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Abstract: New developments in accelerating wound healing can have immense beneficial 
socioeconomic impact. The wound healing process is a highly orchestrated series of mechanisms 
where a multitude of cells and biological cascades are involved. The skin battery and current 
of injury mechanisms have become topics of interest for their influence in chronic wounds. 
Electrostimulation therapy of wounds has shown to be a promising treatment option with no-
device-related adverse effects. This review presents an overview of the understanding and use 
of applied electrical current in various aspects of wound healing. Rapid clinical translation of 
the evolving understanding of biomolecular mechanisms underlying the effects of electrical 
simulation on wound healing would positively impact upon enhancing patient’s quality of life.
Keywords: electrotherapy, wound healing, infection, bioelectric current, exogenous current, 
bioelectric medicine, electrical stimulation, chronic wound, acute wound

Introduction
Efficacious wound healing is still a clinical challenge and the complications associated 
with impairment in wound healing carry a great financial burden as well as a negative 
impact on patient lifestyle. Among chronic wounds, the highest prevalence lays in 
the venous leg ulcer, diabetic foot/leg wound (DFU), and pressure ulcer categories. 
Complex chronic wounds, such as diabetic ulcers, have a major long-term impact on 
the morbidity, mortality, and quality of patient’s life. In 2010, the NHS in England has 
spent around £650 million on foot ulcer management and amputation, which represent 
∼0.5% of its budget.1 In the USA, 33% of the $116 billion total health care spend on 
diabetes is on the management of foot ulceration.2 In Europe, cost of wound manage-
ment accounts for 2%–4% of the health care budgets.3 Furthermore, Diabetes UK 
estimates that by 2030, nearly 552 million people worldwide will develop diabetes.4 
Estimates indicate that 15% of all diabetes patients will develop DFUs and of that 
84% leading to lower leg amputations.

The wound healing process is influenced by several local and systemic factors5,6 
( Figure 1), and is complex with a multitude of biomolecular pathways, but comprises 
four distinct yet interrelated phases: hemostasis, inflammation, proliferation, and 
remodeling (Figures 2 and 3). The human epidermis exhibits a natural endogenous 
“battery” that generates a small electric current when wounded.7,8 Healing is arrested 
when the flow of current is disturbed or when the current flow is stopped during pro-
longed opening. Different treatment strategies exist for the management of chronic 
wounds; some are invasive, such as wound debridement and skin substitute therapy, 
while others are noninvasive, such as compression bandaging, wound  dressing, 
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 hyperbaric oxygen therapy, negative pressure therapy, 
ultrasound, and electrostimulation therapy (EST). EST is 
relatively cost-effective, safe, painless, and easy to use. 
EST mimics the natural current of injury and jump starts 
or accelerate the healing process.

The effect of electrical stimulation (ES) has been tested 
in vitro on different types of cells involved in wound healing, 
such as macrophages,9 fibroblasts,10–14 epidermal cells,15–20 
bacteria,21–23 and endothelial cells24–26 that have demonstrated 
changes in cell migration, proliferation, and orientation, 
increase in proteins and DNA synthesis, and antibacterial 
effects. When applied on in vivo models27–40 and clinical stud-

ies,41–61 EST has shown positive effects on wound closure and 
healing rate. Other outcomes, such as increased angiogenic 
response, wound contraction, and antibacterial effects have 
also been reported. However, there is a considerable variation 
in study design, outcome measures, ES parameters, type of 
current, type of wound, and treatment duration, and dose, thus 
presenting further questions on the most optimal approach 
for the treatment of cutaneous wound healing is crucial. This 
review presents an overview of the state-of-the-art medical 
technology applications and technologies associated with 
“smart” materials that can be potentially exploited to mimic 
the current of injury for wound healing and skin regeneration, 

Figure 1 Local and systemic factors that influence wound healing.
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Figure 2 Hemostasis and inflammation phases of wound healing.
Notes: After an injury, the hemostasis (yellow) leads to cessation of bleeding. The platelets adhere to form a clot and release mediators to induce additional platelet 
aggregation and mediate the phases of the healing process. The released mediators trigger the inflammatory phase (orange), divided into a vascular and a cellular response. 
Neutrophils, macrophages, and lymphocytes are cleaning the wound while the surrounding vascular system dilates, allowing more blood volume and circulating cells to be 
recruited. Neutrophils and macrophages migrate toward the wound in order to clear the area of debris, bacteria, and dead tissues, also known as phagocytosis. In addition 
to providing cellular immunity and antibody production, lymphocytes act as mediators within the wound environment through the secretion of cytokines and direct cell-to-
cell contact.
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with reports on the therapeutic evidences of their present use 
in clinical practice.

Endogenous bioelectric current
It is known that the human body possesses an endogenous 
bioelectric system that produces natural electrochemical 
signals in different areas, such as the brain, skin, muscles, 
heart, and bones. In physiological solution, there are no free 
electrons to carry the current. Thus, it is carried by charged 
ions. Across the tissues, asymmetric ionic flows generate 
electrical potentials (Figure 4A). A transepithelial electric 
potential, named skin battery, is generated by the movement 
of ions through Na+/K+ ATPase pumps of the epidermis.20

Current of injury, which is essential for normal wound 
healing (Figure 4B and Video S1), is generated during skin 
injury. This electrical leak, which is a long-lasting lateral 
electrical potential, short-circuits the skin battery. Ca2+, Na+, 
K+, and Cl− ions are the main components of this electrical 
current.62 The current of injury, measurable 2–3 mm around 
the wound and from around 10 to 60 mV,8 creates an electri-
cal potential directed toward the wound with the negative 
pole at the wound center and the positive at the edge20,63 and 

attracts cells toward the injury. The current is sustained in a 
moist environment and shuts off when a wound dries out.64 
The link between ionic flux, current of injury, and healing 
rate has been made in 1983. Increase in Cl− and Na+ influx 
with AgNO3 in wounded corneal epithelium of rats induced a 
significant augmentation of the current of injury, resulting in 
enhanced wound healing. However, rat corneal wounds with 
furosemide (a component that inhibits Cl− efflux) exhibited 
a significant diminution of the current of injury, resulting in 
impaired corneal wounds.

