Kinetic Energy

Tools to Solve Quantitative

$$
\begin{gathered}
\Delta U_{g}=m g \Delta y \\
U_{s}=1 / 2 k(\Delta x)^{2}
\end{gathered}
$$

$$
K=?
$$

$$
\Delta E=W=F_{\|} d=F d \cos \theta
$$

Title: Kinetic Energy Lab

Purpose: To determine the relationship between the...

Data:

Title: Kinetic Energy Lab

Purpose: To determine the relationship between the kinetic energy of a moving object and the object's velocity.

Expanded Data Table
 $$
v=\frac{\Delta x}{\Delta t}
$$

Δh or $\Delta y(\mathrm{~m})$	$U_{g A}(\mathrm{~J})$	$K_{s}(\mathrm{~J})$	$v(\mathrm{~m} / \mathrm{s})$	
$U_{g A}=m g \Delta y=K_{\mathrm{B}}$				

Whiteboard Results

- Sketch your graph (line of best fit, NOT individual data points!) and LABEL each axis!
- What type of relationship does this show?
- Linearize if necessary (make 2nd graph)
- Write equation ($y=m x+b$)
- Be ready to discuss the meaning of the slope and y-intercept.

Slope Units:

$$
\mathrm{J}=\mathrm{N} * \mathrm{~m}
$$

$$
\mathrm{J}=\left(\mathrm{kg} * \mathrm{~m} / \mathrm{s}^{2}\right) \mathrm{m}
$$

$$
\mathrm{J}=\mathrm{kg} * \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

Linear Equation:

$$
y=(m) x+b \rightarrow \text { ? }
$$

... replace all 4 letters with information from your straight line graph.

Patterns in Nature

> To "Linearize" or "Re-express"

$y^{2}=m x+b$	$\begin{aligned} & y=m(1 / x)+b \\ & y=m\left(1 / x^{2}\right)+b \end{aligned}$

Simplifying the SLOPE Units

Y-Intercept Rules:

5\% Rule: If the y-intercept is less than 5% of the maximum y-value, then you can say that is zero.
it is insignificant or zero.

Logic: If you can reason that the y-intercept should be zero. You can say its

$K=(0.128 \mathrm{~kg}) v^{2}+0$

$K=(0.128 \mathrm{~kg}) v^{2}+\mathrm{o}_{\downarrow}$

Slope $=1 / 2$ of the moving object's mass
Symbol: $1 / 2 m \quad$ Units: kg

General
 Equation

$K=\frac{1}{2} m v^{2}$
 2

Tools to Solve Quantitative

Energy Problems

$$
\begin{gathered}
\Delta U_{g}=m g \Delta y \\
U_{s}=1 / 2 k(\Delta x)^{2}
\end{gathered}
$$

$$
K=1 / 2 m v^{2}
$$

$\Delta E=W=F_{\|} d=F d \cos \theta$

