Mathematical Model of Images from Lenses

Part 1: In the previous activity, you discovered that placing Lens A and Lens B together created a shorter focal length.

$$
\mathrm{f}_{\mathrm{A}}=20 \mathrm{~cm} \quad \mathrm{f}_{\mathrm{B}}=10 \mathrm{~cm}
$$

The equation to predict the combined focal length is:

$$
\frac{1}{f_{\text {combined }}}=\frac{1}{f_{A}}+\frac{1}{f_{B}}
$$

Substitute your focal lengths into this equation to predict the combined focal length.

Now use the equipment to measure the combined focal length. Show your results.
$\mathrm{f}=$ \qquad cm

The equation that describes the relation between focal length (\mathbf{f}), the object distance $\left(\mathbf{d}_{\mathbf{0}}\right)$, and the image distance $\left(\mathbf{d}_{\mathbf{i}}\right)$ is:

$$
\frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{i}}
$$

Place the " F " object at 0 cm and the screen at the 100 cm position. Adjust the position of your lens so that a sharp image appears on the screen. Record the values into the data table below. Keep the "F" object and screen in the same positions and move the lens to find another position for a sharp image. Record the new values into the data table. Keep the object at 0 cm and move the screen to the 80 cm position. Repeat this process to complete the data table below.

	$\mathrm{d}_{\mathrm{o}}(\mathrm{cm})$	$\mathrm{d}_{\mathrm{i}}(\mathrm{cm})$
$\mathrm{d}_{\mathrm{o}}+\mathrm{d}_{\mathrm{i}}=100 \mathrm{~cm}$		
$\mathrm{~d}_{\mathrm{o}}+\mathrm{d}_{\mathrm{i}}=100 \mathrm{~cm}$		
$\mathrm{~d}_{\mathrm{o}}+\mathrm{d}_{\mathrm{i}}=80 \mathrm{~cm}$		
$\mathrm{~d}_{\mathrm{o}}+\mathrm{d}_{\mathrm{i}}=80 \mathrm{~cm}$		
$\mathrm{~d}_{\mathrm{o}}+\mathrm{d}_{\mathrm{i}}=60 \mathrm{~cm}$		
$\mathrm{~d}_{\mathrm{o}}+\mathrm{d}_{\mathrm{i}}=60 \mathrm{~cm}$		
$\mathrm{~d}_{\mathrm{o}}+\mathrm{d}_{\mathrm{i}}=40 \mathrm{~cm}$		
$\mathrm{~d}_{\mathrm{o}}+\mathrm{d}_{\mathrm{i}}=40 \mathrm{~cm}$		

Plot your data points on the graph above.
Draw a smooth curve to connect the points.
Look closely at the curve. Does the increasing value of $\mathbf{d}_{\mathbf{i}}$ seem to be approaching a limit as the value of \mathbf{d}_{0} keeps increasing? Estimate the value of $\mathbf{d}_{\mathbf{i}}$ Draw this horizontal line (called an asymptote).

Predicted minimum: $\mathbf{d}_{\mathbf{i}}=$ \qquad cm

Now use the equation above to calculate $\mathbf{d}_{\mathbf{i}}$ when $\mathbf{d}_{\mathbf{0}}=5000 \mathrm{~cm}$.

Look closely at the curve above. Do you see a line of reflection symmetry? Draw it!

$$
\mathbf{d}_{\mathbf{i}}=
$$

\qquad cm

Draw this straight line on the curve.

Conclusions

Suppose that a different lab team had a different focal length for their experiment. How would their graph be similar to your graph? How would it be different?