Effects of exogenous electric 
current on wound healing
ES is used in several disciplines, such as electroanalgesia 
for chronic pain control, pacemakers to regulate heartbeat, 
cochlear stimulation to aid hearing, functional ES to restore 
mobility in people with paralyzed limb(s), in addition to 
enhance wound healing.65 In wound healing, four main thera-
peutic approaches have been identified: direct current (DC), 
alternative current (AC), pulsed current (PC), and transcutane-
ous electrical nerve stimulation (TENS; Figure 5A). In each 
therapeutic approach, different parameters, such as the voltage, 

Figure 3 Proliferation and remodeling phases of wound healing. 
Notes: The proliferation phase (blue) is a reconstruction step, where cells are working to form granulation tissues and restore a functional skin. Several events are 
conducted simultaneously: angiogenesis, granulation tissue formation, wound contraction, collagen deposition, and reepithelialization. Activated endothelial cells create new 
blood vessels by proliferating and migrating toward the source of the angiogenesis stimulus. The epidermal cells proliferate and migrate at the wound edge to initiate wound 
recovery. Stimulated fibroblasts synthesize collagen, ground substance, and provisional matrix to create a collagen-based scar tissue. Some of them also differentiate into 
myofibroblast that contracts and induces mechanical stress inside the wound. During the remodeling phase (green), the matrix is turned over and the wound undergoes more 
contraction by the myofibroblasts. Collagen is also reorganized and reoriented.
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duration, frequency, phase, mode, and type of pulse, can be 
controlled. Depending on the protocol, the impulse amplitude 
is either preset by the operator at the maximum value according 
to the patient’s sensitivity threshold of the stimulated tissue or 
can be changed by the patient during the treatment according 
to personal sensitivity. DC is continuous and simple. If DC is 
applied for a too long duration and amplitude, DC can cause 
tissue irritation and damage. On a porcine wound, AC and DC 
both reduced healing time.37 However, DC seemed to be more 
efficient than AC to reduce the wound area, and AC seemed 
to be more efficient than DC to reduce the wound volume.

PC is one of the most documented EST. In clinical trials, 
low voltage, high voltage, degenerative waveform, and short 
voltage PC (SVPC) have shown positive effects when used on 
diabetic and chronic ulcers.43–51,55,61 One randomly controlled 
clinical trial (RCT) has tested different durations of stimulation 
on ulcer patients and showed that 60 and 120 min of stimulation 
significantly reduced the wound surface area compared to 45 
min.42 SVPC devices, such as Aptiva Ballet (Lorenz Therapy 
system) or Naturepulse (Globe Microsystems), generate short 
voltage impulse patterns. Each impulse is characterized by a 

specific sharp spike. During the stimulation, frequency, pulse 
amplitude, and pulse width vary automatically. SVPC increases 
the circulating vascular endothelial growth factor (VEGF) in 
the blood during the stimulation and induces nitric oxide for-
mation the day after treatment.66 Moreover, SVPC has shown 
enhanced wound area reduction in the treatment of chronic, 
venous, and diabetic ulcers, in four RCTs,50,53,54,56 but the short 
period of the studies has not allowed to evaluate the wound 
healing rate. One RCT53 has used SVPC on chronic leg ulcers 
with an “until-healed” treatment duration. This duration of 
treatment allowed to evaluate the wound closure and reported 
that SVPC enhanced wound closure. TENS is a low- or high-
frequency pulsed electrical current that stimulates the periph-
eral nerves. This stimulation is used in clinical practice for the 
relief of chronic and acute pain. It is believed that stimulation 
of the peripheral nerves increases blood flow and could help 
healing. TENS locally increases the blood flow and VEGF 
level in healthy and diabetic patients.67–70 However, no study 
has tested the effect of TENS on wound healing.

Figure 5B shows the summary of different methods of 
application. Electrodes can be placed next to or directly on 

Figure 4 Cutaneous endogenous bioelectric current before and after injury.
Notes: Unbroken skin layers of the epidermis and dermis (A) maintain the skin battery across the body through ionic movement of Na+, K+, and Cl−, generating a polarity 
with positive (+) and negative (−) poles. When wounded (B), the current flows out of the wound (blue), generating an endogenous electrical potential (green) with the 
negative pole (−) in the wound center and the positive pole away from the wound (+). These changes can be viewed in Video S1. Data from Zhao et al.20
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the cutaneous wound. A portable and independent dressing 
can also recover the wound and deliver a small current.71 
Electromagnetic field and wireless microcurrent stimulation 
can allow the user to deliver a broad stimulation under the 
skin without touching it directly, and both have shown prom-
ising results on chronic wounds.60,71,72 The optimal approach 
and relevant parameters for a given condition is yet to be 
determined. However,  studies at the cellular and systemic 
level have already shown that EST affects several cells and 
events involved in wound healing (Figure 6). During inflam-
mation, ES induces a faster inflammatory response39 and 
an increased vascular vasodilatation73 that increases tissue 
oxygenation,37 blood flow,37,58,59,69 and skin temperature.59 
During the proliferation phase, ES generates increased 
angiogenesis,30,36,57,59 collagen matrix formation,36–38 wound 
contraction,29,57 and reepithelialization.57,60 Finally, during 
the remodeling phase, increased cellular activity produces 
an advanced remodeling57 at a systemic level. RCT and in 

vivo trials have demonstrated the positive effects of EST on 
wounds (Tables 1 and 2).

ES cellular and molecular 
mechanisms
The mechanisms by which cells sense and respond to ES 
remain relatively unclear, it is believed that the extracellular 
electrical potential gradient generates an asymmetric signal 
between the two poles of the cells parallel to the  electrical 
field lines. The cell membrane possesses an electrical 
potential that averages 70 mV and variation of this potential 
influences the cell’s general activity. If the membrane is elec-
trically quiescent, the cell downregulates and its functional 
capacity diminishes. Conversely, with increased levels of 
electrical activity, upregulation occurs and the general cell 
activity level increases.26 It is believed that by using ES, we 
can influence the electrical activity of the cell membrane 
and induce specific cellular responses. To evaluate how cells 

Figure 5 Types of electrical current and their different methods of application. 
Notes: Four main types of current have been identified (A). Direct current (orange) is a continuous, unidirectional flow of charged particles that has no pulses and no 
waveform. DC is characterized by an amplitude and a duration. Its polarity remains constant during the stimulation. Alternative current (green) is a continuous bidirectional 
flow of charged particles in which a change in direction of flow occurs. AC stimulation is characterized by an amplitude, duration, and frequency. Pulsed current is a brief 
unidirectional or bidirectional flow of charged particles composed of short pulses separated by a longer off period of no current flow. PC stimulation is characterized by a 
frequency, duration, and pulse. The pulse is defined by a waveform, amplitude, and duration. The waveform can be monophasic (yellow), with constant polarity, or biphasic 
(blue), with alternating polarity. Electrical current can stimulate wound healing through different type of applications (B): electrodes on the skin, bioelectric dressing, wireless 
current stimulation, and EMF.
Abbreviations: EMF, electromagnetic field; DC, direct current; AC, alternative current; PC, pulsed current.
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respond when exposed to an electrical current, experiments 
have been performed in electrotaxis chambers74 (Figure 7) 
and specifically designed culture plates.75,76 At the cellular 
level, EC may affect the ion channels and/or the membrane 

receptors, which constantly monitors the cell response to 
the microenvironment. Under an EC, both ion channels 
and transport proteins are activated and reorganized across 
the cell, independently of the external chemical gradient 

Figure 6 Reported effects of ES on wound healing at the cellular and systemic level during inflammation (yellow), proliferation (blue), and remodeling (green).
Notes: During inflammation, ES increases macrophages migration and activity and decreases bacterial  proliferation at the cellular level. At a systemic level, it induces a 
faster inflammatory response and an increased vascular vasodilatation that increases tissue oxygenation, blood flow, and skin temperature. During the proliferation phase, 
ES increase the migratory response and activity level of epidermal cells, endothelial cells, fibroblasts, and myofibroblasts. At the systemic level, it generates increased 
angiogenesis, collagen matrix formation, wound contraction, and reepithelialization. Finally, during the remodeling phase, the activity of fibroblasts and myofibroblasts is 
enhanced at a cellular level and produces an advanced remodeling at a systemic level.
Abbreviation: ES, electrical stimulation.
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Table 1 Animal in vivo studies testing the effects of electrical stimulation on wound healing

Type of ES Type of wound Animal Results

DC35 Incision wound Pig Increased wound closure, increase of fibroblasts collagen, no difference in 
microvessel number

DC39 Incision wound Rat Decrease of PMN and macrophages, increase of fibroblasts
DC or AC37 Incision wound Pig Reduced healing time and increased perfusion, DC reduced wound area more 

rapidly, AC reduced the wound volume more rapidly
DC or PC28 Incision wound Rat Increased biomechanical properties, collagen density, and wound closure
PC31 Incision wound Mice Acceleration of healing in 0.9–1.9 kV/m and suppression in 10 kV/m
PC40 Diabetic excision wound Mice Altered collagen deposition and cell number
PC35 Incision wound Pig Greater and faster wound surface area
PC29 Incision wound Rabbit Increased number of fibroblasts and higher tensile strength
PC30 Incision wound Rat Increase of blood vessels and fibroblasts
PC33 Diabetic incision wound Rat Increase wound healing, upregulation of collagen I and TGF
PC36 Ischemic model Rabbit Increase of VEGF and collagen IV and activity of collagen I and V
TENS34 Skin flap Rat Increased wound closure
TENS32 Incision wounds Rats Proinflammatory cytokines reduction, and increased wound closure, 

reepithelialization, and granulation tissue formation

Abbreviations: AC, alternative current; DC, direct current; ES, electrical stimulation; PC, pulsed current; PMN, polymorphonuclear leukocytes; TENS, transcutaneous 
electrical nerve stimulation; TGF, transforming growth factor; VEGF, vascular endothelial growth factor.
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Figure 7 This experimental setup has been reported by Farina et al70 and has been 
used in several other articles.
Notes: The cell culture (blue) is done within an electrotactic chamber that isolates 
it from the outside (usually a modified well plate). The electrodes from the ES device 
are stimulating the cells through a conductive interface (blue) to the cell culture to 
avoid any electrochemical products in the cell culture. The electricity delivered is 
followed with an electrical measurement system (yellow), such as an oscilloscope. 
Finally, the evolution of the cells is tracked with a microscope (green) and the images 
are stored in a computer. Data from Song et al.74

Abbreviation: ES, electrical stimulation.
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Figure 8 The polarity of the electrical current is a key feature in wound healing.
Notes: In isolated cell culture, neutrophils, vascular endothelial cells, and macrophages migrate toward the anode, and monocytes, fibroblasts, and epidermal cells toward 
the cathode (A). The polarity of the applied electrical current directly affects the direction of the cell migration on a scratch assay with a monolayer of corneal epithelial cells 
(B) and fibroblasts (C). Figure B adapted by permission from Macmillan Publishers Ltd: Nature. Zhao M, Song B, Pu J, et al. Electrical signals control wound healing through 
phosphatidylinositol-3-OH kinase-gamma and PTEN. 2006;442(7101):457–460. Copyright 2006. Available from http://www.nature.com/.20 Figure C data from Pu and Zhao.19
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and ionic flow, to contribute toward intracellular polariza-
tion and cellular response.77 Intracellular pathways, such as 
phosphatidylinositol-3-OH kinase,20,78,79 and elements, such 
as golgi apparatus,10,19 seem to play a role in the galvanotaxis 
response.

Individually, each cell type exhibits specific behaviors 
under ES and no ES displays a significant reduction of cell 
viability or cytotoxic effect. First, the polarity of the EC 
directs the cell migration and splits them in two groups, the 
one migrating toward the anode and the one migrating toward 
the cathode (Figure 8A). In a monolayer organization, cells 
also exhibit polarity-dependent behaviors19,20 (Figure 8B). 
In a scratch assay, a monolayer of corneal epithelium cells 
moved into the wounds in a coordinated manner without EC 
and faster with one that possessed the same polarity as the 
natural endogenous EC. Reversely, when applied opposite 
to the normal healing direction, the EC directed the cells at 
the wound edge, away from the wound, opening the wound. 
The same effect has been reported with a monolayer of 
fibroblasts19 (Figure 8C).

