NEXT-TIME QUESTION

Figures 1 and 2 show the paths followed by 2 golf balls, A and B.

In each figure, does Ball A spend more, the same, or less time in the air than Ball B?

Figure 1:	Figure 2:
rigule 1.	Figure 2

In each figure, does Ball A have a greater, the same, or smaller launch speed than Ball B?

Figure 1: _____

Figure 2: _____

thank to Andrew Stephanou

CONCEPTUAL Physics

Figures 1 and 2 show the paths followed by 2 golf balls, A and B.

In each figure, does Ball A spend more, the same, or less time in the air than Ball B?

Figure 1: _____ Figure 2: ____

In each figure, does Ball A have a greater, the same, or smaller launch speed than Ball B?

Figure 1: _____

Figure 2: ___

In Figure 1 we see equal maximum heights of the balls, so the time of flight is the same for both. Since Ball A has a shorter range, the horizontal component of its initial velocity must

be less than that of Ball B. So Ball A has a smaller launching speed.

That's right: V = /vx2 + vx2

How do you justify

your answers?

Ball B

Ball A

Bal B

In Figure 2 we see that both balls have the same range. We know that 45° gives maximum range for a given speed. Equivalently, 45° is the angle required for the smallest launch speed to achieve a given range. The closer the launch angle is to 45°, the closer the launch speed is to this smallest speed. The launching angles of both balls is appreciably greater than 45°. But notice that Ball A's launch angle is closer to 45° than Ball B's. So Ball A has the smaller launch speed of the two. Since it doesn't go as high, it also spends less time in the air

> The same maximum height implies the same vertical component of initial velocity, but the same range does not imply the same horizontal component.

