STRATEGIC FINANCIAL MANAGEMENT

For CA Final

FORMULA

for quick revision

Kunal Doshi, CFA

An exclusive hand written booklet covering most formulas.

“Begin your journey from amateur to analyst”
MU TUA L F UN D S

1. NAV = Market Value of + Receivables + Accrued - Accrued - Outside all investments (Including cash) Income Expense liabilities

 + (Sub units x NAV) - (Redeem units x NAV)

Opening units + units subscribe - units redeem

2. Loads:
 - Sale Price = NAV x (1 + Entry load x)

 - Repurchase Price = NAV x (1 - Exit load x)

3. Returns:
 - Holding Period Return (HPR) = NAVₐ - NAVₖ + D + Gₗ x 100

 where; D = Income received during the investment period (In form of dividend or interest)
 Gₗ = It is the gains received by trading the shares

Kunal Doshi, CFA
Contact: 9920546547
Simple Annualised Return (SAR) = HPR x 12 / n

Compound Annualised Growth Return (CAGR)

\[PV \times (1 + r)^t = FV \]

4. Close Ended Funds

\% Discount/Premium Price = \frac{\text{Exchange price} - \text{NAV}}{\text{NAV}} \times 100

5. Expense Ratio = \frac{\text{Expenses}}{\text{Average Portfolio/Average NAV}}

6. Returns = \frac{\text{Ending Value} - \text{Beginning Value}}{\text{Beginning Value}} \times 100.
1. **Returns** \(\frac{(P - P_0) + I}{P_0} \times 100 \)

 where:
 - \(P_0 \): Price at the beginning of investment period
 - \(P \): Price at the end of investment period
 - \(I \): Income earned during investment period

2. **Average Return (Mean)**
 \[\bar{x} = \frac{\sum x_i}{N} \]

3. **Average Risk (Standard Deviation)**
 \[\sigma X = \sqrt{\frac{\sum (x - \bar{x})^2}{N}} \]

4. **Covariance**
 \[\text{Cov}(x, y) = \frac{\sum (x - \bar{x})(y - \bar{y})}{N} \]

5. **Covariance**
 \[\text{Cov}(x, y) = \frac{\text{Cov}_{xy}}{\sigma_x \times \sigma_y} \]

 \[\therefore \text{Cov}_{xy} = \text{Cov}(x, y) \times \sigma_x \times \sigma_y \]
6. Portfolio Return (Rp) = \(w_a \times r_a + w_b \times r_b + \ldots \ldots \ldots + w_n \times r_n \)

\[\text{Combination of variance calculation} = \frac{n(n-1)}{2} \]

7. Portfolio Risk (\(\sigma_p \)) = \(\sqrt{w_a^2 \times \sigma_a^2 + w_b^2 \times \sigma_b^2 + 2w_a w_b \times \text{Cov}_{ab}} \)

8. Properties of Portfolio Risk
 - When \(x = -1 \) : \(\sigma_p = a - b \)
 - \(x > 1 \) : \(\sigma_p = a + b \)
 - \(x = 0 \) : \(\sigma_p = \sqrt{a^2 + b^2} \)

9. Minimum Variance Portfolio (MVP)
 \[w_a = \frac{s_b - \text{Cov}_{ab}}{-\sigma_a^2 + s_b^2 - 2 \text{Cov}_{ab}} \]

- When \(x = -1 \) : \(\sigma_p = 0 \rightarrow +ve\) weights
- When \(x > 1 \) : \(\sigma_p = 0 \rightarrow -ve\) weights (Short selling)

10. Theory of Dominance
 - Rule 1: Same Return : Risk ↑
 - Rule 2: Same Risk : Return ↑
 - Rule 3: Different Return and Risk : Coefficient of \(\frac{\text{variation}}{\text{slower the better}} \)
11. As per Capital Asset Pricing Model (CAPM):

\[\text{E}(R) = R_f + (R_m - R_f) \times \beta \]

where:
- \(\text{E}(R) \) = Expected return by investors.
- \(R_f \) = Risk-free rate of return for the investor.
- \(R_m \) = Market return.
- \(R_m - R_f \) = Market Risk Premium.
- \(\beta \) = Beta.

12. As per Security Characteristic Line (SCL)/Sharpe-Index Model:

\[\text{E}(R) = R_f + R_m \times \beta \]

13. As per Arbitrage Pricing Theory (APT)/Multifactor Model:

\[\text{E}(R) = R_f + \left(\sum_{p=1}^{n} R_{p} \times \beta_p \right) \]

where:
- \(\beta_p \) = Sensitivity of factors on stock (1, 2, 3, n)
- \(R_{p} \) = Risk Premium, i.e., Actual returns - Expected Returns.

14. As per Capital Market Line (CML), No Beta:

\[\text{E}(R) = R_f + \left(\frac{R_m - R_f}{\sigma_m} \right) \times \sigma_l \]

where:
- \(\sigma_l \) = Risk of stock/portfolio.
- \(\sigma_m \) = Total market risk.
- \(R_m - R_f \) = Sharpe Ratio of Market/Risk Return trade off.
- \(\sigma_m \) = Slope of CML.
Ways of Calculating Portfolio Risk:

15. Markowitz Model: \[\sigma_p = \sqrt{\sum w_i^2 \sigma_i^2 + \sum \sum w_i w_j \text{cov}_{i,j}} \]

16. Sharpe Model: \[\sigma_p = \text{Systematic Risk} + \text{Unsystematic Risk} \]
\[= \beta_p \sigma_m + \left[\sigma_e^2 \text{var} + \sigma_{e_i} \sigma_{e_j} \text{cov}_{i,j} \right] \]

where: \(e = \text{Standard Error/Residual Error/Unsystematic Risk} \)

Beta Calculation:

17. \[\beta = \frac{\text{Covar}}{\sigma_m^2} \]
\[\beta = \frac{\text{Covar} \times \text{Var} \times \text{Var}}{\sigma_m^2} = \frac{\text{Covar} \times \text{Var}}{\sigma_m^2} \]

where: \(i = \text{Stock} \)
\(m = \text{Market} \)

18. Portfolio Beta (\(\beta_p \)) = \(\sum \beta_i w_i \) + \(\sum \sum \beta_i \beta_j w_i w_j \text{cov}_{i,j} + \ldots \ldots \ldots + \sum \sum \sum \beta_i \beta_j \beta_k w_i w_j w_k \text{cov}_{i,j,k} \)

Systematic & Unsystematic Risk - for Individual Security & Portfolio

19. Individual Security
\[\text{SR} = \beta_i^2 \times \sigma_m^2 \]
\[\text{USR} = \sigma_e^2 \]

20. Portfolio
\[\text{SR} = \beta_p^2 \times \sigma_m^2 \]
\[\text{USR} = \sum \sum \sum w_i \sigma_e^2 + w_j \sigma_e^2 + \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \]

Kunal Doshi, CFA
Contact: 9920546547
21. Covariance between 2 Securities using Beta
\[\text{Cov}_{ab} = \beta_a \times \beta_b \times \sigma^2 \]

2) Performance Evaluation

1. Sharpe Ratio = \(\frac{R_p - R_f}{\sigma_p} \)

 Where: \(R_p \) = Return of portfolio/fund/security
 \(R_f \) = Risk-free return
 \(\sigma_p \) = Standard Deviation

2. Treynor Ratio = \(\frac{R_p - R_f}{\beta_p} \)

 Where: \(\beta_p \) = Systematic Risk of Portfolio

3. Jensen's Alpha (\(\alpha \)) = \(\alpha_p - E(\alpha) \)

 Where: \(E(\alpha) = R_f + (R_m - R_f) \times \beta_p \) As per CAPM

IV) Pricing

\[P_o = \frac{D_0 (1+g)}{r_e - g} \quad \text{or} \quad P_o = \frac{D_1}{r_e - g} \]

Where: \(P_o \) = Intrinsic Value/Equilibrium Price/Ideal Price
\(D_0 \) = Current dividend/last year dividend/Dividend paid/Already given
\(D_1 \) = Expected dividend/Dividend in future/Dividend to be paid in next year
\(g \) = Growth in dividends/earnings/cashflows
\(q \) = Retention ratio \((b) \times \) Return on Equity (ROE)
\(R_e \) = Cost of equity; Expected return by CAPM; Equity Capitalisation Rate
\(\alpha_p \) = As per CAPM; \(R_e = R_f + (R_m - R_f) \times \beta_p \)
SECURITY ANALYSIS

1. Single Stage Growth Model

As per Gordon's Growth Model: \(P_0 = \frac{D_0 (1+g)}{r_e - g} \), or \(P_0 = \frac{D_1}{r_e - g} \)

where: \(P_0 = \) Intrinsic Value / Equilibrium Price / Inland Price

\(D_0 = \) Current dividend / last year dividend / Dividend paid

Already given.

\(D_1 = \) Expected dividend / Dividend to be paid in next year.

\(g = \) Growth in dividends / earnings / cash flows.