Furthermore, other outcomes have been used in vitro 
to measure the cell activity under EC. Under EC, fibro-
blasts  proliferate, elongate, and reorient in vitro.10–12,14 
Electrically stimulated fibroblasts seem to have a higher 
contractile behavior and higher fibroblast to myofibroblast 
transdifferentiation.11 DC, AC, and PC have exhibited 
highly differential effects on fibroblasts in an in vitro study, 
where at high intensity and frequencies, the PC maximally 
downregulates collagen I and have a lower cytotoxic effect 
than AC and DC.13 At the wound site, enhanced fibroblast 
activities with DC, PC, and HVPC have also been reported 
in vivo, resulting in an increased fibroblast number,29,39 col-
lagen  synthesis,13,29,33,36,38 myofibroblast creation, and tensile 
strength.29 HVPC on diabetic rats has shown accelerated 
wound healing and restoration of the expression levels 
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of collagen I and transforming growth factor, suggest-
ing reactivation of the fibroblast activities.33 Under ES, 
vascular endothelial cells have also reported changes in 
cell elongation and orientation24–26 and upregulation of the 
levels of VEGF and IL-8 receptors.24 Recent studies have 
also tested the effects of ES on macrophages that exhibit 
enhanced phagocytic activity9 and platelets that display 
growth factors releases.80

Severe bacterial invasion can arrest the healing process 
and lead to chronic wound. Traditionally, systemic antibi-
otic treatments are used to treat severe infection. However, 
overuse of antibiotics can increase the bacterial resistance 
and lead to inefficient antibiotics. It is believed that ES may 
impose a bacteriostatic effect on microbes and bacteria 
that commonly colonize or infect wounds.21 Studies have 
shown that HVPC and DC kill or inhibit the proliferation 
of common wound pathogens,22,23 such as Staphylococcus 
aureus, Escherichia coli, and Pseudomonas aeruginosa. 
DC, HVPC, and LVPC have been tested in vitro on S. 
aureus.23 Apparently, HVPC and DC treatments have a 
significant inhibitory effect compared to LVPC. Moreover, 
no difference in bacterial growth inhibition was found when 
varying polarity and time of ES. At present, we are unclear 
as to why the ES seems to induce an antibacterial effect 
by direct or indirect mechanisms. The electrical current 
may directly disrupt the bacterial membrane or block its 
proliferation. Indirectly, the electrical current may induce 
a change of pH or temperature within the wound, a produc-
tion of electrolysis products, or an increased migration of 
macrophages and leukocytes, resulting in an antibacterial 
effect.

Angiogenesis: friend or foe?
Angiogenesis is a key event in wound healing. While insuf-
ficient angiogenesis can lead to chronic wound formation, 
aggressive angiogenesis can lead to abnormal scarring. Thus, 
spatiotemporal control of EST to enhance angiogenesis is cru-
cial. Several studies on animal models and clinical trials have 
shown that ES increases the level of VEGF and the number of 
blood vessels in the wound.30,58,59,66,73 Higher levels of VEGF 
linked to enhancing angiogenesis and advanced healing have 
been reported in the stimulated arm of each patient. VEGF 
is the most used angiogenic marker as it presents all the 
characteristics of a specific angiogenic factor81 and is pre-
dominantly produced by macrophages, platelets, endothelial 
cells, epidermal cells, fibroblasts, myofibroblasts, and mast 
cells.82 Indirectly, increased angiogenesis can facilitate local 
tissue oxygenation.

Electrotherapy: the path to 
regeneration beyond repair?
Salamanders and newts exhibit impressive regenerative 
ability that is divided into three phases: wound healing, 
dedifferentiation, and redevelopment, where they can 
regrow a whole limb. Humans are limited in repairing the 
localized damaged area. Both human repair and regenera-
tive processes are regulated by ionic flows and endogenous 
electrical current. However, the evolution of the endogenous 
electrical current is distinctly different in regenerating and 
nonregenerating species (Figure 9). In nonregenerative spe-
cies, the positive current decreases simultaneously as the 
wound heals. However, in regenerative species, the initial 
positive polarity of the injured tissue sharply reverses to a 
high negative polarity that gradually reduces as the damaged 
area regenerates.83 Particularly, the regeneration of the limb 
seems to be stopped if the polarity of the electrical current 
does not reverse. Recently, an in vivo experimentation on 
90 tendons of rabbits has linked variation in the healing 
response with the polarity of the exogenous ES.27 Even if 
both cathodal and anodal stimulation exhibited accelerated 
healing rate, cathodal (negative) ES showed more significant 
improvements than anodal (positive) ES in the first 3 weeks, 
while anodal ES showed more significant  improvement after 
3 weeks. Cathodal stimulation may promote and attract 
macrophages in the early stage of wound healing, resulting 
in a faster inflammatory phase, and anodal stimulation may 
promote and attract fibroblasts in the late stage of wound 
healing, resulting in advanced remodeling phase. Recogni-
tion of the ES polarity dependence on the stage of the wound 
could lead to better healing response and less scar formation.

Smart materials, technology, and ES
Electrotherapy could be combined with the state-of-the-art 
technologies for potentially superior therapeutic effects 
in wound healing and skin regeneration (Figure 10). For 
instance, researchers have set up human skin-based triboelec-
tric nanogenerators84 and smart skins85 that can harvest the 
biomechanical energy to produce renewable electricity. Such 
technologies could power a bioelectric dressing that would 
stimulate the wound. New dressings made of conductive and 
inherently antibacterial materials, such as electroactive doped 
polyurethane/siloxane membrane,86 can work simultaneously 
with electrotherapy by restoring the physiological homeosta-
sis at the wound site and biomimicking the current of injury. 
Moreover, electrically controlled drug delivery could be 
achieved within a dressing or scaffold by using electrically 
responsive hydrogels87,88 or graphene oxide nanocomposite 
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Figure 9 Evolution of the current of injury in regenerative and nonregenerative species after injury (A). In nonregenerative species (blue), the current stays positive 
and gradually reduces as the wound heals. In regenerative species (red), a polarity reversal (green) occurs while healing. The negative current gradually reduces as the 
damaged area regenerates. After an injury (B), both regenerative and nonregenerative species exhibit a healing process. After the polarity reversal of the regenerative 
species, a dedifferentiation, where cells lose their specialized characteristics and migrate, occurs. Then the limb regrows during the redevelopment and leads to a complete 
regeneration, where nonregenerative species have maintained their positive current and repaired tissues with a scar.
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Figure 10 Electrotherapy can be combined with state of the art technology, such as active dressings, 3D printing, scaffold, drug delivery, or smart skin.
Abbreviation: ES, electrical stimulation.
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films89 filled with nanoparticle system containing the drug. 
With this approach, drug release could be modulated by the 
endogenous or exogenous electrical current. Using a scaffold, 
such as collagen/gold nanoparticle scaffolds90 or injectable 
microporous gel scaffolds,91 could provide a biodegradable 
structure and accelerate cell migration to the wound site, fol-
lowing which an ES can enhance the cellular activity within 
the scaffold. Specific materials properties can be combined 
with EST for better aesthetics of the wound during the treat-
ment, by creating a layer on the skin to disguise or “hide” 
the wound.92 3D printing is a relatively novel method that 
enables bespoke therapy and offers an opportunity to 3D print 
skin scaffolds using the patient’s own cells93 as well as the 
ability to make bespoke patches.94 Shape memory polymer 
composites,95 which have properties similar to uninjured 
skin, are of great interest to generate electricity-dependent 
mechanical and thermal stresses on the wound. These stresses 
would depend on the intensity of the current of injury, and 
thus, would evolve during each phase of the healing process.

Role of magnetic field
Furthermore, significant beneficial effects have been reported 
with the use of magnetic field in pain management, bone 
fracture, and wound healing.96 It is particularly intriguing 
when we know that magnetic and electric forces are linked 
by the Maxwell’s equations. Every electric field generates 
a magnetic field in the surrounding environment and vice 
versa. Scientists refer to the use of electric and magnetic 
fields in medicine as the electromagnetic field therapy.96 In 
vitro, magnetic field seems to elicit changes in cells of the 
immune systems through Ca2+ signaling, including upregu-
lated cytokine synthesis and increased cell proliferation. The 
electromagnetic field generates an ionic flow under the skin 
that is similar to the one seen in electrotherapy. However, 
more studies are needed to understand the mechanisms 
underlying the response of biological tissue to both electric 
and magnetic fields.

Conclusion and the future
Electrotherapy and associated smart materials and technolo-
gies promise to improve chronic wound healing strategies 
and can be potentially established as a clinically robust and 
commercially viable system for wound healing that will make 
a great impact in global health care and economy. However, 
there are considerable variations in parameters, modes, dos-
ing, and duration of treatment that lead to complications in 
comparison of the data with a need for more well-designed 
clinical trials.

The healing process undergoes different stages and each 
stage involves a different and interlinked set of cellular 
events. More studies are warranted to delineate their mecha-
nism and the influence of ES on them. Recognizing the type 
of current and the corresponding cellular activity, which it 
most influences may help to present personalized treatment 
to specific types of wounds. Electrotherapy devices at the 
current age of digital health care, together with developments 
in responsive smart materials and technologies, could enable 
continuous monitoring of the status of patient’s wound, allow-
ing instant feedback responses, thus allowing the health care 
provider to choose with ease, preselected parameters that 
would optimally accelerate wound healing. These possible 
innovations could have an impact on other related diseases, 
such as Raynaud’s disease, necrotizing fasciitis, or cosmetic 
concerns, such as chickenpox scars, acne, keloid scar, or 
rosacea. Better understanding and optimization of EST will 
interest multidisciplinary research groups including surgical, 
biochemical and translational sciences to apply the great 
potential of EST in regenerative medicine.

Acknowledgments
The authors gratefully acknowledge Globe Microsystems 
Ltd for their sponsorship to support JH and studies on wound 
healing. AdM is a coinvestigator of Engineering and Physical 
Sciences Research Council (EPSRC) project EP/L020904/1. 
The authors gratefully acknowledge Dr Vittorio Malaguti for 
his most helpful and insightful comments on the early drafts 
of this article.

Disclosure
The authors report no conflicts of interest in this work.

References
 1. Kerr M. Foot care for people with diabetes: the economic case for 

change. NHS Diabetes; 2012. Available from: https://www.diabetes.
org.uk/Documents/nhs-diabetes/footcare/footcare-for-people-with-
diabetes.pdf. Accessed June 1, 2016.

 2. Armstrong DG, Kanda VA, Lavery LA, Marston W, Mills JL Sr, Boulton AJ. 
Mind the gap: disparity between research funding and costs of care for 
diabetic foot ulcers. Diabetes Care. 2013;36(7):1815–1817.

 3. Gottrup F, Apelqvist J, Price P; European Wound Management Associa-
tion Patient Outcome Group. Outcomes in controlled and comparative 
studies on non-healing wounds: recommendations to improve the quality 
of evidence in wound management. J Wound Care, 2010;19(6):237–268.

 4. Diabetes-UK. State of the Nation: England; 2013: 1–32.
 5. Christian LM, Graham JE, Padgett DA, Glaser R, Kiecolt-Glaser JK. 

Stress and wound healing. Neuroimmunomodulation. 2006;13(5–6): 
337–346.

 6. Guo S, Dipietro L. Factors affecting wound healing. J Dent Res. 
2010;89(3):219–229.

 7. Eltinge EM, Cragoe EJ Jr, Vanable JW Jr. (1986). Effects of amiloride 
analogues on adult Notophthalmus viridescens limb stump currents. 
Comp Biochem Physiol A Comp Physiol. 1986;84(1):39–44.



Journal of Multidisciplinary Healthcare 2017:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

191

Electrotherapy in wound healing

 8. Foulds IS, Barker AT. Human skin battery potentials and their possible 
role in wound healing. Br J Dermatol. 1983;109(5):515–522.

 9. Hoare JI, Rajnicek AM, McCaig CD, Barker RN, Wilson HM. Electric 
fields are novel determinants of human macrophage functions. J Leukoc 
Biol. 2016;99(6):1141–1151.

10. Kim MS, Lee MH, Kwon BJ, Koo MA, Seon GM, Park JC. Golgi 
polarization plays a role in the directional migration of neonatal dermal 
fibroblasts induced by the direct current electric fields. Biochem Biophys 
Res Commun. 2015;460(2):255–260.

11. Rouabhia M, Park H, Meng S, Derbali H, Zhang Z. Electrical stimula-
tion promotes wound healing by enhancing dermal fibroblast activity 
and promoting myofibroblast transdifferentiation. PLoS One. 2013; 
8(8):e71660.

12. Rouabhia M, Park HJ, Zhang Z. Electrically activated primary human 
fibroblasts improve in vitro and in vivo skin regeneration. J Cell Physiol. 
2016;231(8):1814–1821.

13. Sebastian A, Syed F, McGrouther DA, Colthurst J, Paus R, Bayat A. A 
novel in vitro assay for electrophysiological research on human skin 
fibroblasts: degenerate electrical waves downregulate collagen I expres-
sion in keloid fibroblasts. Exp Dermatol. 2011;20(1):64–68.

14. Wang Y, Rouabhia M, Zhang Z. Pulsed electrical stimulation benefits 
wound healing by activating skin fibroblasts through the TGFβ1/ERK/
NF-κB axis. Biochim Biophys Acta. 2016;1860(7):1551–1559.

