Main Topic	Measurement		
Subtopic	Modern Physics		
Learning Level	High		
Technology Level	Low		
Activity Type	Student	\quad	Description: Use a quantum
:---			
model to indirectly determine the			
mass of a penny, just as Planck			
and Einstein did for photon			
energies.			

Required Equipment	Film canisters, pennies (newer than 1982), tape, electronic balance
Optional Equipment	Triple-beam balance

Educational Objectives

- Use a quantum model to determine the mass of a penny indirectly, just as Planck and Einstein did for Photon energies.

Concept Overview

Something that is quantized exists in multiples of a set quantity. Examples are charge $\left[1.6 \times 10^{-19} \mathrm{C}\right.$] or quantum energies of photons. Planck and Einstein predicted that light existed as discrete bundles called photons. Since they could not see a unit of photon energy, this lab constructs a model of how quanta was derived and visualized by scientists. Money is quantized into pennies, nickels, dimes, etc. There are NO 2-cent or 8-cent coins!

If students have already learned about the quantization of energy and the Planck constant, the Questions section provides a review of this topic. The important relationship is

$$
E=h v
$$

Where E is the photon energy, h is the Planck constant $\left(4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}\right)$ and v is the frequency of the light emitted. In the case of a green laser, as in the question, the frequency is 523 nm .

Lab Tips

Prepare the film canisters using pennies newer than 1982. Before 1982, pennies were 95% copper and 5% zinc. Since 1982, they are 97.6% zinc and 2.4% copper. New pennies have a mass of 2.5 grams. (Older ones have a mass of 3.1 grams.)

Acknowledgement

This lab was contributed by Dwight "Buzz" Putnam, physics teacher, Whitesboro High School, NY.

Quantum Lab

Name: \qquad
Class: \qquad

Goal:

Use a quantum model to determine the mass of a penny indirectly, just as Planck and Einstein did for Photon energies.

Materials:

8 pre-made canisters containing unknown numbers of identical pennies, electronic balance.

Procedure:

1. Obtain 8 film canisters. DO NOT OPEN THE CANISTERS!
2. Each sample has the mass of the empty canister written on it. Record this and the canister \# in Table \#1 below.
3. Find the mass of the canister and pennies by using the balances and record in Table \#1.

Canister \#	Mass of empty can (gms)	Mass of empty can with pennies (gms)

Interpretations:

1. Calculate the mass of pennies in each container by subtracting the mass of the canister from the mass of the canister and pennies. Record in Table \#2.
2. Arrange the masses of the pennies from smallest to largest. Record in Table 2.
3. Calculate the difference in masses of each successive group of pennies and record in Table \#2.

Canister \#	Mass of pennies (gms)	Mass of pennies in ascending order (gms)	Difference in masses of pennies (gms)

[^0]
Quantum Lab

Name: \qquad
Class: \qquad
4. Using the Quanta of mass you found, find the NUMBER OF PENNIES IN

EACH CANISTER! Record the \# of pennies for each corresponding canister in Table \#3.

Example... Mass of Pennies [gms] = \# of Pennies in each canister Quantum of Mass [gms/Penny]

Canister \#	\# of pennies in Canister

Questions:

1. Find the Quantum Energy [in eV's] for a green LASER.
2. If a photon has a Quantum Energy of 250 eV 's, find the wavelength and type of photon from the Reference Table.

[^0]: Quantum of Mass [Unit of Mass for One Penny] =