\(\{ g = \text{retention ratio} \times \text{return on equity (ROE)} \} \)

\(r_e = \) Cost of equity; Expected return by EAP; Equity capitalisation rate

\(\{ r_e \text{ per CARM}; r_e = r_f + (r_m - r_f) \times \beta \} \)

2. Dual Stage Growth Model

\[P_0 = \frac{D_0 (1+g_a)^t}{(1+r_e)^t} + \frac{D_t (1+g_a)}{(r_e-g_n)(1+r_e)^t} \]

where: \(t = \) terminal year

\(g_a = \) abnormal growth rate

\(g_n = \) normal growth rate.

\(r_e = \) cost of equity.

Kunal Doshi, CFA
Contact : 9920546547
3. Free Cash Flow to the Firm (FCFF)

\[\text{FCFF} = \text{Net Income} + \text{Non-Cash} + \text{Interest} (1-T) - \text{FC Invest} - \text{AWC Invest} \]

\[\text{FCFF} = \text{Net Income} + \text{Interest} (1-T) - \left[\text{FC Invest} - \text{Dep}^n \right] - \text{AWC Invest} \]

\[\text{FCFF} = \text{EBIT} (1-T) - \left[\text{FC Invest} - \text{Dep}^n \right] - \text{AWC Invest} \]

\[\text{FCFF} = \text{CFO} + \text{Int} (1-T) - \text{FC Invest} \]

\[\text{EBIT} (1-T) \times (1-T) = \text{NI} \]
\[\text{EBIT} (1-T) = \text{NI} + \text{Int} (1-T) \]

\[\text{CFO} = \text{NI} + \text{Non-Cash} - \text{AWC Invest} \]

4. Free Cash Flow to Equity (FCFE)

\[\text{FCFE} = \text{FCFF} - \text{Int} (1-T) + \text{NB} (\text{Net Borrowings}) \]

\[\text{FCFE} = \text{NI} - \left[\text{FC Invest} - \text{Dep}^n \right] - \text{AWC Invest} + \text{NB} \]

\[\text{FCFE} = \text{NI} - \left[\text{FC Invest} - \text{Dep}^n \right] - \text{AWC Invest} + D \times \left[\text{FC Invest} - \text{Dep}^n \right] + D \times \text{AWC Invest} \]

\[\text{FCFE} = \text{NI} - \left[(1-D) \times (\text{FC Invest} - \text{Dep}^n) \right] - \left[(1-D) \times \text{AWC Invest} \right] \]

\[\text{FCFE} = \text{NI} - \left[D \times (\text{FC Invest} - \text{Dep}^n) \right] - \left[D \times \text{AWC Invest} \right] \]
5. Valuation of Firm (FCFF)

- Single Stage: \(\text{V}_{\text{firm}} = \frac{\text{FCFF} \times (1+g)}{\text{WACC} - q} \)

- Multi Stage: \(\text{V}_{\text{firm}} = \sum \text{FCFF} \times (1+g)^t \frac{1}{(\text{WACC} - g)^t} + \frac{(\text{FCFE} \times (1+g_n))}{(1+\text{WACC})^T} \)

where: \(\text{WACC} = \text{RD} \times \text{KD} + \text{WE} \times \text{KP} + \text{WE} \times \text{KE} \)

\(q = \text{Retention Ratio} \times \text{(b)} \times \text{Return on Capital Employed} \)

- \(\text{V}_{\text{firm}} = \text{Vd} + \text{Vp} + \text{Ve} - \text{Cash} \)

\(\therefore \text{Ve} = \text{V}_{\text{firm}} - \text{Vd} - \text{Vp} + \text{Cash} \)

- \(\text{P}_{0} = \frac{\text{Ve}}{\text{No of shares}} \)

6. Valuation of Equity (FCFE)

- Single Stage: \(\text{Ve} = \frac{\text{FCFE} \times (1+g)}{\text{Ke} - q} \)

- Multi Stage: \(\text{Ve} = \sum \text{FCFE} \times (1+g)^t \frac{1}{(1+\text{Ke})^T} + \frac{(\text{FCFE}_T \times (1+g_n))}{(\text{Ke} - g_n)(1+\text{Ke})^T} \)

where: \(\text{Ke} = \text{Cost of equity} \)

- \(\text{P}_{0} = \frac{\text{Ve}}{\text{No of shares}} \)
1. **Economic Value Added (EVA)**

\[
EVA = \text{Net Operating Profit} - \left[\frac{\text{Total Invested Capital} \times \text{wACC}}{(1 - t)} \right]
\]

\[
EVA = \left[\frac{\text{EBIT}(1 - t)}{(D + E)} \times \text{wACC} \right]
\]

where: TIC = Debt + Equity / FC invt + WC invt

2. **Convertible Preference Shares**

i) **Conversion Ratio** = No of equity shares : Preference shares.

ii) **Conversion Value** = Conversion Ratio \(\times \) CP of equity.

iii) **Conversion Premium** = \(\frac{\text{Market Price of Prefer. shares} - \text{Conversion Value}}{\text{Conversion Value}} \times 100 \)

3. **Right Issue & Valuation of Rights**

i) **Value of Right** = \(\frac{P_0 - (N_a \times X)}{N_a + N_x} \)

ii) **X-Right Price** = \(\frac{(P_0 \times N_a) + (N_x \times X)}{N_a + N_x} \)

where: \(P_0 \) = Current price of equity share.

\(N_a = \) No of equity shares

\(X = \) Right Price

\(N_x = \) No of rights

iii) **Cum Right Price - Value of Right** = \(X \times \text{Right Price} \)
SECURITY ANALYSIS - BOND VALUATION

1. Intrinsic Value of the bond \(P_0 \) = \[C \times PVIFA(x, t) + RV \times PVIF(x, t) \]
 where:
 - \(C \): Coupon.
 - \(PVIFA \): Present Value Interest Factor Annuity.
 - \(x \): Yield to Maturity (YTM).
 - \(t \): time/period.
 - \(PVIF \): Present Value Interest Factor.
 - \(RV \): Redemption Value.

2. Approximate YTM = \[\text{Interest} + \frac{RV - CMP}{(RV + CMP) \times t} x 100 \]
 where:
 - \(CMP \): Current Market Price.

3. Perpetual / Redeemable Bond:
 \(P_0 = \frac{\text{Coupon}}{\text{YTM}} \)

4. Current Yield = \[\frac{\text{Coupon}}{\text{Price}} \times 100 \]

5. Duration = \[t \times \text{wrt} \]
 where:
 - \(t \): time/period.
 - \(\text{wrt} \): weights.
6. Modified Duration = \[\frac{\text{Duration}}{1 + \text{YTM}} \]

7. \(-\text{MD} = \frac{1}{\text{Yield}} \times \frac{\Delta \text{Price}}{\Delta \text{Yield}}\)

\[\Delta \text{in Price} = \Delta \text{Yield} \times -\text{MD} \]

8. \[D = \frac{\sum c_t}{(1+y)^t} + \frac{\sum RV_t x_t}{(1+y)^t} \]

\[P_0 \]

\[\text{where: } D = \text{Duration} \]
\[y = \text{YTM} \]

9. Straight Value = \[P_0 = \sum c_t \cdot \text{PVIF}(t, y, t) + \sum RV_t \cdot \text{PVIF}(t, y, t) \]

10. Option Value = Current Market Price of bond - Straight Value

11. Downside Risk = Option Value

12. \[\% \text{ of Downside Risk} = \frac{\text{Straight Value} - \text{CMP}}{\text{CMP}} \times 100 \]

13. Converson Ratio = number of shares receivable on conversion of 1 convertible bond

14. Stock Value / Conversion Value = Conversion Ratio \times \text{CMP of stock/equity}
15. Conversion Parity Price = \(\frac{\text{CMP of bond}}{\text{Conversion Ratio}} \)

16. Conversion Premium = Conversion Parity Price - CMP of Equity

17. Conversion Premium \(\% \) = \(\frac{\text{Conversion Premium}}{\text{CMP of Equity}} \) \times 100

18. Favourable Income Difference/Share = \(\text{Coupon} - \left[\frac{\text{Exchange ratio} \times \text{DPS}}{\text{Exchange ratio}} \right] \)

where; DPS = Dividend per share

19. Premium Payback Period = \(\frac{\text{Conversion Premium}}{\text{Favourable Income Diff/Share}} \)

20. Duration of Perpetual Bond = \(\frac{1 + \text{c}%}{\text{YTM}} \)
MERGER, ACQUISITION & CORPORATE RESTRUCTURING

1. Exchange Ratio = \(\frac{EPS_{T}}{EPS_{A}} \)

 where; EPS = Earning per Share
 MPS = Market Price per Share
 BVPS = Book Value per Share
 T = Target Company
 A = Acquiring Company

2. Promoters holding after acquisition = sh in any co + (ER x sh in target co)

3. % Promoters Holding = \(\frac{Promoters\ Share}{\text{Total number of shares}} \) x 100