15. Cohen DJ, James Nelson W, Maharbiz MM. Galvanotactic control of 
collective cell migration in epithelial monolayers. Nat Mater. 2014; 
13(4):409–417.

16. Gao J, Raghunathan VK, Reid B, et al. Biomimetic stochastic topogra-
phy and electric fields synergistically enhance directional migration of 
corneal epithelial cells in a MMP-3-dependent manner. Acta Biomater. 
2015;12:102–112.

17. Li L, Gu W, Du J, et al. Electric fields guide migration of epidermal 
stem cells and promote skin wound healing. Wound Repair Regen. 
2012;20(6):840–851.

18. Nishimura KY, Isseroff RR, Nuccitelli R. Human keratinocytes migrate 
to the negative pole in direct current electric fields comparable to those 
measured in mammalian wounds. J Cell Sci. 1996;109(Pt 1):199–207.

19. Pu J, Zhao M. Golgi polarization in a strong electric field. J Cell Sci. 
2005;118(Pt 6):1117–1128.

20. Zhao M, Song B, Pu J, et al. Electrical signals control wound healing 
through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature. 
2006;442(7101):457–460.

21. Asadi MR, Torkaman G. Bacterial inhibition by electrical stimulation. 
Adv Wound Care (New Rochelle). 2014;3(2):91–97.

22. Gomes RC, Brandino HE, de Sousa NT, Santos MF, Martinez R, Guirro 
RR. Polarized currents inhibit in vitro growth of bacteria colonizing 
cutaneous ulcers. Wound Repair Regen. 2015;23(3):403–411.

23. Merriman HL, Hegyi CA, Albright-Overton CR, Carlos J Jr, Putnam 
RW, Mulcare JA. A comparison of four electrical stimulation types 
on Staphylococcus aureus growth in vitro. J Rehabil Res Dev. 2004; 
41(2):139–146.

24. Bai H, Forrester JV, Zhao M. DC electric stimulation upregulates angio-
genic factors in endothelial cells through activation of VEGF receptors. 
Cytokine. 2011;55(1):110–115.

25. Bai H, McCaig CD, Forrester JV, Zhao M. DC electric fields induce 
distinct preangiogenic responses in microvascular and macrovascular 
cells. Arterioscler Thromb Vascu Biol. 2004;24(7):1234–1239.

 26. Zhao M, Bai H, Wang E, Forrester JV, McCaig CD. Electrical stimula-
tion directly induces pre-angiogenic responses in vascular endothelial 
cells by signaling through VEGF receptors. J Cell Sci. 2004;117(Pt 3): 
397–405.

27. Ahmed AF, Elgayed SSA, Ibrahim IM. (2012). Polarity effect of 
microcurrent electrical stimulation on tendon healing: biomechanical 
and histopathological studies. J Adv Res. 2012;3(2):109–117.

28. Asadi MR, Torkaman G, Hedayati M, Mofid M. Role of sensory 
and motor intensity of electrical stimulation on fibroblastic growth 
factor-2 expression, inflammation, vascularization, and mechanical 
strength of full-thickness wounds. J Rehabil Res Dev. 2013;50(4): 
489–498.

29. Bayat M, Asgari-Moghadam Z, Maroufi M, Rezaie FS, Bayat M, Rakh-
shan M. Experimental wound healing using microamperage electrical 
stimulation in rabbits. J Rehabil Res Dev. 2006;43(2):219–226.

30. Borba GC, Hochman B, Liebano RE, Enokihara MM, Ferreira LM. 
Does preoperative electrical stimulation of the skin alter the healing 
process? J Surg Res. 2011;166(2):324–329.

31. Cinar K, Comlekci S, Senol N. Effects of a specially pulsed electric 
field on an animal model of wound healing. Lasers Med Sci. 2009;24(5): 
735–740.

32. Gurgen SG, Sayin O, Cetin F, Tuc Yucel A. Transcutaneous electrical 
nerve stimulation (TENS) accelerates cutaneous wound healing and 
inhibits pro-inflammatory cytokines. Inflammation. 2014;37(3):775–784.

33. Kim TH, Cho HY, Lee SM. High-voltage pulsed current stimulation 
enhances wound healing in diabetic rats by restoring the expression 
of collagen, α-smooth muscle actin, and TGF-β1. Tohoku J Exp Med. 
2014;234(1):1–6.

34. Liebano RE, Abla LE, Ferreira LM. Effect of high frequency transcu-
taneous electrical nerve stimulation on viability of random skin flap in 
rats. Acta Cir Bras. 2006;21(3):133–138.

35. Mehmandoust FG, Torkaman G, Firoozabadi M, Talebi G. Anodal and 
cathodal pulsed electrical stimulation on skin wound healing in guinea 
pigs. J Rehabil Res Dev. 2007;44(4):611–618.

36. Morris KA, McGee MF, Jasper JJ, Bogie KM. Evaluation of electrical 
stimulation for ischemic wound therapy: a feasibility study using the 
lapine wound model. Arch Dermatol Res. 2009;301(4):323–327.

37. Reger SI, Hyodo A, Negami S, Kambic HE, Sahgal V. Experimental 
wound healing with electrical stimulation. Artif Organs. 1999;23(5): 
460–462.

38. Talebi G, Torkaman G, Firoozabadi M, Shariat S. Effect of anodal and 
cathodal microamperage direct current electrical stimulation on injury 
potential and wound size in guinea pigs. J Rehabil Res Dev. 2008; 
45(1):153–159.

39. Taskan I, Ozyazgan I, Tercan M, et al. A comparative study of the effect 
of ultrasound and electrostimulation on wound healing in rats. Plast 
Reconstr Surg. 1997;100(4):966–972.

40. Thawer HA, Houghton PE. Effects of electrical stimulation on the his-
tological properties of wounds in diabetic mice. Wound Repair Regen. 
2001;9(2):107–115.

41. Adunsky A, Ohry A; DDCT Group. Decubitus direct current treatment 
(DDCT) of pressure ulcers: results of a randomized double-blinded 
placebo controlled study. Arch Gerontol Geriatr. 2005;41(3):261–269.

42. Ahmad E. High-voltage pulsed galvanic stimulation: effect of treatment 
duration on healing of chronic pressure ulcers. Ann Burns Fire Disasters. 
2008;21(3):124–128.

43. Carley PJ, Wainapel SF. Electrotherapy for acceleration of wound 
healing: low intensity direct current. Arch Phys Med Rehabil. 
1985;66(7):443–446.

