C	C -1	r.
2	Ε.	

JLI			
Set means	Collection of well-defined distinct objects. It is usually denoted by capital letter		
Element	Each object of set is called as element. It is usually denoted by small letter		
Braces Form	When set shown as a list of elements within braces { } e.g. A = {1,3,5,7}		
Descriptive Form	Set can be presented in statement form e.g. A = set of first four odd numbers		
-	Here Set is written in the algebraic form in this format –		
Set-Builder or	$\{x: x \text{ satisfies some properties or rule}\}$. The method of writing this form is		
Algebraic form	called as Property or Rule method		
Belongs to	It is denoted by ' \in ', a \in A means that element a is one of the element of Set A. \notin used for do not belongs to.		
Subset	Set A is a subset of Set B if all the elements of Set A also exist in Set B. It is denoted as - $A \subset B$		
Proper Subset	A is a proper subset of B if A is a subset of B and $A \neq B$		
Improper Subset	Two equal sets are improper subsets of each other		
Null Set	A set having no elements is called as Null or Empty Set. It is denoted by ${f \varphi}$		
No. of subsets	Formula: no. of subsets = 2 ⁿ , no. of proper subsets = 2 ⁿ -1		
Intersection	Intersection set of A and B is a set that contains common elements between		
denoted by [A∩B]	both of the sets		
Union	Union set of A and B is a set that contains all the elements contained in both the		
denoted by [AUB]	sets without repeating the common elements		
Universal Set	The set which contains all the elements under consideration in a particular problem is called the universal set generally denoted by S		
Complement Set	A complement set of set P is a set that contains all the elements contained in the universe other than elements of P. It is denoted by P' or P ^c		
Set (A-B)	A-B is a set that contains elements of A other than those which are common in A and B. $[A-B = A - A \cap B]$		
De Morgan's Law	1. $(P \cup Q)' = P' \cap Q'$ 2. $(P \cap Q)' = P' \cup Q'$		
	Universal Set		
Venn Diagrams	Union Set AUB		
COP .	Intersection Set $A \cap B$		
	Set A-B		
2 sets – Formula	$n(A \cup B) = n(A) + n(B) - n(A \cap B)$		
3 sets – Formula	$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C)$		
L			

	A or B , atleast A or B, either A or B	A∪B	
Venn Diagram	A and B, Both A and B A∩B		
related some	Only A means	A–B	
basics	Only B means B–A		
	Neither A nor B	(A∪B)'	
Cardinal Number	No. of distinct elements contained in a finite Set A is called Cardinal Number.		
	For Set A = $\{4,6,8,3\}$, cardinal no. n(A) = 4		
Equivalent Set	Two sets A and B are equivalent sets if $n(A) = n(B)$		
Power Set	Collection of all possible subsets of a given set A is called Power set of Set A. It		
	is denoted by P(A)		
Ordered Pair	Pair of two elements both taken from different Sets. E.g. if a∈A and b∈B then		
	ordered pair is (a,b) where first element will always from A and second always		
	from B in every pair		
Product of Sets	Also called as Cartesian Product. If A and B are two non-empty sets, then set of		
	all the ordered pairs such that $a \in A$ and $b \in B$ is called as Product Set. It is		
	denoted by $A \times B$. [$A \times B = \{(a:b): a \in A \text{ and } b \in B\}$]		
Why Product?	$n(A \times B) = n(A) \times n(B)$ i.e. cardinal no. of product set is equal to product of		
	cardinal no. of each set		

FUNCTION

Relation			
Relation	Any subset	Any subset of product set is called $A \times B$ is said to define relation from A to B.	
	It's any collection of ordered pairs taken from a product set.		
Function (set	A relation where no ordered pairs have same first elements is called Function.		
based definition)	First eleme	nt of the ordered should not be repeated in the relation set. (a,b) all	
-	a should be	unique for different values of b	
Function (non set	A rule which associate all elements of A to B is called function from A to B. It is		
based definition)	denoted by	$f: A \to B \text{ or } f(x) \text{ of } B$	
Image, Pre-image	f(x) is called the image of x and x is called the pre-image of $f(x)$		
	Pre-image i	s input and Image is output	
Domain, Co-	Let $f: A \rightarrow B$	B, then A is called domain of <i>f</i> and B is called the co-domain of <i>f</i> .	
domain, Range		he images (contained in B) of pre-images taken from A is called	
		nam is a set of all pre-images and Range is a set of all images. Also	
	Range is a subset of Co-domain.		
Types of 🛛 🗼	One-One	Let $f: A \rightarrow B$, if different elements in A have different images in B	
Functions	Function	then f is one-one or injective function or one-one mapping	
	Onto	Let $f: A \rightarrow B$, if every element in B has at least one pre-image in	
	Function	A, then f is an onto or surjective function	
	Into	Let $f: A \rightarrow B$, if even a single element in B is not having pre-image	
	Function	in A, then it is said to be into function	
	Bijection	If a function is both one-one and onto it is called as Bijection	
	Function	Function	
$\mathbf{\nabla}$	Identity	If domain and co-domain are same then function is identity	
	Function	function Let $f: A \to A$ and $f(x) = x$	
	Constant	If all pre-images in A will have a single constant value in B then	
	Function	the function is constant function	
Equal Function	Two functions <i>f</i> and <i>g</i> are said to be equal function if both have same domain		
-	and same range		
Inverse Function	Let $f: A \to B$, is a one-one and onto function. Every value of x (preimage)will		
	give unique image $f(x)$ using f. If there is a function that takes value of images		
	as input and gives pre-images as output, such function is called inverse		

Learn with CA. Pranav

	function. It is denoted as $f^{-1}: B \to A$.	
Composite	A function of function is called composite function. Example: if	
Function	<i>f</i> and <i>g</i> are functions, then $f[g(x)]$ and $g[f(x)]$ are composite functions. Also	
	called as <i>fog or gof</i>	

RELATION

Relations	Any subset of product set is called $A \times B$ is said to define relation from A to B.	
	It's any collection of ordered pairs taken from a product set.	
Domain and	If R is a relation from A to B, then set of all first elements of ordered pairs is	
Range	domain and set of all second elements of ordered pairs is range. 🔨 🔨	
Types of Relation	ReflexiveIf S is a universal set, S = {a,b,c} then R is a relation from S to S. If this R contains all the ordered pairs in the form (a,a) in S×S, then it is a reflexive relationSymmetricIf (a,b) \in R, then if (b,a) \in R then R is called SymmetricTransitiveIf (a,b) \in R and also (b,c) \in R, then if (a,c) \in R such relation is Transitive. [if in a relation only (a,b) is present but (b,c) is not present we will consider it as transitive relation]	
Equivalence Relation	If a relation is Reflexive, Transitive and Symmetric as well, then it is called as Equivalence Relation	
COPARIEITIE		