4. Free float market capitalisation = (Total shares - Promoters sh) x MPS
 = Mkt Cap x Public Holding

5. MPS = EPS x PE
 where; PE = Price earning Ratio

6. Post merger (Mkt cap) = No of shares x MPS

7. Market capitalisation = Free float market cap
 Free float (%)

9. Gross NPA (\%) = \frac{\text{Gross NPA}}{\text{Total Advances}} \times 100

10. Capital Adequacy Ratio (CAR) = \frac{\text{Total Capital}}{\text{Risk-Weighted Assets}} \times 100

11. Swap Ratio = \left(\frac{\text{BVPS}}{\text{BVPS}} \times w \right) + \left(\frac{\text{MPS}}{\text{MPS}} \times w \right) + \left(\frac{\text{CAR}}{\text{CAR}} \times w \right) + \left(\frac{\text{Gross NPA}}{\text{Gross NPA}} \times w \right)

 where: BVPS = Book Value per Share
 MPS = Market Price per Share
 CAR = Capital Adequacy Ratio
 Gross NPA = Gross Non-Performing Asset
 w = Weights

12. \text{Asset} = w_d \times \text{pd} + w_e \times \text{pe}

 where: \(d = \text{debt} \)
 \(e = \text{equity} \)

13. Asset \(p \) with no taxation

 \text{Asset} = \frac{D}{D+E} \times \text{pd} + \frac{E}{D+E} \times \text{pe}

 \{ \text{If nothing given} \rightarrow pd = 0 \}

14. Asset \(p \) with taxation

 \text{Asset} = \frac{D(1-t)}{D(1-t)+E} \times \text{pd} + \frac{E}{D(1-t)+E} \times \text{pe}
15. \(p_d = 0 \) [Not Given]

\[p_{asset} = w_e \times p_e \]

16. If only equity is issued.

\[p_{asset} = p_e \]
FOREIGN EXCHANGE & DERIVATIVES

1. Spread = Ask rate - Bid rate.

2. Mid-Quote = Ask rate + Bid rate
 \[\frac{2}{2} \]

3. Spread Margin (A) = \(\frac{\text{Spread}}{\text{Mid-Quote}} \times 100 \)

4. Bid rate = Mid-Quote - \(\frac{\text{Spread}}{2} \)

5. Ask rate = Mid-Quote + \(\frac{\text{Spread}}{2} \)

6. Annualised Forward Margin (AFM)
 \[\text{AFM} = \frac{f - s}{s} \times 100 \times \frac{12}{n} \]

 where:
 \(f = \) forward rate
 \(s = \) spot rate
 \(n = \) No. of months.

7. As per Interest Rate Parity (IRP):
 \[\text{Forward Rate}_{bc} = \text{Spot}_{bc} \times \frac{(1 + \text{Int}_{bc})}{(1 + \text{Int}_{vc})} \]

 where:
 \(bc = \) base currency
 \(vc = \) variable currency

Kunal Doshi, CFA
Contact: 9920546547
\[P_{HC} = P_{FC} \times FC \]

where, \(P_{HC} = \) Price of goods in home currency.
\(P_{FC} = \) Price of goods in foreign currency.
\(FC = \) Exchange rate in foreign currency.

9. As per Purchasing Power Parity (PPP):
Forward Rate = Spot rate \(\times \frac{(1 + \text{Inflation}_a)}{(1 + \text{Inflation}_b)} \)

where; \(a = \) variable currency
\(b = \) base currency.

10. As per Fisher's Effect:
\[(1 + R) = (1 + R) \times (1 + D) \]

where; \(N = \) Nominal Interest Rate,
\(R = \) Real Interest Rate,
\(D = \) Inflation.

11. Theoretical / Ideal / Equilibrium Future Price (TFP):
\[TFP = S + C - D \]

where; \(S = \) Spot Price
\(C = \) Cost of carrying
\(D = \) Dividend.

12. Cost of Carrying - Simple Annualized
\[\text{Dividend (Absolute)} \]
\[TFP = S + \left(\frac{S \times x \times t_2}{100} \right) - D \]
- **Dividend Yield**
 \[TFP = S + (s \times \frac{x \times \frac{t}{12}}{12}) - (S \times d \times \frac{t}{12}) \]
 \[\therefore TFP = S + \left[s \times (x-d) \times \frac{t}{12} \right] \]

13. **Cost of Carrying - Compounded Annualised**
 - **Dividend (Pitsolute)**
 \[TFP = S \times (1+x)^t - D \]
 - **Dividend Yield**
 \[TFP = S \times \left[1 + (x-d) \right]^t \]

