Acceleration

Variables that Affect Acceleration?

$$
---\rightarrow+x
$$

Variables that Affect Acceleration?

Title: Acceleration Lab

Purpose: To determine the relationship between

Data:

Title: Acceleration Lab

Purpose: To determine the relationship between an object's acceleration and its mass.

Data		Dependent Variable
Independent Variable	Mass (kg)	Acceleration ($\mathrm{m} / \mathrm{s} / \mathrm{s}$)
	0.225	?
	0.450	?

Minimizing Friction. .

\$

Patterns in Nature

What to Whiteboard

Y-Intercept Rules:

5\% Rule: If the y-intercept is less than 5% of the maximum y-value, then you can say that is zero.
it is insignificant or zero.

Logic: If you can reason that the y-intercept should be zero. You can say its

$a=(0.02 \mathrm{~kg} * \mathrm{~m} / \mathrm{s} / \mathrm{s}) 1 / m-0.02 \mathrm{~m} / \mathrm{s} / \mathrm{s}$

Kis scientific

$$
a=\left(0.02 \mathrm{~kg}^{*} \mathrm{~m} / \mathrm{s} / \mathrm{s}\right) 1 / m-0.02 \mathrm{~mm} / \mathrm{s} / \mathrm{s}<_{\text {Insignificant }}
$$

Slope = Sum of the Forces on the Cart

Symbol: $\Sigma F \quad$ Units: N

General
 Equation

$$
a=(\Sigma F) \frac{1}{m}=\frac{\Sigma F}{m}
$$

Newton's 2nd Law:

