

What did you observe?	What can be directly measured?	What PAIRS of things might be related?

Title: Toy Car Lab

Purpose: To determine the relationship between the position and time of a car moving at a constant speed.
Procedure: (only a SAMPLE, your procedure should be your own!)

1. Mark a " Ocm " position on the floor.
2. Start the moving car at 0 cm and let it run in a straight line, marking its position with tape or a marker every 1 seconds.
3. Collect position and time data for both a red and blue car.

Data Collection Guidelines:

	- B		
	T 1	111	
	ocm	500 cm 1	
Group \#	$\begin{aligned} & \text { Initial Position } \\ & \text { (cm) } \end{aligned}$	Type of Car	Direction
A	100	RED	+
B	200	BLUE	+
C	500	RED	-
D	300	blUE	-
E	600	RED	-
F	200	blUE	+
G	200	RED	*

Whiteboard Results

- Sketch your graph (line of best fit, NOT individual data points!) and LABEL each axis!
-What type of relationship does this show?
- Write equation ($y=m x+b$)
- Be ready to discuss the meaning of slope and y-intercept.

Linear Equation:

$y=m x+b \rightarrow$?
... replace all 4 letters with information from your straight line graph.

Post-Lab Discussion

 SCIENTIFIC$$
x=\left(-25.9 \frac{c m}{s}\right) t+92 c m
$$

Post-Lab Discussion

Conclusion Discussion VIDEO:

Click Me for Video

ALGEBRAIC REPRESENTATION (linear equation)

$$
\begin{gathered}
x=(11 \mathrm{~cm} / \mathrm{s}) \mathrm{t}+20 \mathrm{~cm} \\
\mathrm{x}=(-25.9 \mathrm{~cm} / \mathrm{s}) \mathrm{t}+92 \mathrm{~cm}
\end{gathered}
$$

Conclusion Questions:

Need for Consensus
What does the trend of the graph represent?

What does the slope of the graph represent?

What does the y-intercept of the graph represent?

What is the General Form of an equation to describe the motion of the toy car?

- This video summarizes the consensus we reached about the relationship between the position and time for an object which moves with a constant speed.