14. **Effective Rate of Interest**
 \[EROS = \left[1 + \frac{x}{n} \right]^{t \times n} - 1 \]
 \[\text{where:} \quad t = \text{No of years (time period)} \quad \text{of compounding} \]
 \[n = \text{No of times compounding in a year} \]

15. **CAGR / Exponential**
 \[FV = PV \times (1+x)^t \]
 \[FV = PV \times e^{xt} \]
 \[\text{where:} \quad x = \text{rate of interest} \]
 \[t = \text{time to maturity} \]
 \[e^{xt} = \text{the exponential function which is always in factor and will be provided in the question.} \]
16. **Cost of Carrying - CCF**
 - **Dividend (Absolute)**
 - If dividend is expected at end,
 \[\text{CFP} = g \times e^{rt} - D \]
 - If dividend is received between/before maturity,
 Method 1: \[\text{CFP} = g \times e^{rt} - D e^{rt} \]
 Method 2: \[\text{CFP} = (g - D e^{rt}) \times e^{rt} \]
 - **Dividend Yield**
 \[\text{CFP} = g \times e^{(r-d)t} \]

17. \[\text{CFP} = (g + e) + \frac{Sc}{L} \]
 where, \(Sc/L = \text{Storage Cost} \)

18. **Contract Size** = \(\left(\frac{\beta_T - \beta_P}{VP} \right) \times \frac{FCG}{Quantity} \)
 where, \(\beta_T = \text{Target Beta} \)
 \(\beta_P = \text{Portfolio Beta} \)
 \(VP = \text{Value of Portfolio} \)
 \(FCG = \text{Future Contract Size} \)

19. **Margin Call** = Initial Margin - Balance in Margin Account

20. **BEP** = Initial Margin - Maintenance Margin
 \(\text{Lot size} \)

22. Contract Size (Hedging Portfolio with Options / Delta Hedging)

\[CS = \frac{1}{\partial} \times \frac{VP}{OCS} \]

where:
- \(CS \) = Contract Size
- \(VP \) = Value of Portfolio
- \(OCS \) = Option Contract Size
- \(\partial \) = Delta = \(\% \) change in Option Premium = \(\% \) change in Underlying Asset

23. FRA Pay Off

\[\text{FRA Pay Off} = \left(\text{Ref rate} - \text{FRA rate} \right) \times NF \times \frac{d^2}{360} \]

\[\left[1 + \left(\frac{FB \times d}{360} \right) \right] \]

where:
- FRA rate / FRA = Libor rate of FRA, i.e., contracted rate
- Ref rate = Settlement rate as LIBOR on maturity
- \(d \) = Duration of the underlying
- NF = Notional Principal

\[(S_u \times P_d) + (S_d \times P_u) = TFP \]

where:
- \(S_u \) = Price when the stock goes upwards
- \(S_d \) = Price when the stock goes downwards
- \(P_d \) = Probability of stock going upwards
- \(P_u \) = Probability of stock going downwards
- So = Price of stock today
- r = Risk-free rate
- t = Time of maturity
- \(P_d + P_u = 1 \)
25. **Put Call Parity**

\[S_0 + P_0 = C_0 + X e^{-rt} \]

where:
- \(S_0 \): Long in Stock
- \(P_0 \): Long Put
- \(C_0 \): Long Call
- \(X e^{-rt} \): Present value of the strike price also called as Investment in risk-free at present value of \(X \)

26. **Formulas of Black & Scholes**

- \(C_0 = S_0 N(d_1) - X e^{-rt} N(d_2) \)

- \(d_1 = \frac{\ln \left(\frac{S}{X} \right) + \left(r + \frac{\sigma^2}{2} \right) t}{\sigma \sqrt{t}} \)

- \(d_2 = d_1 - \sigma \sqrt{t} \)

where:
- \(C_0 \): Price of Call/Call Premium today
- \(S_0 \): Spot Price today
- \(X \): Strike Price
- \(X e^{-rt} \): Present Value of Strike
- \(r \): Risk-free rate (Annualised)
- \(\sigma \): Standard deviation (Annualised)
- \(t \): Time to maturity
- \(\ln \): Log Natural
- \(N(d_1) \): It is the probability of spot at maturity i.e. \(S_t \)
- \(N(d_2) \): It is the probability of exercising the option at \(X \)
3) INTERNATIONAL FINANCIAL MANAGEMENT

1. As per Interest Rate Parity:
 \[\text{Forward}_{BC} = \frac{\text{Spot}_{BC} \times (1+\text{Int}_{VC})}{1+\text{Int}_{BC}} \]
 where; \(BC \) = base currency
 \(VC \) = variable currency

