Main Topic	Measurement
Subtopic	Graphing
Learning Level	High
Technology Level	High
Activity Type	Student

Description: Graph four different physical relationships, taking measurements for each. Find the equation of each line.

Required Equipment	Computer with Excel or other graphing application, Spring Set/3, Hooked Masses, Meter sticks, Boyle's Law apparatus, several identical weights or books, D-Cell holder, D-Cell battery, 2 alligator wires, mini bulb, mini bulb holder, light sensor, 7 wood blocks.
Optional Equipment	

Educational Objectives

- Investigate and interpret four different graphical results from experiments.

Concept Overview

Station \#1 investigates the relationship between force and displacement of a stretched spring. Students will discover a direct linear relationship, with an equation of the form $\mathrm{y}=\mathrm{mx}+\mathrm{b}$.

Station \#2 uses an object falling at constant velocity toward a motion sensor. Students graph distance above the ground vs. time and find a negative linear relationship. The equation is $y=m x+b$, and m is negative.

Station \#3 relates light intensity to distance from the source. The graph shows an inverse-square relationship, with an equation $y=1 / x^{2}$.

Station \#4 uses staggered, stacked blocks to result in a simple parabolic graph, where $y=x^{2}$.

Lab Tips

Station \#1: You may assign different springs to different groups, so that the class can see that the general shape of the graph is the same for different springs.

Station \#2: Students need to be familiar with how to use the motion sensor. The data they will collect is simple and quick to capture.

Station \#3 is best done in a darker part of the room, to avoid extraneous light entering the sensor.

Station \#4 can be done with simple 12-18-inch long identical pieces of 2 x 4 lumber or 7 copies of the same book.

This lab was contributed by Dwight "Buzz" Putnam, Whitesboro High School, Marcy, NY.
\qquad
Class:

Goal:

Investigate different graphical results.
Materials:
Computer with Excel or other graphing application, Spring Set/3, Hooked Masses, Meter sticks, Motion Sensor, Coffee Filter, D-Cell holder, D-Cell battery, 2 alligator wires, mini bulb, mini bulb holder, light sensor, 7 wood blocks.

Procedure \& Requirements

1. You will take data from $\mathbf{4}$ different Stations.
2. For EACH Station, FOR FULL CREDIT, YOU MUST...

- Complete the data table.
- Plot the data on Excel.
- Use "scatterplot", label axes, insert an appropriate Trendline AND include an equation for your data.
* REMEMBER! THE TRENDLINE SHOULD BE THE "BEST FIT" SHAPE!
- Answer the questions for EACH station.
- Each lab partner MUST create their own graphs \& answer questions!

Station \#1 - Mass suspended from a Spring \rightarrow "Hooke's Law"

1. Using the masses on the lab table, you \& your partner will measure and record the position of the bottom of the spring as masses are added to it.
2. Be certain to measure the position of the spring with $\underline{\mathbf{N O}}$ masses on it. This will be the ZERO POSITION.
3. Continue to add masses on to the spring and measure the ELONGATION of the spring in each instance.
4. Complete the Data Table \& plot a graph of Mass [x-axis] vs. Elongation.

Mass [gms]	Elongation $[\mathrm{cm}]$
$\mathbf{2 0 0}$	
$\mathbf{5 0 0}$	
$\mathbf{7 0 0}$	
$\mathbf{1 0 0 0}$	
$\mathbf{1 2 0 0}$	
$\mathbf{1 5 0 0}$	

Station \#1/Graph Questions

A. Describe in words the relationship between mass \& spring elongation.
B. Using Excel and the generated equation of the plotted, what is the slope of the graph?
C. What is the equation for the graph?
\qquad
Class: \qquad

Station \#2 - "The Coffee Filter Drop"

1. Using the Motion Detector, click "collect" and wait for the sound of the detector before you drop the filter.
2. Drop the filter $\sim 2-3$ meters directly in-line above the detector until it falls onto it.
3. Select the portion of the graph that is LINEAR and type the highlighted data into your data table. [You can make the graph later.]
4. Plot a graph of Distance [Position] vs. Time [x-axis] on Excel.

Distance [m]	Time [seconds]

Station \#2/Graph Questions
a. What is the equation for the graph?
b. Using Excel and the generated equation of the plotted line, what is the slope of the graph?
c. Using Excel and the generated equation of the plotted line, what is the Velocity of the coffee filter?

Station \#3 - Intensity of Light vs. Distance from the Source

1. Hook the alligator clips to the battery so that the bulb turns on.
2. Set the end of the probe at the $\mathbf{0 c m}$ mark.
3. Move the probe to the $\mathbf{2 c m}$ mark and take your Light Intensity reading.
4. Continue to take readings every $\mathbf{2 c m}$.
5. Complete the data table
6. Plot a graph of Source Distance [x-axis] vs. Light Intensity.
\qquad

Class:

Source Distance [cm]	Intensity [lux]
$\mathbf{0 . 5}$	
2	
4	
6	
8	
10	
12	
14	
16	
18	
20	

Station \#3/Graph Questions

D. Describe in words the relationship between Intensity \& Distance from the source.
E. What is the equation for the graph?

Station \#4 - Maximum Span "Stack O'Stuff"

1. Using the blocks/books provided in the Physics room, stack 7 blocks/books DIRECTLY ON TOP OF EACH OTHER AT THE EDGE OF THE TABLE. [see diagram next page]
2. Beginning with the top block/book, push the top block/book out as far as it will go without falling.
3. Next, push the next book beneath the top one as far out as possible until the top two are just barely balanced.
4. Continue this process until all 7 are balanced over the edge of the lab table and the final diagram is achieved.
5. Complete the Data Table.
6. Plot a graph of Book/Block \# [x-axis] vs. Distance.
7. ***Distance is measured from the Block/Book edge to the Block/Book beneath it!***

Book/Block \#	Distance [cm]
Block/Book \#1 [Distance of bottom book/block from the edge of the lab table]	0 cm
Block/Book \#2	
Block/Book \#3	
Block/Book \#4	
Block/Book \#5	
Block/Book \#6	
Block/Book \#7	

\qquad
\qquad

Step \#1
Stack Book/Blocks

Step \#2
Move top book \#7 as far out as possible.

Step \#3
Books should look like this when correctly placed.

Station \#4/Graph Questions

A. Describe in words the relationship between book \# \& distance.
B. What is the equation for the graph?

