

Redmond Clay[®] Elemental Analysis

Redmond Clay[®] is a naturally occurring bentonite clay from central Utah. Geologically, bentonite clay is weathered volcanic ash. Because of its unique properties of absorption, adsorption, and negative ionic charge (or CEC) bentonite clay is used in a variety of industrial, agricultural, pharmaceutical, and cosmetic applications. This clay is brought to you as nature gifted it to us. Nothing has been extracted, nothing has been added. All elements found are naturally occurring and are tightly bound to the clay structure. This is a summary of multiple elemental analyses conducted by 3rd party laboratories over years of testing and is provided for informational use only. This is not a guaranteed analysis. As with any natural product, the actual elemental results of any specific sample will vary.

Element	%	Element	%	Element	%
Silica	< 23.0	Fluoride	< 0.002	Rhodium	< 0.0001
Aluminum	< 10.0	Gadolinium	< 0.0005	Rubidium	< 0.002
Chloride	< 8.0	Gallium	< 0.0001	Ruthenium	< 0.0001
Calcium	< 6.0	Germanium	< 0.0001	Samarium	< 0.0009
Sodium	< 6.0	Gold	< 0.002	Scandium	< 0.0005
Magnesium	< 5.0	Hafnium	< 0.0001	Selenium	< 0.0001
Potassium	< 5.0	Holmium	< 0.0001	Silver	< 0.0005
Carbon	< 5.0	Indium	< 0.0001	Strontium	< 0.009
Iron	< 2.0	lodine	< 0.009	Sulfur	<0.07
Antimony	< 0.0001	Iridium	< 0.0001	Tantalum	< 0.0001
Arsnic	<0.05	Lanthanum	< 0.002	Tellurium	< 0.0001
Barium	<0.05	Lead	< 0.002	Terbium	< 0.0001
Beryllium	< 0.0001	Lithium	< 0.005	Thallium	< 0.0001
Bismuth	< 0.0001	Lutetium	< 0.0001	Thorium	< 0.0001
Boron	< 0.002	Manganese	<0.05	Thulium	< 0.0001
Bromine	<0.001	Mercury	< 0.0001	Tin	< 0.0001
Cadmium	< 0.0001	Molybdenum	< 0.0001	Titanium	<0.07
Cerium	< 0.0001	Neodymium	< 0.0001	Tungsten	< 0.0001
Cesium	< 0.0001	Nickel	< 0.0005	Vanadium	<0.07
Chromium	< 0.0005	Niobium	< 0.0001	Ytterbium	< 0.0005
Cobalt	< 0.0001	Osmium	< 0.0001	Yttrium	< 0.002
Copper	<0.001	Palladium	< 0.0005	Zinc	< 0.005
Dysprosium	< 0.0005	Phosphorous	<0.05	Zirconium	< 0.005
Erbium	< 0.0005	Platinum	< 0.0001	Moisture %	≈ 0.5 - 7.0
Europium	< 0.0005	Praseodymium	< 0.0005	pН	≈ 8.5 - 9.8

Notes: When testing for elements at such small levels, the results will vary even within the same package of clay. Some elements are regularly found, others are occasionally found, and some have never been found in our years of testing. Although the elemental scans are conducted for 74 elements, only about 60 elements are typically detected at the detection limits.

All numbers are listed in percentage form, except pH. The < symbol is used to note that the levels found, if any, are below this percentage. The sum does not equal 100% because clay is porous, like a sponge, with air gaps in the structure giving it a high percentage of oxygen as part of the structure not reflected in the elemental analysis.

To calculate ppm from a percentage, take the percentage shown and multiply the percentage by 1,000,000. For example, gold shows less than 0.002%. Multiply 0.002% by 1,000,000, (0.00002 X 1,000,000) which is less than < 20 ppm gold