2. As per Purchasing Power Parity:
 \[\text{Forward}_{BC} = \frac{\text{Spot}_{BC} \times (1+\text{Inflation}_{VC})}{1+\text{Inflation}_{BC}} \]

3. \(NCF = RCF \times (1 + \text{Inflation}) \)

4. \(RCF = \frac{NCF}{(1 + \text{Inflation})} \)

5. Modified Internal Rate of Return = \(\left(\frac{FV}{PV} \right)^{1/t} - 1 \)
Money Market

1. Discount Yield = \(\frac{FV - Price}{FV \times 100 \times \frac{365}{t}} \)

 where: \(FV = \) Face Value
 \(t = \) Period / time

2. Bond Equivalent Yield = \(\frac{FV - Price}{Price \times 100 \times \frac{365}{t}} \)

3. Effective Annualized Yield = \(\left[1 + \frac{r}{n} \right]^{tn} - 1 \)

 where: \(n = \) no of times compounded in a Year
 \(t = \) Period / time
CAPITAL BUDGETING DECISION

A) Basics

1. Cash flow after tax = Net profit after tax + Depreciation.

2. Payback Period = \(E + \frac{B}{C} \)

 where: \(E \) = Proceeding year to the year of recovery of initial investment.
 \(B \) = Balance amount to be recovered
 \(C \) = Total cash flow in the year of recovery.

4. Profitability Index (PI) = \(\frac{\text{Present Value of Cash Inflows}}{\text{Present Value of Cash Outflows}} \)

5. Annualised NPV/ Equivalent Annualised Cost (EAC)

 \[\text{EAC} = \frac{\text{NPV}}{\text{PV of Net Cash Outflows}} \times \text{PVIFA}(x,t) \]

 where: \(\text{PVIFA} = \text{Present Value Interest Factor Annuity} \)
 \(x = \) Rate of Interest
 \(t = \) Time/Period.
3. Average Rate of Return (ARR)

\[\text{ARR} = \frac{\text{Average NPAT}}{\text{Average Investment}} \times 100 \]

where; Average Investments = Opening + Closing invt

DB can be taken as closing invt

8. Inflation in Capital Budgeting

As per Fisher Effect; Nominal Rate = Inflation + Real Rate

\[(1+N) = (1+\text{Inflation}) \times (1+R) \]

9. \(RCF \times (1+\text{Inflation}) = NCF \)

where; \(RCF = \) Real Cash Flow
\(NCF = \) Nominal Cash Flow

10. \(NCF \times \frac{1}{(1+\text{Inflation})} = RCF \)

\[\text{(Risk Analysis)} \]

\[\text{Coefficient of Variation} = \frac{\text{Risk}}{\text{Return}} = \frac{\sigma}{\bar{x}} \]

\[\text{Particulars} \quad \text{without probability} \quad \text{with probability} \]

\[\begin{array}{ll}
\text{\(\bar{x} \) (Return)} & \frac{\sigma^2}{N} \quad \sigma^2(\bar{x}\times p) \\
\text{\(\sigma \) (Risk)} & \sqrt{\frac{\sigma^2}{N}} \quad \sqrt{\sigma^2(\bar{x}\times p)}
\end{array} \]

Kunal Doshi, CFA
Contact: 9920546547
4. **Calculation of Risk of the Project**

i) **If cash flows are dependent**
 \[\text{SNPV} = (\text{CF}_1 \times DF_1) + (\text{CF}_2 \times DF_2) + (\text{CF}_3 \times DF_3) \]

ii) **If cash flows are independent**
 \[\text{SNPV} = \sqrt{(\text{CF}_1 \times DF_1)^2 + (\text{CF}_2 \times DF_2)^2 + (\text{CF}_3 \times DF_3)^2} \]

5. **Standard Normal Distribution Curve**
 \[z = \text{Target Value} - \frac{\bar{x}}{\sigma} \]

6. **Leasing & Borrowing Decision**

1. **Calculation of Lease Rental (Break Even Lease)**
 \[\text{PVCO} = \text{Lease Rental} \times (1 - \delta) \times PVIFA(\delta, t) \]
 where; \(\delta \) = required return by the lessor/COC of lease

2. **Calculation of EBI - Equated Annual Installment**

i) **If installments are on end of year**
 \[\text{Loan Amount} = \text{EBI} \times PVIFA(\delta, t) \]

ii) **If installments are on beginning of year**
 \[\text{Loan Amount} = \text{EBI} \times [1 + PVIFA(\delta, t-1)] \]
Factoring

