

PROGRAMMING MODULE USER'S MANUAL

PROGRAMMING INTRODUCTIONS

AIRWOOD Programming Module is developed based on Arduino, which is an open-source hardware and software company designing and manufacturing single-board microcontrollers and microcontroller kits.

SUMMARY

The AIRWOOD Programming Module is based on the ATmega328. It supports all the same IDEs as Arduino Nano.

SPECIFICATION

Microcontroller	ATmega328
Architecture	AVR
Operating Voltage	5 V
Flash Memory	32 KB of which 2 KB are used by bootloader
SRAM	2 KB
Clock Speed	16 MHz
IDE	Arduino IDE MIXLY Scratch for Arduino MDesigner

RECOMMENDED GRAPHIC PROGRAMMING IDE - MIXLY

Mixly uses graphics programming to code and support Arduino systems.

Installation Instructions

Use the following link to Download Mixly Software and User Manual:

http://www.uavi-tech.com/downloads

PROGRAMMING MODULE

For more information about programming, please refer to P18 **PROGRAMMNG INSTRUCTIONS.**

INSTRUCTIONS FOR USE

MIXLY INTRODUCTIONS

What is **GRAPHICS PROGRAMMING?**

COMPLICATED CODE

SIMPLE DRAG AND DROP CODE

Interface

CODE BLOCKS

This is like an engineer's toolbox. All our tools can be found in this area.

SOURCE CODE

This is like a scientist's microscope. We can see what are the source code that makes up the modules we are dragging into the editing area.

TOOLBAR

This area is for everything aside from coding, including upload, save, serial, selecting boards, etc.

UPLOAD YOUR PROGRAMMING CODE TO AIRWOOD

Add to Flight Controller

MAKE SURE FC IS POWERED OFF

Turn Right Switch to RIGHT to start program Turn Right Switch to LEFT to stop program

AIRWOOD PROGRAMMING GUIDE

LED PART

FUNCTION

Let the 1 (1~8) line LED lit as 1 1 1 1 1 1 1 1 1 (1 for lit,0 for off)

Lets the x column y row led of the 8*8 LED matrix on the programming module

light up.

RETURN

NAME	PARAMETERS	RETURN
Let one line LED lit	8 Char	-
FUNCTION	Lets one line of the 8*8 LED matrix light	

EXAMPLE

MOTOR CONTROL

NAME	PARAMETERS	RETURN
MotorControl	whichMotor: Motor Selection, 1~4,int; speed:0~1000, int	-
FUNCTION	Lets the selected motors rotate at a specific speed	

EXAMPLE

Makes the speed of the no. 1 motor slowly increase from $0\sim100$, then slowly decrease.

ATTITUDE PARAMETERS

the angle(-90~90) of pitch

NAME	PARAMETERS	RETURN
getPitch	-	-90~90
FUNCTION	Gets the angle of	the pitch.

the angle(-90 \sim 90) of roll

NAME	PARAMETERS	RETURN
getRoll	-	-90~90
FUNCTION	Gets the angle o	f the roll.

the angle($0\sim360$) of yaw

NAME	PARAMETERS	RETURN
getYaw	-	0~360
FUNCTION	Gets the angle o	of the yaw.

EXAMPLE

Control the flow of led lights according to the horizontal angl

```
Declare r as int v value
Declare p as int v value |
programModel initial
🧔 if 🌘
do r
         the angle(-90-90) of roll
         the angle(-90-90) of pitch
    Let the LED x
                                      #7 (4
                                                                               #V (4
                                                               p ÷v (10
                       r ÷v 10
```

CONTROLLER

NAME	PARAMETERS	RETURN
getChannel	whichChannel: channelSelection, 1~4,int;	0-1000
FUNCTION	Get the channel value.	

EXAMPLE

Using the right joystick (Channel 1,2) to the LED flow.

FLIGHT CONTROL (LIGHT FLOW Sensor needed for a stable flight controlling.)

NAME	PARAMETERS	RETURN
setAltitude	altitude:0 – 300,int	-
FUNCTION	Lets the drone fly to a specified altitude.	

NAME	PARAMETERS	RETURN
fly forward fly backward fly left fly right	distance:0 - 300,int distance:0 - 300,int distance:0 - 300,int distance:0 - 300,int	-
FUNCTION	Lets the drone fly forward or backward or left or right with specified distance.	

FLIGHT CONTROL (LIGHT FLOW Sensor needed for a stable flight controlling.)

NAME	PARAMETERS	RETURN
yaw left yaw right	distance:0 – 360,int distance:0 – 360,int	-
FUNCTION	Lets the drone rotate with a specified yaw angle.	

the drone is busy?

NAME	PARAMETERS	RETURN
the drone is busy?	-	1 for ture 0 for false
FUNCTION	Determine whether the drone is executing flight instructions	

EXAMPLE

if the drone is still busy to fly forward to a special distance, you can let the led light as you want, so as the fly backward,fly left,fly right, yaw left,yaw right and set alitude.

EXAMPLE

```
programModel initial
         switch is on right?
    take off
     Delay ms 7 6000
     set alitude to
                   180
                          (0-300) cm
     repeat while *
                     the drone is busy?
         Delay ms ▼
     Delay ms * 6000
     fly forward |
                  80
                        (0-300) cm
     repeat while v
                     the drone is busy?
         Delay ms ▼ 1
     Delay ms ▼ [
                  6000
     fly backward 80
                         (0-300) cm
     repeat while ▼
                     the drone is busy?
          Delay ms v
                      1
     Delay ms • 6000
                    (0-300) cm
     fly left 80
     repeat while *
         Delay ms ▼ 1 1
     Delay ms • 6000
                     (0-300) cm
     fly right ( 80
     repeat while
                     the drone is busy?
         Delay ms V 1
     Delay ms 7 6000
     land
```

- (1) Let drone fly to 180cm altitude.
- (2) Check if the drone is still working. If not working, delay 6 seconds.
- (3) Let drone fly forward with 80cm.
- (4) Check if the drone is still working. If not working, delay 6 seconds.
- (5) Let drone fly backward with 80cm.
- (6) Check if the drone is still working. If not working, delay 6 seconds.
- 7) Let drone fly left with 80cm.
- (8) Check if the drone is still working. If not working, delay 6 seconds.
- (9) Let drone fly right with 80cm.
- (10) Check if the drone is still working. If not working, delay 6 seconds.
- (11) Let drone land automatically.