44. Feedar JA, Kloth LC, Gentzkow GD. Chronic dermal ulcer healing 
enhanced with monophasic pulsed electrical stimulation. Phys Ther. 
1991;71(9):639–649.

45. Franek A, Kostur R, Polak A, et al. Using high-voltage electrical 
stimulation in the treatment of recalcitrant pressure ulcers: results of a 
randomized, controlled clinical study. Ostomy Wound Manage. 2012; 
58(3):30–44.

46. Franek A, Polak A, Kucharzewski M. Modern application of high volt-
age stimulation for enhanced healing of venous crural ulceration. Med 
Eng Phys. 2000;22(9):647–655.

47. Griffin JW, Tooms RE, Mendius RA, Clifft JK, Vander Zwaag R, el-Zeky F. 
Efficacy of high voltage pulsed current for healing of pressure ulcers 
in patients with spinal cord injury. Phys Ther. 1991;71(6):433–442; 
discussion 442–434.

48. Houghton PE, Campbell KE, Fraser CH, et al. Electrical stimulation 
therapy increases rate of healing of pressure ulcers in community-dwell-
ing people with spinal cord injury. Arch Phys Med Rehabil. 2010;91(5): 
669–678.

49. Houghton PE, Kincaid CB, Lovell M, et al. Effect of electrical 
stimulation on chronic leg ulcer size and appearance. Phys Ther. 2003; 
83(1):17–28.



Journal of Multidisciplinary Healthcare 2017:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

192

Hunckler and de Mel

50. Janković A, Binić I. Frequency rhythmic electrical modulation system 
in the treatment of chronic painful leg ulcers. Arch Dermatol Res. 
2008;300(7):377–383.

51. Lawson D, Petrofsky JS. A randomized control study on the effect of 
biphasic electrical stimulation in a warm room on skin blood flow and 
healing rates in chronic wounds of patients with and without diabetes. 
Med Sci Monit. 2007;13(6):CR258–CR263.

52. Lundeberg TC, Eriksson SV, Malm M. Electrical nerve stimulation 
improves healing of diabetic ulcers. Ann Plast Surg. 1992;29(4):328–331.

53. Magnoni C, Rossi E, Fiorentini C, Baggio A, Ferrari B, Alberto G. 
Electrical stimulation as adjuvant treatment for chronic leg ulcers of 
different aetiology: an RCT. J Wound Care. 2013;22(10):525–526, 
528–533.

54. Margara A, Boriani F, Obbialero FD, Bocchiotti MA. Frequency rhyth-
mic electrical modulation system in the treatment of diabetic ulcers. 
Chirurgia. 2008;21(6):311–314.

55. Peters EJ, Lavery LA, Armstrong DG, Fleischli JG. Electric stimulation 
as an adjunct to heal diabetic foot ulcers: a randomized clinical trial. 
Arch Phys Med Rehabil. 2001;82(6):721–725.

56. Santamato A, Panza F, Fortunato F, et al. Effectiveness of the frequency 
rhythmic electrical modulation system for the treatment of chronic 
and painful venous leg ulcers in older adults. Rejuvenation Res. 
2012;15(3):281–287.

57. Sebastian A, Syed F, Perry D, et al. Acceleration of cutaneous healing by 
electrical stimulation: degenerate electrical waveform down-regulates 
inflammation, up-regulates angiogenesis and advances remodeling in 
temporal punch biopsies in a human volunteer study. Wound Repair 
Regen. 2011;19(6):693–708.

58. Ud-Din S, Perry D, Giddings P, et al. Electrical stimulation increases 
blood flow and haemoglobin levels in acute cutaneous wounds without 
affecting wound closure time: evidenced by non-invasive assessment 
of temporal biopsy wounds in human volunteers. Exp Dermatol. 
2012;21(10):758–764.

59. Ud-Din S, Sebastian A, Giddings P, et al. Angiogenesis is induced 
and wound size is reduced by electrical stimulation in an acute wound 
healing model in human skin. PLoS One. 2015;10(4):e0124502.

60. Wirsing PG, Habrom AD, Zehnder TM, Friedli S, Blatti M. Wireless 
micro current stimulation–an innovative electrical stimulation method 
for the treatment of patients with leg and diabetic foot ulcers. Int Wound 
J. 2015;12(6):693–698.

61. Wood JM, Evans PE 3rd, Schallreuter KU, et al. A multicenter study on 
the use of pulsed low-intensity direct current for healing chronic stage II 
and stage III decubitus ulcers. Arch Dermatol. 1993;129(8):999–1009.

62. Vieira AC, Reid B, Cao L, Mannis MJ, Schwab IR, Zhao M. Ionic 
components of electric current at rat corneal wounds. PLoS One. 2011; 
6(2):e17411.

63. Reid B, Song B, McCaig CD, Zhao M. Wound healing in rat cornea: 
the role of electric currents. FASEB J. 2005;19(3):379–386.

64. McCaig CD, Rajnicek AM, Song B, Zhao M. Controlling cell behavior 
electrically: current views and future potential. Physiol Rev. 2005; 
85(3):943–978.

65. Kloth LC. Electrical stimulation for wound healing: a review of evidence 
from in vitro studies, animal experiments, and clinical trials. Int J Low 
Extrem Wounds. 2005;4(1):23–44.

66. Ferroni P, Roselli M, Guadagni F, et al. Biological effects of a soft-
ware-controlled voltage pulse generator (PhyBack PBK-2C) on the 
release of vascular endothelial growth factor (VEGF). In Vivo. 2005; 
19(6):949–958.

67. Bevilacqua M, Dominguez LJ, Barrella M, Barbagallo M. Induction of 
vascular endothelial growth factor release by transcutaneous frequency 
modulated neural stimulation in diabetic polyneuropathy. J Endocrinol 
Invest. 2007;30(11):944–947.

68. Bocchi L, Evangelisti A, Barrella M, Scatizzi L, Bevilacqua M. Recov-
ery of 0.1 Hz microvascular skin blood flow in dysautonomic diabetic 
(type 2) neuropathy by using Frequency Rhythmic Electrical Modulation 
System (FREMS). Med Eng Phys. 2010;32(4):407–413.

69. Cramp AF, Gilsenan C, Lowe AS, Walsh DM. The effect of high- and 
low-frequency transcutaneous electrical nerve stimulation upon cutane-
ous blood flow and skin temperature in healthy subjects. Clin Physiol. 
2000;20(2):150–157.