1. **Debtors Turnover Ratio** = \(\frac{\text{Credit Sales}}{\text{Average Debtors/Accounts Receivable}} \)

2. **Debtors Velocity Ratio** = \(\frac{\text{Debtors Turnover Ratio}}{\text{Average Collection Period}} \)

 OR

 = \(\frac{12 \times \text{Avg. Debtors}}{\text{Credit Sales}} \)

3. **Average Debtors** = \(\frac{\text{Credit Sales} \times \text{Average Collection Period}}{12} \)

4. **Credit Sales** = \(\frac{\text{Receivables} \times 12}{\text{Rs.}} \)

5. **Effective rate of Factoring** = \(\frac{\text{Net annualised cost of factoring}}{\text{Actual advance granted}} \times 100 \)
DIVIDEND POLICY

1. Walter's Model

\[P = D + \frac{(E - D)}{r_e} \times \frac{x}{r_e} \]

Where: \(P \) = Price of share / Intrinsic Value
\(D \) = Dividends (DPS)
\(E \) = Earnings (EPS)
\(x \) = Return on investment / Return on Equity or return on retained earnings / IRR
\(r_e \) = Cost of equity / Required return by equity shareholders / Equity Capitalisation rate

\[r_e = 1 + PE ratio \]

2. Gordon's Growth

\[P_0 = \frac{D_0}{r_e - g} \quad \text{or} \quad \frac{D_0}{r_e - g} \times \frac{(1 + g)}{r_e - g} \]

Where: \(P_0 \) = Intrinsic Value / Equilibrium Price / Ideal Price
\(D_0 \) = Current dividend / Last year dividend / Dividend paid / Already given
\(D_1 \) = Expected dividend / dividend in future / Div to be paid in next year
\(g \) = Growth \[g = \frac{R \times 100}{100 - \text{retention ratio} \times \text{return on equity}} \]
\(r_e \) = Cost of equity \[\text{As per CAPM}; \quad r_e = R_f + (R_m - R_f) \times \beta \]
3. Grahah & Dodd Model (Traditional Model)
\[\text{Price} = \left(\frac{D + E}{2} \right) \times M \]
where; \(M \) = Multiplier

4.Lintner’s Model
\[D_1 = D_0 \times c + \left(\frac{\text{Target P/E ratio} \times \text{EPS}}{1 - c} \right) \]
where; \(D_0 \) = Current dividend or last year’s dividend.
\(D_1 \) = Expected dividend or next year’s dividend.
\(c \) = Adjustment factor/weight.
\(\text{EPS} \) = Earnings per share

5. Modigliani & Miller
\[P_0 = \frac{D_t + P}{(1 + R_E)} \]
where; \(P_0 \) = Current Price.
\(D_t \) = Expected Dividend.
\(P \) = Expected Price.
\(R_E \) = Cost of Equity.

* Dividend Irrelevance Theory of PPM
\[nP_0 = P(m+n) - I + E \]
\[\frac{1}{1 + R_E} \]
where; \(nP_0 \) = Total market value of firm.
\(P \) = Price of share/Intrinsic Value.
\(m \) = Old shares.
\(n \) = New shares.
\(I \) = Investment made.
\(E \) = Total earnings.
\(R_E \) = Cost of equity.

Kunal Doshi, CFA
Contact: 9920546547
Theoretical Buy-Back Price

Value of co before Buy-back = Value of co after buy-back

\[(x \times P_0) = (x - b) \times P_i \]

\[P_i = \frac{x \times P_0}{x - b} \]

where:
- \(x \) = No. of shares before buy-back
- \(b \) = Buy-back shares
- \(P_0 \) = Price of co before buy-back
- \(P_i \) = Price of co after buy-back / Buy-back price
Our Offerings:

CA – FINAL – SFM
- Full Course – 3 Month batch
- Fast Track – 20 Days programme
- Pen Drive – 160 hours recorded lecture with Notes
- Mock Test – a 3 Level test evaluated by experts

CA – FINAL – FSCM (Elective)
- Full Course – 1 Month batch
- Fast Track – 10 Days programme
- Pen Drive – 100 hours recorded lecture with Notes

CA – IPCC – FM & Economics
- Full Course – 1 Month batch
- Fast Track – 10 Days programme
- Pen Drive – 100 hours recorded lecture with Notes
- Mock Test – a 3 Level test evaluated by experts

FOR DEMO VISIT OUR CHANNEL ON

YouTube - KUNAL DOSHI, CFA

Reach us on:

Facebook Eduinvest Academy

WhatsApp 7977674844/ 9920546547