Main Topic Subtopic Learning Level Technology Level Activity Type	Measurement Graphing High High Student	Description: Graph four different physical relationships, taking measurements for each. Find the equation of each line.
		1 1' 1' 0'

Required Equipment	Computer with Excel or other graphing application, Spring
	Set/3, Hooked Masses, Meter sticks, Boyle's Law apparatus,
	several identical weights or books, D-Cell holder, D-Cell
	battery, 2 alligator wires, mini bulb, mini bulb holder, light
	sensor, 7 wood blocks.
Optional Equipment	

Educational Objectives

• Investigate and interpret four different graphical results from experiments.

Concept Overview

Station #1 investigates the relationship between force and displacement of a stretched spring. Students will discover a direct linear relationship, with an equation of the form y = mx + b.

Station #2 uses an object falling at constant velocity toward a motion sensor. Students graph distance above the ground vs. time and find a negative linear relationship. The equation is y=mx+b, and m is negative.

Station #3 relates light intensity to distance from the source. The graph shows an inverse-square relationship, with an equation $y = 1/x^2$.

Station #4 uses staggered, stacked blocks to result in a simple parabolic graph, where $y = x^2$.

Lab Tips

Station #1: You may assign different springs to different groups, so that the class can see that the general shape of the graph is the same for different springs.

Station #2: Students need to be familiar with how to use the motion sensor. The data they will collect is simple and quick to capture.

Station #3 is best done in a darker part of the room, to avoid extraneous light entering the sensor.

Station #4 can be done with simple 12-18-inch long identical pieces of 2x4 lumber or 7 copies of the same book.

This lab was contributed by Dwight "Buzz" Putnam, Whitesboro High School, Marcy, NY.

Name: _____ Class:

Goal:

Investigate different graphical results.

Materials:

Computer with Excel or other graphing application, Spring Set/3, Hooked Masses, Meter sticks, Motion Sensor, Coffee Filter, D-Cell holder, D-Cell battery, 2 alligator wires, mini bulb, mini bulb holder, light sensor, 7 wood blocks.

Procedure & Requirements

- 1. You will take data from <u>4 different Stations</u>.
- 2. For EACH Station, FOR FULL CREDIT, YOU MUST ...
 - Complete the data table.
 - Plot the data on **Excel**.
 - Use "<u>scatterplot</u>", <u>label axes</u>, insert an appropriate <u>Trendline</u> AND include an <u>equation</u> for your data.

* REMEMBER! THE TRENDLINE SHOULD BE THE "BEST FIT" SHAPE!

- Answer the questions for **<u>EACH</u>** station.
- Each lab partner MUST create their own graphs & answer questions!

<u>Station #1</u> - Mass suspended from a Spring \rightarrow "Hooke's Law"

- 1. Using the masses on the lab table, you & your partner will <u>measure</u> and record the position of the <u>bottom of the spring</u> as masses are added to it.
- 2. Be certain to measure the position of the spring with <u>NO</u> masses on it. This will be the <u>ZERO POSITION</u>.
- 3. Continue to add masses on to the spring and measure the **<u>ELONGATION</u>** of the spring in each instance.
- 4. Complete the Data Table & plot a graph of Mass [x-axis] vs. Elongation.

Mass [gms]	Elongation [cm]
200	
500	
700	
1000	
1200	
1500	

Station #1/Graph Questions

- A. Describe *in words* the relationship between mass & spring elongation.
- B. Using Excel and the generated **<u>equation</u>** of the plotted, what is the <u>slope</u> of the graph?
- C. What is the <u>equation</u> for the graph?

Name:	
Class:	

<u>Station #2</u> – "The Coffee Filter Drop"

1. Using the <u>Motion Detector</u>, click "<u>collect</u>" and wait for the sound of the detector before you drop the filter.

2. **<u>Drop the filter</u>** ~2-3 meters directly in-line above the detector until it falls onto it.

3. <u>Select</u> the portion of the graph that is <u>LINEAR</u> and <u>type the highlighted data</u> into your data table. [You can make the graph later.]

4. Plot a graph of **Distance [Position] vs. Time [x-axis]** on Excel.

Distance [m]	Time [seconds]
-	

Station #2/Graph Questions

- a. What is the **<u>equation</u>** for the graph?
- b. Using Excel and the generated **<u>equation</u>** of the plotted line, what is the <u>slope</u> of the graph?
- c. Using Excel and the generated <u>equation</u> of the plotted line, what is the <u>Velocity</u> of the coffee filter?

<u>Station #3</u> – Intensity of Light vs. Distance from the Source

- 1. Hook the alligator clips to the battery so that the bulb turns on.
- 2. Set the end of the probe at the <u>0cm</u> mark.
- 3. Move the probe to the <u>2cm mark</u> and take your <u>Light Intensity reading</u>.
- 4. Continue to take readings every <u>2cm</u>.
- 5. Complete the data table
- 6. Plot a graph of **Source Distance [x-axis] vs. Light Intensity.**

Picture of a Lab		Name:	
		Class:	
	Source Distance [cm]	Intensity [lux]	
	0.5		
	2		
	4		
	6		
	8		
	10		
	12		
	14		
	16		
	18		
	20		

Station #3/Graph Questions

- D. Describe *in words* the relationship between <u>Intensity & Distance</u> from the source.
- E. What is the <u>equation</u> for the graph?

Station #4 – Maximum Span "Stack O' Stuff"

1. Using the blocks/books provided in the Physics room, stack <u>7 blocks/books</u> <u>DIRECTLY</u> <u>ON TOP OF EACH OTHER AT THE EDGE OF THE TABLE</u>. [see diagram next page]

- 2. Beginning with the <u>top block/book</u>, push the <u>top</u> block/book out <u>as far as it will go</u> without falling.
- 3. Next, push the next book beneath the top one as far out as possible until the top two are *just barely balanced*.
- 4. Continue this process until all 7 are balanced over the edge of the lab table and the final diagram is achieved.
- 5. Complete the Data Table.
- 6. Plot a graph of **Book/Block # [x-axis] vs. Distance.**
- 7. *****<u>Distance</u>** is measured from the Block/Book edge to the Block/Book beneath it!***

Book/Block #	Distance [cm]
Block/Book #1	0cm
[Distance of <u>bottom</u> book/block from the	
edge of the lab table]	
Block/Book #2	
Block/Book #3	
Block/Book #4	
Block/Book #5	
Block/Book #6	
Block/Book #7	

Station #4/Graph Questions

- A. Describe *in words* the relationship between book # & distance.
- B. What is the **<u>equation</u>** for the graph?