70. Farina S, Casarotto M, Benelle M, et al. A randomized controlled 
study on the effect of two different treatments (FREMS AND TENS) 
in myofascial pain syndrome. Eura Medicophys. 2004;40(4):293–301.

71. Harding AC, Gil J, Valdes J, Solis M, Davis SC. Efficacy of a bio-electric 
dressing in healing deep, partial-thickness wounds using a porcine 
model. Ostomy Wound Manage. 2012;58(9):50–55.

72. Weintraub MI, Wolfe GI, Barohn RA, et al. Static magnetic field 
therapy for symptomatic diabetic neuropathy: a randomized, double-
blind, placebo-controlled trial. Arch Phys Med Rehabil. 2015;84(5): 
736–746.

73. Goldman R, Rosen M, Brewley B, Golden M. Electrotherapy 
promotes healing and microcirculation of infrapopliteal ischemic 
wounds: a prospective pilot study. Adv Skin Wound Care. 2004;17(6): 
284–294.

74. Song B, Gu Y, Pu J, Reid B, Zhao Z, Zhao M. Application of direct 
current electric fields to cells and tissues in vitro and modulation of 
wound electric field in vivo. Nat Protoc. 2007;2(6):1479–1489.

75. Wang ET, Zhao M. Regulation of tissue repair and regeneration by 
electric fields. Chin J Traumatol. 2010;13(1):55–61.

76. Xiong GM, Do AT, Wang JK, Yeoh CL, Yeo KS, Choong C. Develop-
ment of a miniaturized stimulation device for electrical stimulation of 
cells. J Biol Eng. 2015;9(1):14.

77. Caddy J, Wilanowski T, Darido C, et al. Epidermal wound repair is 
regulated by the planar cell polarity signaling pathway. Dev Cell. 
2010;19(1):138–147.

78. Allen GM, Mogilner A, Theriot JA. Electrophoresis of cellular mem-
brane components creates the directional cue guiding keratocyte 
galvanotaxis. Curr Biol. 2013;23(7):560–568.

79. Sun Y, Do H, Gao J, Zhao R, Zhao M, Mogilner A. Keratocyte fragments 
and cells utilize competing pathways to move in opposite directions in 
an electric field. Curr Biol. 2013;23(7):569–574.

80. Torres AS, Caiafa A, Garner AL, et al. Platelet activation using elec-
tric pulse stimulation: growth factor profile and clinical implications.  
J Trauma Acute Care Surg. 2014;77(3 Suppl 2):S94–S100.

81. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De 
Bruijn EA. (2004). Vascular endothelial growth factor and angiogenesis. 
Pharmacol Rev. 2004;56(4):549–580.

82. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. 
Growth factors and cytokines in wound healing. Wound Repair Regen, 
2008;16(5):585–601.

83. Reid B, Song B, Zhao M. Electric currents in Xenopus tadpole tail 
regeneration. Dev Biol. 2009;335(1):198–207.

84. Yang Y, Zhang H, Lin ZH, et al. Human skin based triboelectric nano-
generators for harvesting biomechanical energy and as self-powered 
active tactile sensor system. ACS Nano. 2013;7(10):9213–9222.

85. Shi M, Zhang J, Chen H, et al. Self-powered analogue smart skin. ACS 
Nano. 2016;10(4):4083–4091.

86. Gharibi R, Yeganeh H, Rezapour-Lactoee A, Hassan ZM. (2015). 
Stimulation of wound healing by electroactive, antibacterial, and anti-
oxidant polyurethane/siloxane dressing membranes: in vitro and in vivo 
evaluations. ACS Appl Mater Interfaces. 2015;7(43):24296–24311.

87. Ge J, Neofytou E, Cahill TJ 3rd, Beygui RE, Zare RN. Drug release 
from electric-field-responsive nanoparticles. ACS Nano. 2012;6(1): 
227–233.

88. Murdan S. Electro-responsive drug delivery from hydrogels. J Control 
Release. 2003;92(1–2):1–17.

89. Weaver CL, LaRosa JM, Luo X, Cui XT. Electrically controlled 
drug delivery from graphene oxide nanocomposite films. ACS Nano. 
2014;8(2):1834–1843.

90. Akturk O, Kismet K, Yasti AC, et al. Collagen/gold nanoparticle nano-
composites: a potential skin wound healing biomaterial. J Biomater 
Appl. 2016;31(2):283–301.



Journal of Multidisciplinary Healthcare 2017:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

193

Electrotherapy in wound healing

91. Griffin DR, Weaver WM, Scumpia PO, Di Carlo D, Segura T. Acceler-
ated wound healing by injectable microporous gel scaffolds assembled 
from annealed building blocks. Nat Mater. 2015;14(7):737–744.

92. Yu B, Kang SY, Akthakul A, et al. An elastic second skin. Nat Mater. 
2016;15(8):911–918.

93. Chung E. PrintAlive 3D skin tissue printer wins Canadian Dyson Award. 
Available from: http://www.cbc.ca/news/technology/printalive-3d-skin-
tissue-printer-wins-canadian-dyson-award-1.2770667

94. de Mel A. Three-dimensional printing and the surgeon. Br J Surg. 
2016;103(7):786–788.

95. Shen Q, Trabia S, Stalbaum T, Palmre V, Kim K, Oh IK. A multiple-shape 
memory polymer-metal composite actuator capable of programmable 
control, creating complex 3D motion of bending, twisting, and oscil-
lation. Sci Rep. 2016;6:24462.

96. Markov MS. Electromagnetic Fields in Biology and Medicine: CRC 
Press; 2015.



Journal of Multidisciplinary Healthcare 2017:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Journal of Multidisciplinary Healthcare

Publish your work in this journal

Submit your manuscript here: https://www.dovepress.com/journal-of-multidisciplinary-healthcare-journal

The Journal of Multidisciplinary Healthcare is an international, peer-
reviewed open-access journal that aims to represent and publish research 
in healthcare areas delivered by practitioners of different disciplines. This 
includes studies and reviews conducted by multidisciplinary teams as well 
as research which evaluates the results or conduct of such teams or health 

care processes in general. The journal covers a very wide range of areas and 
welcomes submissions from practitioners at all levels, from all over the world. 
The manuscript management system is completely online and includes a 
very quick and fair peer-review system. Visit http://www.dovepress.com/ 
testimonials.php to read real quotes from published authors.

Dovepress

194

Hunckler and de Mel

Supplementary material
Video S1 The skin battery and the current of injury. 


