

Product Presentation

Why is absorption necessary

- In a closed space, stationary waves can occur due to wall reflections.
- A simple "axial mode" is a reverberation where the room's dimensions (L) contain an integer number of half wave length $(\lambda/2)$.

On a wall, the acoustic pressure is maximal and acoustic velocity minimal.

Why is absorption necessary

- Instant superposition of modal pressures create, at one frequency, the well know maximal and minimal acoustic pressure, depending of our position in the room:
 - pressure "peaks" or maxima create "keynote",
 - pressure "nulls" or minima reduce homogeneity.

Both are causes of errors for the sound engineer.

microphone at 3/5 of the length of the room, L = 5 m

Different solutions to room modes

EQ

Bass-trap

Noise cancelling

AVAA or anti-wall

How does the AVAA work

- A microphone measures the acoustic pressure in front of an micro perforated sheet with specific acoustic resistance
- A electronic treatment uses this pressure to drive velocity through the acoustic resistance
- The transducer's acoustic velocity is set to achieve zero acoustic pressure behind the fabric, i.e. in the "silent chamber".

- A wall transforms the energy of the acoustic velocity into energy of acoustic pressure
- The AVAA converts energy of the acoustic pressure into energy of velocity: we can therefore call it a "wall-suppressor".

Simulations

Simulations of AVAA in a room

Specific impedance with absorber ON

Pressure structure of the 1st mode with the absorber ON

Simulations

• First mode equivalent area in several simulated rooms from 6 m² to 54 m² with wall absorption coefficients from 0.05 to 0.125

$$A_{eq} = 0.16 \text{ V} \left[\frac{1}{T_{on}} - \frac{1}{T_{off}} \right]$$

For testing, 4 AVAA were positioned in the corners on the floor of the studio.

The AVAA, smaller than 50 dm³,...

...is compared to a bass trap of over 500 dm³.

Absorbing wall with BASS TRAP

 Absorbing wall alone

20-120 Hz

Absorbing wall with AVAA

- Starting from measured and simulated extinction time of the natural modes, we computed the equivalent absorbent area A_{ae} using the Sabine's formula
- Result: One AVAA, with an acoustic resistance of 0.2 m² represent an equivalent absorption area of 0.6 to 4 m² i.e. factor 4 to 20 depending on frequency and position.

• A specific mode influences the auditory perception in time, frequency and space.

Time:

the pulse is extended.

Frequency:

pressure "peaks" create "keynote", pressure "nulls" reduce homogeneity.

Space:

sound is perceived as a hum coming from everywhere and nowhere.

How Many and Where?

How many?

- 2 AVAAs will have a significant impact in most rooms (20 to 80 m2)
- More AVAAs may be used for better results or/and in larger rooms

Where to position them easily?

- AVAAs positioned in corners are effective on more room modes
- AVAAs located against rigid walls are more effective
- AVAAs located behind the speakers are more effective

How to position them with measurements?

- Identify the problematic room modes
 (time domain frequency response or synthesizer)
- 2. Identify the highest pressure zones for each room mode
 - Play sinus corresponding to room modes
 - Walk around room walls, listen or measure pressure levels
- 3. Position AVAA at highest pressure level zones

Positioning the AVAAs

Advantages and Limitations

Limitations:

- Effective from 15 to 150 Hz
- Not a total solution for full treatment of rooms and needs to be combined with passive absorption for higher frequencies
- Most effective on low frequency room modes
- Will have no effect on first reflections away from AVAA position
- Effect will depend on room dimensions and characteristics as well as position of AVAA

Advantages and Limitations

Key Advantages:

- Stable with no setting or calibration required
- No sound emitted
- No alteration of direct sound
- Significantly reduces modal reverberation time in low frequencies:
 - More accurate and "tighter" bass
 - More accurate frequency response (less peaks, nuls, masking)
 - More accurate localisation in sound image
- Can easily be switched on and off to adapt the acoustic environment
- Modular, small footprint, movable asset

