CA. Pranav Popat

\rightarrow A commerce graduate and first attempt Chartered Accountant, Pranav is one the youngest CA Faculties in India. He loves Public Speaking and motivating students. His unique approach of teaching helps commerce students to get rid of "MATHS PHOBIA".
\rightarrow Currently, he teaches Mathematics, Statistics \& Logical Reasoning (Foundation Level CA/CS) and Cost/Management Accounting (CA Inter). Students admire him for creating very interactive learning environment in the classroom which helps them to get more connected to the subject practically.
\rightarrow He worked with Wipro Limited for 2 years in the area of cost control and deal pricing. In his 3 years practical training, he earned exposure in the field of Auditing, Industrial Implementation and other Financial Services for various corporate as well as PSU clients.

\rightarrow His Motto in Life: When life puts you in trouble, don't say WHY ME? Just say TRY ME!!!

Time value of money

formula and tricks

Simple Interest

Formula for SI	$\text { s.1. }=\frac{\text { P.r.t }}{100}$
Formula for Accumulated Amount under SI	$A=P+S I$ (amount is also called as Balance)
Using Calculator	Press $\boldsymbol{P} \boldsymbol{\square} \boldsymbol{\square} \boldsymbol{\square} \div 100$
Example 1: Find out SI	5.1 on ₹ 3,500 for 3 years at 12% per annum is?
Example 2: Find out Rate of interest	$P=₹ 12,000, A=₹ 16,500, T=21 / 2$ years. Rate percent per annum simple interest will be? Learn with CA. Pranav 1 sforming students to Professionals
Example 3: Find out Time Period	$P=₹ 8,500, A=₹ 10,200, R=121 / 2 \% S 1, t$ will be?

Compound Interest

Conversion periods	Conversion Period \quad No. of Conversion Periods
	Yearly 1
	Half-yearly 2
	Quarterly
	Monthly 12
	Daily 365
Formulas in C.I.	Accumulated Amount under Cl $\boldsymbol{A}=\boldsymbol{P}(1+i)^{n}$ Where, $P=$ Principal, $i=$ adjusted interest rate, $n=$ no. of periods
	Adjusted interest rate i annual interest rate no. of conversion periods Ex. if rate is 6% p.a. and compounding is half yearly, $i=6 / 2=3 \%$
	Time in year \times no. of conversion periods. No. of periods \quad Ex: if time is 2 years and compounding is quarterly, $n=2 \times 4=8$
	Note \quad If question is silent about conversion period, assume it to be yearly
	Cl Formula $\quad C 1=P\left[(1+i)^{n}-1\right]$
Example I: Calculate Amount as per Cl and Cl	Compute the compound interest on ₹ 4,000 for $11 / 2$ years at 10% per annum compounded half- yearly.
Example 2: Calculate Principal	On what sum will the compound interest at 5% per annum for two years compounded annually be ₹ 1,640 ?

Example 3: Calculate rate of interest	What annual rate of interest compounded annually doubles an investment in 7 years?
Example 4: Calculate Time Period	In what time will ₹ 8,000 amount to ₹ 8,820 at 10% per annum interest compounded half-yearly?

Effective rate of interest

Formula	$\boldsymbol{E}=\left[(1+i)^{n}-1\right]$
\boldsymbol{n}	here n means no. of periods in one year considering the compounding
Example:	₹ 5,000 is invested in a Term Deposit Scheme that fetches interest 6% per annum compounded quarterly. What is effective rate of interest?

Formula for Single Cash flow

Future Value of Single Cash flow	FV $=P V(1+i)^{n}$
Example:	You invest ₹3000 in a two year investment that pays you 12% per annum. Calculate the future value of the investment
Example	

Future Value of Annuity

Formula for FV of Annuity Regular	$\begin{gathered} F V A=A_{1} \times[F V A F(n, i)] \text { or } \\ F V A=A_{1}\left[\frac{(1+i)^{n}-1}{i}\right] \end{gathered}$ $A_{1}=$ amount of installment or Annuity, FVAF means future value annuity factor (it's a multiplier used to convert installment to its Future value)
Example:	₹ 200 is invested at the end of each month in an account paying interest 6% per year compounded monthly. What is the future value of this annuity after 10th payment? 1 with CA. Pranav g students to Professionals
Formula for FV of Annuity Due	$\text { FVA Due }=F V A \times(1+i)$ Calculate FVA regular normally and then multiply it by ($1+i$)
Example:	Mr. P invests ₹ 10,000 every year starting from today for next 10 years. Suppose interest rate is 8% per annum compounded annually. Calculate future value of the annuity.

Present Value of Annuity

Formula for PV of Annuity Regular	$P \vee A=A, x[\operatorname{PVAF}(n, i)]$ Type 1: $P \vee A=A_{1}\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]$ or Type 2: $P V A=\frac{A_{1}}{i}\left[1-\frac{1}{(1+i)^{n}}\right]$ $A_{1}=$ amount of installment or Annuity, PVAF means present value annuity factor (it's a multiplier used to convert installment to its present value)
Calculator Trick of PVAF (Present Value Annuity Factor)	$1+i \div \square \square n$ times $G T$
Example:	$₹ 5,000$ is paid every year for ten years to pay off a loan. What is the loan amount if interest rate be 14% per annum compounded annually? g students to Professionals
Formula for PV of Annuity Due	PVA Regular for one shorter period + Initial Cash flow
Example:	₹ 5,000 is paid every year for ten years to pay off a loan starting from today. What is the loan amount if interest rate be 14% per annum compounded annually?

