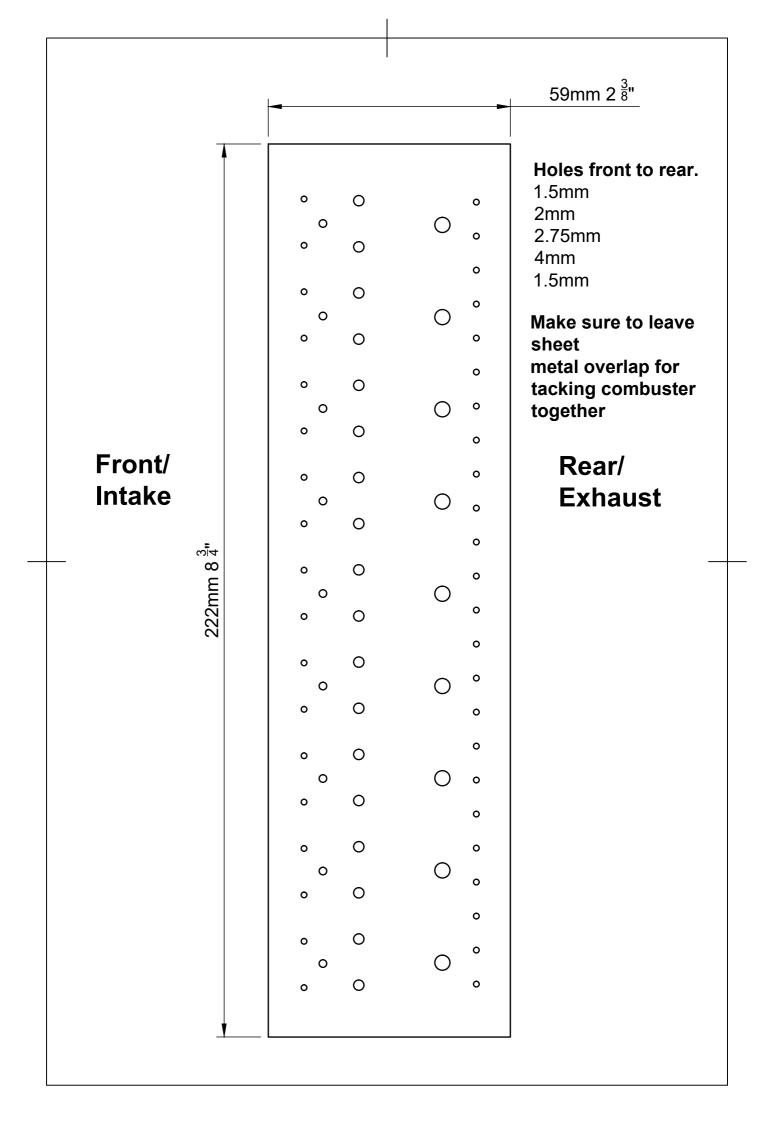
Dept.	Technical reference	Created by	Approv	ved by	
DESIGN		MINIJETS 3/2	1 CP	1411	03/21
		Document type	Docum	nent status	
		JM50BUILDGUIDE	AC.	TIVE	
		Title	DWG I	No.	
		Rear combustor inser		1117	•
			Rev.	Date of issue	Sheet
			1	03/21	1/1

JM50 Inner Combustor Liner

Leave $\frac{3}{8}$ " for overlap when cutting sheet metal liner.

Front (Towards compressor wheel)

Drll hole sizes:


1.5mm 1.5mm 2mm 2.75mm 2.75mm 4mm

REAR (Towards NGV)

> when drilling holes, rear edge of template must line up with rear of sheet metal tube (inner liner) you created.

Excess material of inner liner tube should be trimmed off of the front. Once combustor is *fully* completed trim any excess sheet metal from *front* of inner liner.

Dept.	Technical reference	Created by		Approv	ed by	
Design	JM50 inner liner	Carlos Perez 3/	/2021	c44	5	03/21
		Document type		Docum	ent status	
				Acti	ve	
		Title		DWG N	lo.	
		JM50 Inner combustor	liner		11113	}
				Rev.	Date of issue	Sheet
						1/1

